godot/servers/rendering/renderer_rd/shaders/giprobe_write.glsl

#[compute]

#version 450

#VERSION_DEFINES

layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

#define NO_CHILDREN 0xFFFFFFFF

struct CellChildren {
	uint children[8];
};

layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
	CellChildren data[];
}
cell_children;

struct CellData {
	uint position; // xyz 10 bits
	uint albedo; //rgb albedo
	uint emission; //rgb normalized with e as multiplier
	uint normal; //RGB normal encoded
};

layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
	CellData data[];
}
cell_data;

#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2

#ifdef MODE_COMPUTE_LIGHT

struct Light {
	uint type;
	float energy;
	float radius;
	float attenuation;

	vec3 color;
	float cos_spot_angle;

	vec3 position;
	float inv_spot_attenuation;

	vec3 direction;
	bool has_shadow;
};

layout(set = 0, binding = 3, std140) uniform Lights {
	Light data[MAX_LIGHTS];
}
lights;

#endif

layout(push_constant, std430) uniform Params {
	ivec3 limits;
	uint stack_size;

	float emission_scale;
	float propagation;
	float dynamic_range;

	uint light_count;
	uint cell_offset;
	uint cell_count;
	uint pad[2];
}
params;

layout(set = 0, binding = 4, std140) uniform Outputs {
	vec4 data[];
}
output;

#ifdef MODE_COMPUTE_LIGHT

uint raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
	uint result = NO_CHILDREN;

	ivec3 size = ivec3(max(max(params.limits.x, params.limits.y), params.limits.z));

	while (distance > -distance_adv) { //use this to avoid precision errors
		uint cell = 0;

		ivec3 pos = ivec3(from);

		if (all(greaterThanEqual(pos, ivec3(0))) && all(lessThan(pos, size))) {
			ivec3 ofs = ivec3(0);
			ivec3 half_size = size / 2;

			for (int i = 0; i < params.stack_size - 1; i++) {
				bvec3 greater = greaterThanEqual(pos, ofs + half_size);

				ofs += mix(ivec3(0), half_size, greater);

				uint child = 0; //wonder if this can be done faster
				if (greater.x) {
					child |= 1;
				}
				if (greater.y) {
					child |= 2;
				}
				if (greater.z) {
					child |= 4;
				}

				cell = cell_children.data[cell].children[child];
				if (cell == NO_CHILDREN) {
					break;
				}

				half_size >>= ivec3(1);
			}

			if (cell != NO_CHILDREN) {
				return cell; //found cell!
			}
		}

		from += direction * distance_adv;
		distance -= distance_adv;
	}

	return NO_CHILDREN;
}

bool compute_light_vector(uint light, uint cell, vec3 pos, out float attenuation, out vec3 light_pos) {
	if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
		light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
		attenuation = 1.0;
	} else {
		light_pos = lights.data[light].position;
		float distance = length(pos - light_pos);
		if (distance >= lights.data[light].radius) {
			return false;
		}

		attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation);

		if (lights.data[light].type == LIGHT_TYPE_SPOT) {
			vec3 rel = normalize(pos - light_pos);
			float cos_spot_angle = lights.data[light].cos_spot_angle;
			float cos_angle = dot(rel, lights.data[light].direction);
			if (cos_angle < cos_spot_angle) {
				return false;
			}

			float scos = max(cos_angle, cos_spot_angle);
			float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
			attenuation *= 1.0 - pow(spot_rim, lights.data[light].inv_spot_attenuation);
		}
	}

	return true;
}

float get_normal_advance(vec3 p_normal) {
	vec3 normal = p_normal;
	vec3 unorm = abs(normal);

	if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
		// x code
		unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
	} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
		// y code
		unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
	} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
		// z code
		unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
	} else {
		// oh-no we messed up code
		// has to be
		unorm = vec3(1.0, 0.0, 0.0);
	}

	return 1.0 / dot(normal, unorm);
}

#endif

void main() {
	uint cell_index = gl_GlobalInvocationID.x;
	if (cell_index >= params.cell_count) {
		return;
	}
	cell_index += params.cell_offset;

	uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
	vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);

#ifdef MODE_COMPUTE_LIGHT

	vec3 pos = vec3(posu) + vec3(0.5);

	vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission & 0x3FF, (cell_data.data[cell_index].emission >> 10) & 0x7FF, cell_data.data[cell_index].emission >> 21)) * params.emission_scale;
	vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);

	vec3 accum = vec3(0.0);

	for (uint i = 0; i < params.light_count; i++) {
		float attenuation;
		vec3 light_pos;

		if (!compute_light_vector(i, cell_index, pos, attenuation, light_pos)) {
			continue;
		}

		vec3 light_dir = pos - light_pos;
		float distance = length(light_dir);
		light_dir = normalize(light_dir);

		if (length(normal.xyz) > 0.2 && dot(normal.xyz, light_dir) >= 0) {
			continue; //not facing the light
		}

		if (lights.data[i].has_shadow) {
			float distance_adv = get_normal_advance(light_dir);

			distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always

			vec3 from = pos - light_dir * distance; //approximate
			from -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion

			uint result = raymarch(distance, distance_adv, from, light_dir);

			if (result != cell_index) {
				continue; //was occluded
			}
		}

		vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy;

		if (length(normal.xyz) > 0.2) {
			accum += max(0.0, dot(normal.xyz, -light_dir)) * light + emission;
		} else {
			//all directions
			accum += light + emission;
		}
	}

	output.data[cell_index] = vec4(accum, 0.0);

#endif //MODE_COMPUTE_LIGHT

#ifdef MODE_UPDATE_MIPMAPS

	{
		vec3 light_accum = vec3(0.0);
		float count = 0.0;
		for (uint i = 0; i < 8; i++) {
			uint child_index = cell_children.data[cell_index].children[i];
			if (child_index == NO_CHILDREN) {
				continue;
			}
			light_accum += output.data[child_index].rgb;

			count += 1.0;
		}

		float divisor = mix(8.0, count, params.propagation);
		output.data[cell_index] = vec4(light_accum / divisor, 0.0);
	}
#endif

#ifdef MODE_WRITE_TEXTURE
	{
	}
#endif
}