godot/modules/mobile_vr/mobile_vr_interface.cpp

/**************************************************************************/
/*  mobile_vr_interface.cpp                                               */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "mobile_vr_interface.h"

#include "core/input/input.h"
#include "core/os/os.h"
#include "servers/display_server.h"
#include "servers/rendering/rendering_server_globals.h"

StringName MobileVRInterface::get_name() const {
	return "Native mobile";
};

uint32_t MobileVRInterface::get_capabilities() const {
	return XRInterface::XR_STEREO;
};

Vector3 MobileVRInterface::scale_magneto(const Vector3 &p_magnetometer) {
	// Our magnetometer doesn't give us nice clean data.
	// Well it may on macOS because we're getting a calibrated value in the current implementation but Android we're getting raw data.
	// This is a fairly simple adjustment we can do to correct for the magnetometer data being elliptical

	Vector3 mag_raw = p_magnetometer;
	Vector3 mag_scaled = p_magnetometer;

	// update our variables every x frames
	if (mag_count > 20) {
		mag_current_min = mag_next_min;
		mag_current_max = mag_next_max;
		mag_count = 0;
	} else {
		mag_count++;
	};

	// adjust our min and max
	if (mag_raw.x > mag_next_max.x) {
		mag_next_max.x = mag_raw.x;
	}
	if (mag_raw.y > mag_next_max.y) {
		mag_next_max.y = mag_raw.y;
	}
	if (mag_raw.z > mag_next_max.z) {
		mag_next_max.z = mag_raw.z;
	}

	if (mag_raw.x < mag_next_min.x) {
		mag_next_min.x = mag_raw.x;
	}
	if (mag_raw.y < mag_next_min.y) {
		mag_next_min.y = mag_raw.y;
	}
	if (mag_raw.z < mag_next_min.z) {
		mag_next_min.z = mag_raw.z;
	}

	// scale our x, y and z
	if (!(mag_current_max.x - mag_current_min.x)) {
		mag_raw.x -= (mag_current_min.x + mag_current_max.x) / 2.0;
		mag_scaled.x = (mag_raw.x - mag_current_min.x) / ((mag_current_max.x - mag_current_min.x) * 2.0 - 1.0);
	};

	if (!(mag_current_max.y - mag_current_min.y)) {
		mag_raw.y -= (mag_current_min.y + mag_current_max.y) / 2.0;
		mag_scaled.y = (mag_raw.y - mag_current_min.y) / ((mag_current_max.y - mag_current_min.y) * 2.0 - 1.0);
	};

	if (!(mag_current_max.z - mag_current_min.z)) {
		mag_raw.z -= (mag_current_min.z + mag_current_max.z) / 2.0;
		mag_scaled.z = (mag_raw.z - mag_current_min.z) / ((mag_current_max.z - mag_current_min.z) * 2.0 - 1.0);
	};

	return mag_scaled;
};

Basis MobileVRInterface::combine_acc_mag(const Vector3 &p_grav, const Vector3 &p_magneto) {
	// yup, stock standard cross product solution...
	Vector3 up = -p_grav.normalized();

	Vector3 magneto_east = up.cross(p_magneto.normalized()); // or is this west?, but should be horizon aligned now
	magneto_east.normalize();

	Vector3 magneto = up.cross(magneto_east); // and now we have a horizon aligned north
	magneto.normalize();

	// We use our gravity and magnetometer vectors to construct our matrix
	Basis acc_mag_m3;
	acc_mag_m3.rows[0] = -magneto_east;
	acc_mag_m3.rows[1] = up;
	acc_mag_m3.rows[2] = magneto;

	return acc_mag_m3;
};

void MobileVRInterface::set_position_from_sensors() {
	_THREAD_SAFE_METHOD_

	// this is a helper function that attempts to adjust our transform using our 9dof sensors
	// 9dof is a misleading marketing term coming from 3 accelerometer axis + 3 gyro axis + 3 magnetometer axis = 9 axis
	// but in reality this only offers 3 dof (yaw, pitch, roll) orientation

	Basis orientation = head_transform.basis;

	uint64_t ticks = OS::get_singleton()->get_ticks_usec();
	uint64_t ticks_elapsed = ticks - last_ticks;
	float delta_time = (double)ticks_elapsed / 1000000.0;

	// few things we need
	Input *input = Input::get_singleton();
	Vector3 down(0.0, -1.0, 0.0); // Down is Y negative
	Vector3 north(0.0, 0.0, 1.0); // North is Z positive

	// make copies of our inputs
	bool has_grav = false;
	Vector3 acc = input->get_accelerometer();
	Vector3 gyro = input->get_gyroscope();
	Vector3 grav = input->get_gravity();
	Vector3 magneto = scale_magneto(input->get_magnetometer()); // this may be overkill on iOS because we're already getting a calibrated magnetometer reading

	if (sensor_first) {
		sensor_first = false;
	} else {
		acc = scrub(acc, last_accerometer_data, 2, 0.2);
		magneto = scrub(magneto, last_magnetometer_data, 3, 0.3);
	};

	last_accerometer_data = acc;
	last_magnetometer_data = magneto;

	if (grav.length() < 0.1) {
		// not ideal but use our accelerometer, this will contain shaky user behavior
		// maybe look into some math but I'm guessing that if this isn't available, it's because we lack the gyro sensor to actually work out
		// what a stable gravity vector is
		grav = acc;
		if (grav.length() > 0.1) {
			has_grav = true;
		};
	} else {
		has_grav = true;
	};

	bool has_magneto = magneto.length() > 0.1;
	if (gyro.length() > 0.1) {
		/* this can return to 0.0 if the user doesn't move the phone, so once on, it's on */
		has_gyro = true;
	};

	if (has_gyro) {
		// start with applying our gyro (do NOT smooth our gyro!)
		Basis rotate;
		rotate.rotate(orientation.get_column(0), gyro.x * delta_time);
		rotate.rotate(orientation.get_column(1), gyro.y * delta_time);
		rotate.rotate(orientation.get_column(2), gyro.z * delta_time);
		orientation = rotate * orientation;

		tracking_state = XRInterface::XR_NORMAL_TRACKING;
		tracking_confidence = XRPose::XR_TRACKING_CONFIDENCE_HIGH;
	};

	///@TODO improve this, the magnetometer is very fidgety sometimes flipping the axis for no apparent reason (probably a bug on my part)
	// if you have a gyro + accelerometer that combo tends to be better than combining all three but without a gyro you need the magnetometer..
	if (has_magneto && has_grav && !has_gyro) {
		// convert to quaternions, easier to smooth those out
		Quaternion transform_quat(orientation);
		Quaternion acc_mag_quat(combine_acc_mag(grav, magneto));
		transform_quat = transform_quat.slerp(acc_mag_quat, 0.1);
		orientation = Basis(transform_quat);

		tracking_state = XRInterface::XR_NORMAL_TRACKING;
		tracking_confidence = XRPose::XR_TRACKING_CONFIDENCE_HIGH;
	} else if (has_grav) {
		// use gravity vector to make sure down is down...
		// transform gravity into our world space
		grav.normalize();
		Vector3 grav_adj = orientation.xform(grav);
		float dot = grav_adj.dot(down);
		if ((dot > -1.0) && (dot < 1.0)) {
			// axis around which we have this rotation
			Vector3 axis = grav_adj.cross(down);
			axis.normalize();

			Basis drift_compensation(axis, acos(dot) * delta_time * 10);
			orientation = drift_compensation * orientation;
		};
	};

	// and copy to our head transform
	head_transform.basis = orientation.orthonormalized();

	last_ticks = ticks;
};

void MobileVRInterface::_bind_methods() {}

void MobileVRInterface::set_eye_height(const double p_eye_height) {}

double MobileVRInterface::get_eye_height() const {}

void MobileVRInterface::set_offset_rect(const Rect2 &p_offset_rect) {}

Rect2 MobileVRInterface::get_offset_rect() const {}

void MobileVRInterface::set_iod(const double p_iod) {
	intraocular_dist = p_iod;
};

double MobileVRInterface::get_iod() const {
	return intraocular_dist;
};

void MobileVRInterface::set_display_width(const double p_display_width) {
	display_width = p_display_width;
};

double MobileVRInterface::get_display_width() const {
	return display_width;
};

void MobileVRInterface::set_display_to_lens(const double p_display_to_lens) {
	display_to_lens = p_display_to_lens;
};

double MobileVRInterface::get_display_to_lens() const {
	return display_to_lens;
};

void MobileVRInterface::set_oversample(const double p_oversample) {
	oversample = p_oversample;
};

double MobileVRInterface::get_oversample() const {
	return oversample;
};

void MobileVRInterface::set_k1(const double p_k1) {
	k1 = p_k1;
};

double MobileVRInterface::get_k1() const {
	return k1;
};

void MobileVRInterface::set_k2(const double p_k2) {
	k2 = p_k2;
};

double MobileVRInterface::get_k2() const {
	return k2;
};

float MobileVRInterface::get_vrs_min_radius() const {}

void MobileVRInterface::set_vrs_min_radius(float p_vrs_min_radius) {}

float MobileVRInterface::get_vrs_strength() const {}

void MobileVRInterface::set_vrs_strength(float p_vrs_strength) {}

uint32_t MobileVRInterface::get_view_count() {
	// needs stereo...
	return 2;
};

XRInterface::TrackingStatus MobileVRInterface::get_tracking_status() const {}

bool MobileVRInterface::is_initialized() const {
	return (initialized);
};

bool MobileVRInterface::initialize() {
	XRServer *xr_server = XRServer::get_singleton();
	ERR_FAIL_NULL_V(xr_server, false);

	if (!initialized) {
		// reset our sensor data
		mag_count = 0;
		has_gyro = false;
		sensor_first = true;
		mag_next_min = Vector3(10000, 10000, 10000);
		mag_next_max = Vector3(-10000, -10000, -10000);
		mag_current_min = Vector3(0, 0, 0);
		mag_current_max = Vector3(0, 0, 0);
		head_transform.basis = Basis();
		head_transform.origin = Vector3(0.0, eye_height, 0.0);

		// we must create a tracker for our head
		head.instantiate();
		head->set_tracker_type(XRServer::TRACKER_HEAD);
		head->set_tracker_name("head");
		head->set_tracker_desc("Players head");
		xr_server->add_tracker(head);

		// make this our primary interface
		xr_server->set_primary_interface(this);

		last_ticks = OS::get_singleton()->get_ticks_usec();

		initialized = true;
	};

	return true;
};

void MobileVRInterface::uninitialize() {
	if (initialized) {
		// do any cleanup here...
		XRServer *xr_server = XRServer::get_singleton();
		if (xr_server != nullptr) {
			if (head.is_valid()) {
				xr_server->remove_tracker(head);

				head.unref();
			}

			if (xr_server->get_primary_interface() == this) {
				// no longer our primary interface
				xr_server->set_primary_interface(nullptr);
			}
		}

		initialized = false;
	};
};

Dictionary MobileVRInterface::get_system_info() {}

bool MobileVRInterface::supports_play_area_mode(XRInterface::PlayAreaMode p_mode) {}

XRInterface::PlayAreaMode MobileVRInterface::get_play_area_mode() const {}

bool MobileVRInterface::set_play_area_mode(XRInterface::PlayAreaMode p_mode) {}

Size2 MobileVRInterface::get_render_target_size() {
	_THREAD_SAFE_METHOD_

	// we use half our window size
	Size2 target_size = DisplayServer::get_singleton()->window_get_size();

	target_size.x *= 0.5 * oversample;
	target_size.y *= oversample;

	return target_size;
};

Transform3D MobileVRInterface::get_camera_transform() {
	_THREAD_SAFE_METHOD_

	Transform3D transform_for_eye;

	XRServer *xr_server = XRServer::get_singleton();
	ERR_FAIL_NULL_V(xr_server, transform_for_eye);

	if (initialized) {
		float world_scale = xr_server->get_world_scale();

		// just scale our origin point of our transform
		Transform3D _head_transform = head_transform;
		_head_transform.origin *= world_scale;

		transform_for_eye = (xr_server->get_reference_frame()) * _head_transform;
	}

	return transform_for_eye;
};

Transform3D MobileVRInterface::get_transform_for_view(uint32_t p_view, const Transform3D &p_cam_transform) {
	_THREAD_SAFE_METHOD_

	Transform3D transform_for_eye;

	XRServer *xr_server = XRServer::get_singleton();
	ERR_FAIL_NULL_V(xr_server, transform_for_eye);

	if (initialized) {
		float world_scale = xr_server->get_world_scale();

		// we don't need to check for the existence of our HMD, doesn't affect our values...
		// note * 0.01 to convert cm to m and * 0.5 as we're moving half in each direction...
		if (p_view == 0) {
			transform_for_eye.origin.x = -(intraocular_dist * 0.01 * 0.5 * world_scale);
		} else if (p_view == 1) {
			transform_for_eye.origin.x = intraocular_dist * 0.01 * 0.5 * world_scale;
		} else {
			// should not have any other values..
		};

		// just scale our origin point of our transform
		Transform3D _head_transform = head_transform;
		_head_transform.origin *= world_scale;

		transform_for_eye = p_cam_transform * (xr_server->get_reference_frame()) * _head_transform * transform_for_eye;
	} else {
		// huh? well just return what we got....
		transform_for_eye = p_cam_transform;
	};

	return transform_for_eye;
};

Projection MobileVRInterface::get_projection_for_view(uint32_t p_view, double p_aspect, double p_z_near, double p_z_far) {
	_THREAD_SAFE_METHOD_

	Projection eye;

	aspect = p_aspect;
	eye.set_for_hmd(p_view + 1, p_aspect, intraocular_dist, display_width, display_to_lens, oversample, p_z_near, p_z_far);

	return eye;
};

Vector<BlitToScreen> MobileVRInterface::post_draw_viewport(RID p_render_target, const Rect2 &p_screen_rect) {}

void MobileVRInterface::process() {
	_THREAD_SAFE_METHOD_

	if (initialized) {
		// update our head transform orientation
		set_position_from_sensors();

		// update our head transform position (should be constant)
		head_transform.origin = Vector3(0.0, eye_height, 0.0);

		if (head.is_valid()) {
			// Set our head position, note in real space, reference frame and world scale is applied later
			head->set_pose("default", head_transform, Vector3(), Vector3(), tracking_confidence);
		}
	};
};

RID MobileVRInterface::get_vrs_texture() {}

MobileVRInterface::MobileVRInterface() {}

MobileVRInterface::~MobileVRInterface() {
	// and make sure we cleanup if we haven't already
	if (is_initialized()) {
		uninitialize();
	};
};