/*
* The LMS stateful-hash public-key signature scheme
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
/*
* The following sources were referenced in the design of this implementation
* of the LMS algorithm:
*
* [1] IETF RFC8554
* D. McGrew, M. Curcio, S.Fluhrer
* https://datatracker.ietf.org/doc/html/rfc8554
*
* [2] NIST Special Publication 800-208
* David A. Cooper et. al.
* https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
*/
#include "common.h"
#if defined(MBEDTLS_LMS_C)
#include <string.h>
#include "lmots.h"
#include "psa/crypto.h"
#include "psa_util_internal.h"
#include "mbedtls/lms.h"
#include "mbedtls/error.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/platform.h"
/* Define a local translating function to save code size by not using too many
* arguments in each translating place. */
static int local_err_translation(psa_status_t status)
{
return psa_status_to_mbedtls(status, psa_to_lms_errors,
ARRAY_LENGTH(psa_to_lms_errors),
psa_generic_status_to_mbedtls);
}
#define PSA_TO_MBEDTLS_ERR(status) local_err_translation(status)
#define SIG_Q_LEAF_ID_OFFSET (0)
#define SIG_OTS_SIG_OFFSET (SIG_Q_LEAF_ID_OFFSET + \
MBEDTLS_LMOTS_Q_LEAF_ID_LEN)
#define SIG_TYPE_OFFSET(otstype) (SIG_OTS_SIG_OFFSET + \
MBEDTLS_LMOTS_SIG_LEN(otstype))
#define SIG_PATH_OFFSET(otstype) (SIG_TYPE_OFFSET(otstype) + \
MBEDTLS_LMS_TYPE_LEN)
#define PUBLIC_KEY_TYPE_OFFSET (0)
#define PUBLIC_KEY_OTSTYPE_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \
MBEDTLS_LMS_TYPE_LEN)
#define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_OTSTYPE_OFFSET + \
MBEDTLS_LMOTS_TYPE_LEN)
#define PUBLIC_KEY_ROOT_NODE_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \
MBEDTLS_LMOTS_I_KEY_ID_LEN)
/* Currently only support H=10 */
#define H_TREE_HEIGHT_MAX 10
#define MERKLE_TREE_NODE_AM(type) ((size_t) 1 << (MBEDTLS_LMS_H_TREE_HEIGHT(type) + 1u))
#define MERKLE_TREE_LEAF_NODE_AM(type) ((size_t) 1 << MBEDTLS_LMS_H_TREE_HEIGHT(type))
#define MERKLE_TREE_INTERNAL_NODE_AM(type) ((unsigned int) \
(1u << MBEDTLS_LMS_H_TREE_HEIGHT(type)))
#define D_CONST_LEN (2)
static const unsigned char D_LEAF_CONSTANT_BYTES[D_CONST_LEN] = { 0x82, 0x82 };
static const unsigned char D_INTR_CONSTANT_BYTES[D_CONST_LEN] = { 0x83, 0x83 };
/* Calculate the value of a leaf node of the Merkle tree (which is a hash of a
* public key and some other parameters like the leaf index). This function
* implements RFC8554 section 5.3, in the case where r >= 2^h.
*
* params The LMS parameter set, the underlying LMOTS
* parameter set, and I value which describe the key
* being used.
*
* pub_key The public key of the private whose index
* corresponds to the index of this leaf node. This
* is a hash output.
*
* r_node_idx The index of this node in the Merkle tree. Note
* that the root node of the Merkle tree is
* 1-indexed.
*
* out The output node value, which is a hash output.
*/
static int create_merkle_leaf_value(const mbedtls_lms_parameters_t *params,
unsigned char *pub_key,
unsigned int r_node_idx,
unsigned char *out)
{
psa_hash_operation_t op;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t output_hash_len;
unsigned char r_node_idx_bytes[4];
op = psa_hash_operation_init();
status = psa_hash_setup(&op, PSA_ALG_SHA_256);
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, params->I_key_identifier,
MBEDTLS_LMOTS_I_KEY_ID_LEN);
if (status != PSA_SUCCESS) {
goto exit;
}
MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0);
status = psa_hash_update(&op, r_node_idx_bytes, 4);
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, D_LEAF_CONSTANT_BYTES, D_CONST_LEN);
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, pub_key,
MBEDTLS_LMOTS_N_HASH_LEN(params->otstype));
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type),
&output_hash_len);
if (status != PSA_SUCCESS) {
goto exit;
}
exit:
psa_hash_abort(&op);
return PSA_TO_MBEDTLS_ERR(status);
}
/* Calculate the value of an internal node of the Merkle tree (which is a hash
* of a public key and some other parameters like the node index). This function
* implements RFC8554 section 5.3, in the case where r < 2^h.
*
* params The LMS parameter set, the underlying LMOTS
* parameter set, and I value which describe the key
* being used.
*
* left_node The value of the child of this node which is on
* the left-hand side. As with all nodes on the
* Merkle tree, this is a hash output.
*
* right_node The value of the child of this node which is on
* the right-hand side. As with all nodes on the
* Merkle tree, this is a hash output.
*
* r_node_idx The index of this node in the Merkle tree. Note
* that the root node of the Merkle tree is
* 1-indexed.
*
* out The output node value, which is a hash output.
*/
static int create_merkle_internal_value(const mbedtls_lms_parameters_t *params,
const unsigned char *left_node,
const unsigned char *right_node,
unsigned int r_node_idx,
unsigned char *out)
{
psa_hash_operation_t op;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t output_hash_len;
unsigned char r_node_idx_bytes[4];
op = psa_hash_operation_init();
status = psa_hash_setup(&op, PSA_ALG_SHA_256);
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, params->I_key_identifier,
MBEDTLS_LMOTS_I_KEY_ID_LEN);
if (status != PSA_SUCCESS) {
goto exit;
}
MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0);
status = psa_hash_update(&op, r_node_idx_bytes, 4);
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, D_INTR_CONSTANT_BYTES, D_CONST_LEN);
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, left_node,
MBEDTLS_LMS_M_NODE_BYTES(params->type));
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_update(&op, right_node,
MBEDTLS_LMS_M_NODE_BYTES(params->type));
if (status != PSA_SUCCESS) {
goto exit;
}
status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type),
&output_hash_len);
if (status != PSA_SUCCESS) {
goto exit;
}
exit:
psa_hash_abort(&op);
return PSA_TO_MBEDTLS_ERR(status);
}
void mbedtls_lms_public_init(mbedtls_lms_public_t *ctx)
{
memset(ctx, 0, sizeof(*ctx));
}
void mbedtls_lms_public_free(mbedtls_lms_public_t *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_platform_zeroize(ctx, sizeof(*ctx));
}
int mbedtls_lms_import_public_key(mbedtls_lms_public_t *ctx,
const unsigned char *key, size_t key_size)
{
mbedtls_lms_algorithm_type_t type;
mbedtls_lmots_algorithm_type_t otstype;
type = (mbedtls_lms_algorithm_type_t) MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_TYPE_OFFSET);
if (type != MBEDTLS_LMS_SHA256_M32_H10) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
ctx->params.type = type;
if (key_size != MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
otstype = (mbedtls_lmots_algorithm_type_t)
MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_OTSTYPE_OFFSET);
if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
ctx->params.otstype = otstype;
memcpy(ctx->params.I_key_identifier,
key + PUBLIC_KEY_I_KEY_ID_OFFSET,
MBEDTLS_LMOTS_I_KEY_ID_LEN);
memcpy(ctx->T_1_pub_key, key + PUBLIC_KEY_ROOT_NODE_OFFSET,
MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type));
ctx->have_public_key = 1;
return 0;
}
int mbedtls_lms_export_public_key(const mbedtls_lms_public_t *ctx,
unsigned char *key,
size_t key_size, size_t *key_len)
{
if (key_size < MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) {
return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
}
if (!ctx->have_public_key) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
MBEDTLS_PUT_UINT32_BE(ctx->params.type, key, PUBLIC_KEY_TYPE_OFFSET);
MBEDTLS_PUT_UINT32_BE(ctx->params.otstype, key, PUBLIC_KEY_OTSTYPE_OFFSET);
memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET,
ctx->params.I_key_identifier,
MBEDTLS_LMOTS_I_KEY_ID_LEN);
memcpy(key +PUBLIC_KEY_ROOT_NODE_OFFSET,
ctx->T_1_pub_key,
MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type));
if (key_len != NULL) {
*key_len = MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type);
}
return 0;
}
int mbedtls_lms_verify(const mbedtls_lms_public_t *ctx,
const unsigned char *msg, size_t msg_size,
const unsigned char *sig, size_t sig_size)
{
unsigned int q_leaf_identifier;
unsigned char Kc_candidate_ots_pub_key[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
unsigned char Tc_candidate_root_node[MBEDTLS_LMS_M_NODE_BYTES_MAX];
unsigned int height;
unsigned int curr_node_id;
unsigned int parent_node_id;
const unsigned char *left_node;
const unsigned char *right_node;
mbedtls_lmots_parameters_t ots_params;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
if (!ctx->have_public_key) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (ctx->params.type
!= MBEDTLS_LMS_SHA256_M32_H10) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (ctx->params.otstype
!= MBEDTLS_LMOTS_SHA256_N32_W8) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (sig_size != MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
if (sig_size < SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
if (MBEDTLS_GET_UINT32_BE(sig, SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_SIG_TYPE_OFFSET)
!= MBEDTLS_LMOTS_SHA256_N32_W8) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
if (sig_size < SIG_TYPE_OFFSET(ctx->params.otstype) + MBEDTLS_LMS_TYPE_LEN) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
if (MBEDTLS_GET_UINT32_BE(sig, SIG_TYPE_OFFSET(ctx->params.otstype))
!= MBEDTLS_LMS_SHA256_M32_H10) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
q_leaf_identifier = MBEDTLS_GET_UINT32_BE(sig, SIG_Q_LEAF_ID_OFFSET);
if (q_leaf_identifier >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
memcpy(ots_params.I_key_identifier,
ctx->params.I_key_identifier,
MBEDTLS_LMOTS_I_KEY_ID_LEN);
MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, ots_params.q_leaf_identifier, 0);
ots_params.type = ctx->params.otstype;
ret = mbedtls_lmots_calculate_public_key_candidate(&ots_params,
msg,
msg_size,
sig + SIG_OTS_SIG_OFFSET,
MBEDTLS_LMOTS_SIG_LEN(ctx->params.otstype),
Kc_candidate_ots_pub_key,
sizeof(Kc_candidate_ots_pub_key),
NULL);
if (ret != 0) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
create_merkle_leaf_value(
&ctx->params,
Kc_candidate_ots_pub_key,
MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier,
Tc_candidate_root_node);
curr_node_id = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) +
q_leaf_identifier;
for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type);
height++) {
parent_node_id = curr_node_id / 2;
/* Left/right node ordering matters for the hash */
if (curr_node_id & 1) {
left_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) +
height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
right_node = Tc_candidate_root_node;
} else {
left_node = Tc_candidate_root_node;
right_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) +
height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
}
create_merkle_internal_value(&ctx->params, left_node, right_node,
parent_node_id, Tc_candidate_root_node);
curr_node_id /= 2;
}
if (memcmp(Tc_candidate_root_node, ctx->T_1_pub_key,
MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type))) {
return MBEDTLS_ERR_LMS_VERIFY_FAILED;
}
return 0;
}
#if defined(MBEDTLS_LMS_PRIVATE)
/* Calculate a full Merkle tree based on a private key. This function
* implements RFC8554 section 5.3, and is used to generate a public key (as the
* public key is the root node of the Merkle tree).
*
* ctx The LMS private context, containing a parameter
* set and private key material consisting of both
* public and private OTS.
*
* tree The output tree, which is 2^(H + 1) hash outputs.
* In the case of H=10 we have 2048 tree nodes (of
* which 1024 of them are leaf nodes). Note that
* because the Merkle tree root is 1-indexed, the 0
* index tree node is never used.
*/
static int calculate_merkle_tree(const mbedtls_lms_private_t *ctx,
unsigned char *tree)
{
unsigned int priv_key_idx;
unsigned int r_node_idx;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/* First create the leaf nodes, in ascending order */
for (priv_key_idx = 0;
priv_key_idx < MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type);
priv_key_idx++) {
r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + priv_key_idx;
ret = create_merkle_leaf_value(&ctx->params,
ctx->ots_public_keys[priv_key_idx].public_key,
r_node_idx,
&tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES(
ctx->params.type)]);
if (ret != 0) {
return ret;
}
}
/* Then the internal nodes, in reverse order so that we can guarantee the
* parent has been created */
for (r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) - 1;
r_node_idx > 0;
r_node_idx--) {
ret = create_merkle_internal_value(&ctx->params,
&tree[(r_node_idx * 2) *
MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)],
&tree[(r_node_idx * 2 + 1) *
MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)],
r_node_idx,
&tree[r_node_idx *
MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)]);
if (ret != 0) {
return ret;
}
}
return 0;
}
/* Calculate a path from a leaf node of the Merkle tree to the root of the tree,
* and return the full path. This function implements RFC8554 section 5.4.1, as
* the Merkle path is the main component of an LMS signature.
*
* ctx The LMS private context, containing a parameter
* set and private key material consisting of both
* public and private OTS.
*
* leaf_node_id Which leaf node to calculate the path from.
*
* path The output path, which is H hash outputs.
*/
static int get_merkle_path(mbedtls_lms_private_t *ctx,
unsigned int leaf_node_id,
unsigned char *path)
{
const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
unsigned int curr_node_id = leaf_node_id;
unsigned int adjacent_node_id;
unsigned char *tree = NULL;
unsigned int height;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(ctx->params.type),
node_bytes);
if (tree == NULL) {
return MBEDTLS_ERR_LMS_ALLOC_FAILED;
}
ret = calculate_merkle_tree(ctx, tree);
if (ret != 0) {
goto exit;
}
for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type);
height++) {
adjacent_node_id = curr_node_id ^ 1;
memcpy(&path[height * node_bytes],
&tree[adjacent_node_id * node_bytes], node_bytes);
curr_node_id >>= 1;
}
ret = 0;
exit:
mbedtls_zeroize_and_free(tree, node_bytes *
(size_t) MERKLE_TREE_NODE_AM(ctx->params.type));
return ret;
}
void mbedtls_lms_private_init(mbedtls_lms_private_t *ctx)
{
memset(ctx, 0, sizeof(*ctx));
}
void mbedtls_lms_private_free(mbedtls_lms_private_t *ctx)
{
if (ctx == NULL) {
return;
}
unsigned int idx;
if (ctx->have_private_key) {
if (ctx->ots_private_keys != NULL) {
for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
mbedtls_lmots_private_free(&ctx->ots_private_keys[idx]);
}
}
if (ctx->ots_public_keys != NULL) {
for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
mbedtls_lmots_public_free(&ctx->ots_public_keys[idx]);
}
}
mbedtls_free(ctx->ots_private_keys);
mbedtls_free(ctx->ots_public_keys);
}
mbedtls_platform_zeroize(ctx, sizeof(*ctx));
}
int mbedtls_lms_generate_private_key(mbedtls_lms_private_t *ctx,
mbedtls_lms_algorithm_type_t type,
mbedtls_lmots_algorithm_type_t otstype,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng, const unsigned char *seed,
size_t seed_size)
{
unsigned int idx = 0;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
if (type != MBEDTLS_LMS_SHA256_M32_H10) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (ctx->have_private_key) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
ctx->params.type = type;
ctx->params.otstype = otstype;
ctx->have_private_key = 1;
ret = f_rng(p_rng,
ctx->params.I_key_identifier,
MBEDTLS_LMOTS_I_KEY_ID_LEN);
if (ret != 0) {
goto exit;
}
/* Requires a cast to size_t to avoid an implicit cast warning on certain
* platforms (particularly Windows) */
ctx->ots_private_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type),
sizeof(*ctx->ots_private_keys));
if (ctx->ots_private_keys == NULL) {
ret = MBEDTLS_ERR_LMS_ALLOC_FAILED;
goto exit;
}
/* Requires a cast to size_t to avoid an implicit cast warning on certain
* platforms (particularly Windows) */
ctx->ots_public_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type),
sizeof(*ctx->ots_public_keys));
if (ctx->ots_public_keys == NULL) {
ret = MBEDTLS_ERR_LMS_ALLOC_FAILED;
goto exit;
}
for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
mbedtls_lmots_private_init(&ctx->ots_private_keys[idx]);
mbedtls_lmots_public_init(&ctx->ots_public_keys[idx]);
}
for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
ret = mbedtls_lmots_generate_private_key(&ctx->ots_private_keys[idx],
otstype,
ctx->params.I_key_identifier,
idx, seed, seed_size);
if (ret != 0) {
goto exit;
}
ret = mbedtls_lmots_calculate_public_key(&ctx->ots_public_keys[idx],
&ctx->ots_private_keys[idx]);
if (ret != 0) {
goto exit;
}
}
ctx->q_next_usable_key = 0;
exit:
if (ret != 0) {
mbedtls_lms_private_free(ctx);
}
return ret;
}
int mbedtls_lms_calculate_public_key(mbedtls_lms_public_t *ctx,
const mbedtls_lms_private_t *priv_ctx)
{
const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(priv_ctx->params.type);
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
unsigned char *tree = NULL;
if (!priv_ctx->have_private_key) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (priv_ctx->params.type
!= MBEDTLS_LMS_SHA256_M32_H10) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (priv_ctx->params.otstype
!= MBEDTLS_LMOTS_SHA256_N32_W8) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type),
node_bytes);
if (tree == NULL) {
return MBEDTLS_ERR_LMS_ALLOC_FAILED;
}
memcpy(&ctx->params, &priv_ctx->params,
sizeof(mbedtls_lmots_parameters_t));
ret = calculate_merkle_tree(priv_ctx, tree);
if (ret != 0) {
goto exit;
}
/* Root node is always at position 1, due to 1-based indexing */
memcpy(ctx->T_1_pub_key, &tree[node_bytes], node_bytes);
ctx->have_public_key = 1;
ret = 0;
exit:
mbedtls_zeroize_and_free(tree, node_bytes *
(size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type));
return ret;
}
int mbedtls_lms_sign(mbedtls_lms_private_t *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng, const unsigned char *msg,
unsigned int msg_size, unsigned char *sig, size_t sig_size,
size_t *sig_len)
{
uint32_t q_leaf_identifier;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
if (!ctx->have_private_key) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (sig_size < MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) {
return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
}
if (ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (ctx->params.otstype
!= MBEDTLS_LMOTS_SHA256_N32_W8) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
if (ctx->q_next_usable_key >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) {
return MBEDTLS_ERR_LMS_OUT_OF_PRIVATE_KEYS;
}
q_leaf_identifier = ctx->q_next_usable_key;
/* This new value must _always_ be written back to the disk before the
* signature is returned.
*/
ctx->q_next_usable_key += 1;
if (MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)
< SIG_OTS_SIG_OFFSET) {
return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
}
ret = mbedtls_lmots_sign(&ctx->ots_private_keys[q_leaf_identifier],
f_rng,
p_rng,
msg,
msg_size,
sig + SIG_OTS_SIG_OFFSET,
MBEDTLS_LMS_SIG_LEN(ctx->params.type,
ctx->params.otstype) - SIG_OTS_SIG_OFFSET,
NULL);
if (ret != 0) {
return ret;
}
MBEDTLS_PUT_UINT32_BE(ctx->params.type, sig, SIG_TYPE_OFFSET(ctx->params.otstype));
MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, sig, SIG_Q_LEAF_ID_OFFSET);
ret = get_merkle_path(ctx,
MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier,
sig + SIG_PATH_OFFSET(ctx->params.otstype));
if (ret != 0) {
return ret;
}
if (sig_len != NULL) {
*sig_len = MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype);
}
return 0;
}
#endif /* defined(MBEDTLS_LMS_PRIVATE) */
#endif /* defined(MBEDTLS_LMS_C) */