// Functions related to lighting
float D_GGX(float cos_theta_m, float alpha) {
float a = cos_theta_m * alpha;
float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
return k * k * (1.0 / M_PI);
}
// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
float V_GGX(float NdotL, float NdotV, float alpha) {
return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float alpha2 = alpha_x * alpha_y;
highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
}
float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
return 0.5 / (Lambda_V + Lambda_L);
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, bool is_directional, float attenuation, vec3 f0, uint orms, float specular_amount, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_boost,
float transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 B, vec3 T, float anisotropy,
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
vec4 orms_unpacked = unpackUnorm4x8(orms);
float roughness = orms_unpacked.y;
float metallic = orms_unpacked.z;
#if defined(LIGHT_CODE_USED)
// light is written by the light shader
mat4 inv_view_matrix = scene_data_block.data.inv_view_matrix;
#ifdef USING_MOBILE_RENDERER
mat4 read_model_matrix = instances.data[draw_call.instance_index].transform;
#else
mat4 read_model_matrix = instances.data[instance_index_interp].transform;
#endif
mat4 read_view_matrix = scene_data_block.data.view_matrix;
#undef projection_matrix
#define projection_matrix scene_data_block.data.projection_matrix
#undef inv_projection_matrix
#define inv_projection_matrix scene_data_block.data.inv_projection_matrix
vec2 read_viewport_size = scene_data_block.data.viewport_size;
vec3 normal = N;
vec3 light = L;
vec3 view = V;
#CODE : LIGHT
#else
float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 1e-4);
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
#if defined(SPECULAR_SCHLICK_GGX)
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#if defined(DIFFUSE_LAMBERT_WRAP)
// Energy conserving lambert wrap shader.
// https://web.archive.org/web/20210228210901/http://blog.stevemcauley.com/2011/12/03/energy-conserving-wrapped-diffuse/
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))) * (1.0 / M_PI);
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL) * (1.0 / M_PI);
#elif defined(DIFFUSE_BURLEY)
{
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
diffuse_light += light_color * diffuse_brdf_NL * attenuation;
#if defined(LIGHT_BACKLIGHT_USED)
diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
#if defined(LIGHT_RIM_USED)
// Epsilon min to prevent pow(0, 0) singularity which results in undefined behavior.
float rim_light = pow(max(1e-4, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
{
#ifdef SSS_MODE_SKIN
float scale = 8.25 / transmittance_depth;
float d = scale * abs(transmittance_z);
float dd = -d * d;
vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
#else
float scale = 8.25 / transmittance_depth;
float d = scale * abs(transmittance_z);
float dd = -d * d;
diffuse_light += exp(dd) * transmittance_color.rgb * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
#endif
}
#else
#endif //LIGHT_TRANSMITTANCE_USED
}
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
#if defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
float alpha_ggx = roughness * roughness;
#if defined(LIGHT_ANISOTROPY_USED)
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
#else // LIGHT_ANISOTROPY_USED
float D = D_GGX(cNdotH, alpha_ggx);
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
#endif // LIGHT_ANISOTROPY_USED
// F
float cLdotH5 = SchlickFresnel(cLdotH);
// Calculate Fresnel using specular occlusion term from Filament:
// https://google.github.io/filament/Filament.html#lighting/occlusion/specularocclusion
float f90 = clamp(dot(f0, vec3(50.0 * 0.33)), metallic, 1.0);
vec3 F = f0 + (f90 - f0) * cLdotH5;
vec3 specular_brdf_NL = cNdotL * D * F * G;
specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
#if defined(LIGHT_CLEARCOAT_USED)
// Clearcoat ignores normal_map, use vertex normal instead
float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
float ccNdotV = max(dot(vertex_normal, V), 1e-4);
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
float Gr = 0.25 / (cLdotH * cLdotH);
float Fr = mix(.04, 1.0, cLdotH5);
float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
// TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
// but to do so we need to rearrange this entire function
#endif // LIGHT_CLEARCOAT_USED
}
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
#endif
#endif //defined(LIGHT_CODE_USED)
}
#ifndef SHADOWS_DISABLED
// Interleaved Gradient Noise
// https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
float quick_hash(vec2 pos) {
const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
return fract(magic.z * fract(dot(pos, magic.xy)));
}
float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord, float taa_frame_count) {
vec2 pos = coord.xy;
float depth = coord.z;
//if only one sample is taken, take it from the center
if (sc_directional_soft_shadow_samples() == 0) {
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
}
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy + vec2(taa_frame_count * 5.588238)) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
for (uint i = 0; i < sc_directional_soft_shadow_samples(); i++) {
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data_block.data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
}
return avg * (1.0 / float(sc_directional_soft_shadow_samples()));
}
float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec3 coord, float taa_frame_count) {
vec2 pos = coord.xy;
float depth = coord.z;
//if only one sample is taken, take it from the center
if (sc_soft_shadow_samples() == 0) {
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
}
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy + vec2(taa_frame_count * 5.588238)) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
for (uint i = 0; i < sc_soft_shadow_samples(); i++) {
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data_block.data.soft_shadow_kernel[i].xy), depth, 1.0));
}
return avg * (1.0 / float(sc_soft_shadow_samples()));
}
float sample_omni_pcf_shadow(texture2D shadow, float blur_scale, vec2 coord, vec4 uv_rect, vec2 flip_offset, float depth, float taa_frame_count) {
//if only one sample is taken, take it from the center
if (sc_soft_shadow_samples() == 0) {
vec2 pos = coord * 0.5 + 0.5;
pos = uv_rect.xy + pos * uv_rect.zw;
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
}
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy + vec2(taa_frame_count * 5.588238)) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
vec2 offset_scale = blur_scale * 2.0 * scene_data_block.data.shadow_atlas_pixel_size / uv_rect.zw;
for (uint i = 0; i < sc_soft_shadow_samples(); i++) {
vec2 offset = offset_scale * (disk_rotation * scene_data_block.data.soft_shadow_kernel[i].xy);
vec2 sample_coord = coord + offset;
float sample_coord_length_sqaured = dot(sample_coord, sample_coord);
bool do_flip = sample_coord_length_sqaured > 1.0;
if (do_flip) {
float len = sqrt(sample_coord_length_sqaured);
sample_coord = sample_coord * (2.0 / len - 1.0);
}
sample_coord = sample_coord * 0.5 + 0.5;
sample_coord = uv_rect.xy + sample_coord * uv_rect.zw;
if (do_flip) {
sample_coord += flip_offset;
}
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(sample_coord, depth, 1.0));
}
return avg * (1.0 / float(sc_soft_shadow_samples()));
}
float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale, float taa_frame_count) {
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy + vec2(taa_frame_count * 5.588238)) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
for (uint i = 0; i < sc_directional_penumbra_shadow_samples(); i++) {
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data_block.data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
float d = textureLod(sampler2D(shadow, SAMPLER_LINEAR_CLAMP), suv, 0.0).r;
if (d > pssm_coord.z) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (-pssm_coord.z + blocker_average) / (1.0 - blocker_average);
tex_scale *= penumbra;
float s = 0.0;
for (uint i = 0; i < sc_directional_penumbra_shadow_samples(); i++) {
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data_block.data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
}
return s / float(sc_directional_penumbra_shadow_samples());
} else {
//no blockers found, so no shadow
return 1.0;
}
}
#endif // SHADOWS_DISABLED
float get_omni_attenuation(float distance, float inv_range, float decay) {
float nd = distance * inv_range;
nd *= nd;
nd *= nd; // nd^4
nd = max(1.0 - nd, 0.0);
nd *= nd; // nd^2
return nd * pow(max(distance, 0.0001), -decay);
}
float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal, float taa_frame_count) {
#ifndef SHADOWS_DISABLED
if (omni_lights.data[idx].shadow_opacity > 0.001) {
// there is a shadowmap
vec2 texel_size = scene_data_block.data.shadow_atlas_pixel_size;
vec4 base_uv_rect = omni_lights.data[idx].atlas_rect;
base_uv_rect.xy += texel_size;
base_uv_rect.zw -= texel_size * 2.0;
// Omni lights use direction.xy to store to store the offset between the two paraboloid regions
vec2 flip_offset = omni_lights.data[idx].direction.xy;
vec3 local_vert = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
float shadow_len = length(local_vert); //need to remember shadow len from here
vec3 shadow_dir = normalize(local_vert);
vec3 local_normal = normalize(mat3(omni_lights.data[idx].shadow_matrix) * normal);
vec3 normal_bias = local_normal * omni_lights.data[idx].shadow_normal_bias * (1.0 - abs(dot(local_normal, shadow_dir)));
float shadow;
if (sc_use_light_soft_shadows() && omni_lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy + vec2(taa_frame_count * 5.588238)) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
vec3 basis_normal = shadow_dir;
vec3 v0 = abs(basis_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, basis_normal));
vec3 bitangent = normalize(cross(tangent, basis_normal));
float z_norm = 1.0 - shadow_len * omni_lights.data[idx].inv_radius;
tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
for (uint i = 0; i < sc_penumbra_shadow_samples(); i++) {
vec2 disk = disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy;
vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y;
pos = normalize(pos);
vec4 uv_rect = base_uv_rect;
if (pos.z >= 0.0) {
uv_rect.xy += flip_offset;
}
pos.z = 1.0 + abs(pos.z);
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
float d = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), pos.xy, 0.0).r;
if (d > z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (-z_norm + blocker_average) / (1.0 - blocker_average);
tangent *= penumbra;
bitangent *= penumbra;
z_norm += omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias;
shadow = 0.0;
for (uint i = 0; i < sc_penumbra_shadow_samples(); i++) {
vec2 disk = disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy;
vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y;
pos = normalize(pos);
pos = normalize(pos + normal_bias);
vec4 uv_rect = base_uv_rect;
if (pos.z >= 0.0) {
uv_rect.xy += flip_offset;
}
pos.z = 1.0 + abs(pos.z);
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
}
shadow /= float(sc_penumbra_shadow_samples());
shadow = mix(1.0, shadow, omni_lights.data[idx].shadow_opacity);
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
vec4 uv_rect = base_uv_rect;
vec3 shadow_sample = normalize(shadow_dir + normal_bias);
if (shadow_sample.z >= 0.0) {
uv_rect.xy += flip_offset;
flip_offset *= -1.0;
}
shadow_sample.z = 1.0 + abs(shadow_sample.z);
vec2 pos = shadow_sample.xy / shadow_sample.z;
float depth = shadow_len - omni_lights.data[idx].shadow_bias;
depth *= omni_lights.data[idx].inv_radius;
depth = 1.0 - depth;
shadow = mix(1.0, sample_omni_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale / shadow_sample.z, pos, uv_rect, flip_offset, depth, taa_frame_count), omni_lights.data[idx].shadow_opacity);
}
return shadow;
}
#endif
return 1.0;
}
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation);
float light_attenuation = omni_attenuation;
vec3 color = omni_lights.data[idx].color;
float size_A = 0.0;
if (sc_use_light_soft_shadows() && omni_lights.data[idx].size > 0.0) {
float t = omni_lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth; //no transmittance by default
transmittance_color.a *= light_attenuation;
#ifndef SHADOWS_DISABLED
if (omni_lights.data[idx].shadow_opacity > 0.001) {
// Redo shadowmapping, but shrink the model a bit to avoid artifacts.
vec2 texel_size = scene_data_block.data.shadow_atlas_pixel_size;
vec4 uv_rect = omni_lights.data[idx].atlas_rect;
uv_rect.xy += texel_size;
uv_rect.zw -= texel_size * 2.0;
// Omni lights use direction.xy to store to store the offset between the two paraboloid regions
vec2 flip_offset = omni_lights.data[idx].direction.xy;
vec3 local_vert = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal) * omni_lights.data[idx].transmittance_bias, 1.0)).xyz;
float shadow_len = length(local_vert); //need to remember shadow len from here
vec3 shadow_sample = normalize(local_vert);
if (shadow_sample.z >= 0.0) {
uv_rect.xy += flip_offset;
flip_offset *= -1.0;
}
shadow_sample.z = 1.0 + abs(shadow_sample.z);
vec2 pos = shadow_sample.xy / shadow_sample.z;
float depth = shadow_len * omni_lights.data[idx].inv_radius;
depth = 1.0 - depth;
pos = pos * 0.5 + 0.5;
pos = uv_rect.xy + pos * uv_rect.zw;
float shadow_z = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), pos, 0.0).r;
transmittance_z = (depth - shadow_z) / omni_lights.data[idx].inv_radius;
}
#endif // !SHADOWS_DISABLED
#endif // LIGHT_TRANSMITTANCE_USED
if (sc_use_light_projector() && omni_lights.data[idx].projector_rect != vec4(0.0)) {
vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
local_v = normalize(local_v);
vec4 atlas_rect = omni_lights.data[idx].projector_rect;
if (local_v.z >= 0.0) {
atlas_rect.y += atlas_rect.w;
}
local_v.z = 1.0 + abs(local_v.z);
local_v.xy /= local_v.z;
local_v.xy = local_v.xy * 0.5 + 0.5;
vec2 proj_uv = local_v.xy * atlas_rect.zw;
if (sc_projector_use_mipmaps()) {
vec2 proj_uv_ddx;
vec2 proj_uv_ddy;
{
vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
local_v_ddx = normalize(local_v_ddx);
if (local_v_ddx.z >= 0.0) {
local_v_ddx.z += 1.0;
} else {
local_v_ddx.z = 1.0 - local_v_ddx.z;
}
local_v_ddx.xy /= local_v_ddx.z;
local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
local_v_ddy = normalize(local_v_ddy);
if (local_v_ddy.z >= 0.0) {
local_v_ddy.z += 1.0;
} else {
local_v_ddy.z = 1.0 - local_v_ddy.z;
}
local_v_ddy.xy /= local_v_ddy.z;
local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
}
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
color *= proj.rgb * proj.a;
} else {
vec4 proj = textureLod(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + atlas_rect.xy, 0.0);
color *= proj.rgb * proj.a;
}
}
light_attenuation *= shadow;
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
rim * omni_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
diffuse_light,
specular_light);
}
float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal, float taa_frame_count) {
#ifndef SHADOWS_DISABLED
if (spot_lights.data[idx].shadow_opacity > 0.001) {
vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
vec3 spot_dir = spot_lights.data[idx].direction;
vec3 shadow_dir = light_rel_vec / light_length;
vec3 normal_bias = normal * light_length * spot_lights.data[idx].shadow_normal_bias * (1.0 - abs(dot(normal, shadow_dir)));
//there is a shadowmap
vec4 v = vec4(vertex + normal_bias, 1.0);
vec4 splane = (spot_lights.data[idx].shadow_matrix * v);
splane.z += spot_lights.data[idx].shadow_bias / (light_length * spot_lights.data[idx].inv_radius);
splane /= splane.w;
float shadow;
if (sc_use_light_soft_shadows() && spot_lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius;
vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy + vec2(taa_frame_count * 5.588238)) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale;
vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw;
for (uint i = 0; i < sc_penumbra_shadow_samples(); i++) {
vec2 suv = shadow_uv + (disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy) * uv_size;
suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
float d = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), suv, 0.0).r;
if (d > splane.z) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (-z_norm + blocker_average) / (1.0 - blocker_average);
uv_size *= penumbra;
shadow = 0.0;
for (uint i = 0; i < sc_penumbra_shadow_samples(); i++) {
vec2 suv = shadow_uv + (disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy) * uv_size;
suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, splane.z, 1.0));
}
shadow /= float(sc_penumbra_shadow_samples());
shadow = mix(1.0, shadow, spot_lights.data[idx].shadow_opacity);
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
//hard shadow
vec3 shadow_uv = vec3(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z);
shadow = mix(1.0, sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data_block.data.shadow_atlas_pixel_size, shadow_uv, taa_frame_count), spot_lights.data[idx].shadow_opacity);
}
return shadow;
}
#endif // SHADOWS_DISABLED
return 1.0;
}
vec2 normal_to_panorama(vec3 n) {
n = normalize(n);
vec2 panorama_coords = vec2(atan(n.x, n.z), acos(-n.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;
}
panorama_coords /= vec2(M_PI * 2.0, M_PI);
return panorama_coords;
}
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
#endif
inout vec3 diffuse_light,
inout vec3 specular_light) {
vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation);
vec3 spot_dir = spot_lights.data[idx].direction;
// This conversion to a highp float is crucial to prevent light leaking
// due to precision errors in the following calculations (cone angle is mediump).
highp float cone_angle = spot_lights.data[idx].cone_angle;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), cone_angle);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cone_angle));
spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation);
float light_attenuation = spot_attenuation;
vec3 color = spot_lights.data[idx].color;
float specular_amount = spot_lights.data[idx].specular_amount;
float size_A = 0.0;
if (sc_use_light_soft_shadows() && spot_lights.data[idx].size > 0.0) {
float t = spot_lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth;
transmittance_color.a *= light_attenuation;
#ifndef SHADOWS_DISABLED
if (spot_lights.data[idx].shadow_opacity > 0.001) {
vec4 splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal) * spot_lights.data[idx].transmittance_bias, 1.0));
splane /= splane.w;
vec3 shadow_uv = vec3(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z);
float shadow_z = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), shadow_uv.xy, 0.0).r;
shadow_z = shadow_z * 2.0 - 1.0;
float z_far = 1.0 / spot_lights.data[idx].inv_radius;
float z_near = 0.01;
shadow_z = 2.0 * z_near * z_far / (z_far + z_near - shadow_z * (z_far - z_near));
//distance to light plane
float z = dot(spot_dir, -light_rel_vec);
transmittance_z = z - shadow_z;
}
#endif // !SHADOWS_DISABLED
#endif // LIGHT_TRANSMITTANCE_USED
if (sc_use_light_projector() && spot_lights.data[idx].projector_rect != vec4(0.0)) {
vec4 splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
splane /= splane.w;
vec2 proj_uv = splane.xy * spot_lights.data[idx].projector_rect.zw;
if (sc_projector_use_mipmaps()) {
//ensure we have proper mipmaps
vec4 splane_ddx = (spot_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0));
splane_ddx /= splane_ddx.w;
vec2 proj_uv_ddx = splane_ddx.xy * spot_lights.data[idx].projector_rect.zw - proj_uv;
vec4 splane_ddy = (spot_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0));
splane_ddy /= splane_ddy.w;
vec2 proj_uv_ddy = splane_ddy.xy * spot_lights.data[idx].projector_rect.zw - proj_uv;
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + spot_lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy);
color *= proj.rgb * proj.a;
} else {
vec4 proj = textureLod(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + spot_lights.data[idx].projector_rect.xy, 0.0);
color *= proj.rgb * proj.a;
}
}
light_attenuation *= shadow;
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
rim * spot_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
diffuse_light, specular_light);
}
void reflection_process(uint ref_index, vec3 vertex, vec3 ref_vec, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
vec3 box_extents = reflections.data[ref_index].box_extents;
vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
//make blend more rounded
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
if (reflections.data[ref_index].intensity > 0.0) { // compute reflection
vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
if (reflections.data[ref_index].box_project) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
}
vec4 reflection;
reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(local_ref_vec, reflections.data[ref_index].index), sqrt(roughness) * MAX_ROUGHNESS_LOD).rgb * sc_luminance_multiplier();
reflection.rgb *= reflections.data[ref_index].exposure_normalization;
if (reflections.data[ref_index].exterior) {
reflection.rgb = mix(specular_light, reflection.rgb, blend);
}
reflection.rgb *= reflections.data[ref_index].intensity; //intensity
reflection.a = blend;
reflection.rgb *= reflection.a;
reflection_accum += reflection;
}
switch (reflections.data[ref_index].ambient_mode) {
case REFLECTION_AMBIENT_DISABLED: {
//do nothing
} break;
case REFLECTION_AMBIENT_ENVIRONMENT: {
//do nothing
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
vec4 ambient_out;
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
ambient_out.rgb *= reflections.data[ref_index].exposure_normalization;
ambient_out.a = blend;
if (reflections.data[ref_index].exterior) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} break;
case REFLECTION_AMBIENT_COLOR: {
vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = reflections.data[ref_index].ambient;
if (reflections.data[ref_index].exterior) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} break;
}
}
float blur_shadow(float shadow) {
return shadow;
#if 0
//disabling for now, will investigate later
float interp_shadow = shadow;
if (gl_HelperInvocation) {
interp_shadow = -4.0; // technically anything below -4 will do but just to make sure
}
uvec2 fc2 = uvec2(gl_FragCoord.xy);
interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5);
interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5);
if (interp_shadow >= 0.0) {
shadow = interp_shadow;
}
return shadow;
#endif
}