// // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. // Copyright (C) 2012-2013 LunarG, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // #ifndef _POOLALLOC_INCLUDED_ #define _POOLALLOC_INCLUDED_ #ifndef NDEBUG #define GUARD_BLOCKS … #endif // // This header defines an allocator that can be used to efficiently // allocate a large number of small requests for heap memory, with the // intention that they are not individually deallocated, but rather // collectively deallocated at one time. // // This simultaneously // // * Makes each individual allocation much more efficient; the // typical allocation is trivial. // * Completely avoids the cost of doing individual deallocation. // * Saves the trouble of tracking down and plugging a large class of leaks. // // Individual classes can use this allocator by supplying their own // new and delete methods. // // STL containers can use this allocator by using the pool_allocator // class as the allocator (second) template argument. // #include <cstddef> #include <cstring> #include <vector> namespace glslang { // If we are using guard blocks, we must track each individual // allocation. If we aren't using guard blocks, these // never get instantiated, so won't have any impact. // class TAllocation { … }; // // There are several stacks. One is to track the pushing and popping // of the user, and not yet implemented. The others are simply a // repositories of free pages or used pages. // // Page stacks are linked together with a simple header at the beginning // of each allocation obtained from the underlying OS. Multi-page allocations // are returned to the OS. Individual page allocations are kept for future // re-use. // // The "page size" used is not, nor must it match, the underlying OS // page size. But, having it be about that size or equal to a set of // pages is likely most optimal. // class TPoolAllocator { … }; // // There could potentially be many pools with pops happening at // different times. But a simple use is to have a global pop // with everyone using the same global allocator. // extern TPoolAllocator& GetThreadPoolAllocator(); void SetThreadPoolAllocator(TPoolAllocator* poolAllocator); // // This STL compatible allocator is intended to be used as the allocator // parameter to templatized STL containers, like vector and map. // // It will use the pools for allocation, and not // do any deallocation, but will still do destruction. // template<class T> class pool_allocator { … }; } // end namespace glslang #endif // _POOLALLOC_INCLUDED_