// Copyright 2023 The Manifold Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "./hashtable.h"
#include "./impl.h"
#include "./parallel.h"
#include "./utils.h"
#include "./vec.h"
#include "manifold/manifold.h"
namespace {
using namespace manifold;
constexpr int kCrossing = -2;
constexpr int kNone = -1;
constexpr ivec4 kVoxelOffset(1, 1, 1, 0);
// Maximum fraction of spacing that a vert can move.
constexpr double kS = 0.25;
// Corresponding approximate distance ratio bound.
constexpr double kD = 1 / kS - 1;
// Maximum number of opposed verts (of 7) to allow collapse.
constexpr int kMaxOpposed = 3;
ivec3 TetTri0(int i) {
constexpr ivec3 tetTri0[16] = {{-1, -1, -1}, //
{0, 3, 4}, //
{0, 1, 5}, //
{1, 5, 3}, //
{1, 4, 2}, //
{1, 0, 3}, //
{2, 5, 0}, //
{5, 3, 2}, //
{2, 3, 5}, //
{0, 5, 2}, //
{3, 0, 1}, //
{2, 4, 1}, //
{3, 5, 1}, //
{5, 1, 0}, //
{4, 3, 0}, //
{-1, -1, -1}};
return tetTri0[i];
}
ivec3 TetTri1(int i) {
constexpr ivec3 tetTri1[16] = {{-1, -1, -1}, //
{-1, -1, -1}, //
{-1, -1, -1}, //
{3, 4, 1}, //
{-1, -1, -1}, //
{3, 2, 1}, //
{0, 4, 2}, //
{-1, -1, -1}, //
{-1, -1, -1}, //
{2, 4, 0}, //
{1, 2, 3}, //
{-1, -1, -1}, //
{1, 4, 3}, //
{-1, -1, -1}, //
{-1, -1, -1}, //
{-1, -1, -1}};
return tetTri1[i];
}
ivec4 Neighbor(ivec4 base, int i) {
constexpr ivec4 neighbors[14] = {{0, 0, 0, 1}, //
{1, 0, 0, 0}, //
{0, 1, 0, 0}, //
{0, 0, 1, 0}, //
{-1, 0, 0, 1}, //
{0, -1, 0, 1}, //
{0, 0, -1, 1}, //
{-1, -1, -1, 1}, //
{-1, 0, 0, 0}, //
{0, -1, 0, 0}, //
{0, 0, -1, 0}, //
{0, -1, -1, 1}, //
{-1, 0, -1, 1}, //
{-1, -1, 0, 1}};
ivec4 neighborIndex = base + neighbors[i];
if (neighborIndex.w == 2) {
neighborIndex += 1;
neighborIndex.w = 0;
}
return neighborIndex;
}
Uint64 EncodeIndex(ivec4 gridPos, ivec3 gridPow) {
return static_cast<Uint64>(gridPos.w) | static_cast<Uint64>(gridPos.z) << 1 |
static_cast<Uint64>(gridPos.y) << (1 + gridPow.z) |
static_cast<Uint64>(gridPos.x) << (1 + gridPow.z + gridPow.y);
}
ivec4 DecodeIndex(Uint64 idx, ivec3 gridPow) {
ivec4 gridPos;
gridPos.w = idx & 1;
idx = idx >> 1;
gridPos.z = idx & ((1 << gridPow.z) - 1);
idx = idx >> gridPow.z;
gridPos.y = idx & ((1 << gridPow.y) - 1);
idx = idx >> gridPow.y;
gridPos.x = idx & ((1 << gridPow.x) - 1);
return gridPos;
}
vec3 Position(ivec4 gridIndex, vec3 origin, vec3 spacing) {
return origin + spacing * (vec3(gridIndex) + (gridIndex.w == 1 ? 0.0 : -0.5));
}
vec3 Bound(vec3 pos, vec3 origin, vec3 spacing, ivec3 gridSize) {
return min(max(pos, origin), origin + spacing * (vec3(gridSize) - 1));
}
double BoundedSDF(ivec4 gridIndex, vec3 origin, vec3 spacing, ivec3 gridSize,
double level, std::function<double(vec3)> sdf) {
const ivec3 xyz(gridIndex);
const int lowerBoundDist = minelem(xyz);
const int upperBoundDist = minelem(gridSize - xyz);
const int boundDist = std::min(lowerBoundDist, upperBoundDist - gridIndex.w);
if (boundDist < 0) {
return 0.0;
}
const double d = sdf(Position(gridIndex, origin, spacing)) - level;
return boundDist == 0 ? std::min(d, 0.0) : d;
}
// Simplified ITP root finding algorithm - same worst-case performance as
// bisection, better average performance.
inline vec3 FindSurface(vec3 pos0, double d0, vec3 pos1, double d1, double tol,
double level, std::function<double(vec3)> sdf) {
if (d0 == 0) {
return pos0;
} else if (d1 == 0) {
return pos1;
}
// Sole tuning parameter, k: (0, 1) - smaller value gets better median
// performance, but also hits the worst case more often.
const double k = 0.1;
const double check = 2 * tol / la::length(pos0 - pos1);
double frac = 1;
double biFrac = 1;
while (frac > check) {
const double t = la::lerp(d0 / (d0 - d1), 0.5, k);
const double r = biFrac / frac - 0.5;
const double x = la::abs(t - 0.5) < r ? t : 0.5 - r * (t < 0.5 ? 1 : -1);
const vec3 mid = la::lerp(pos0, pos1, x);
const double d = sdf(mid) - level;
if ((d > 0) == (d0 > 0)) {
d0 = d;
pos0 = mid;
frac *= 1 - x;
} else {
d1 = d;
pos1 = mid;
frac *= x;
}
biFrac /= 2;
}
return la::lerp(pos0, pos1, d0 / (d0 - d1));
}
/**
* Each GridVert is connected to 14 others, and in charge of 7 of these edges
* (see Neighbor() above). Each edge that changes sign contributes one vert,
* unless the GridVert is close enough to the surface, in which case it
* contributes only a single movedVert and all crossing edgeVerts refer to that.
*/
struct GridVert {
double distance = NAN;
int movedVert = kNone;
int edgeVerts[7] = {kNone, kNone, kNone, kNone, kNone, kNone, kNone};
inline bool HasMoved() const { return movedVert >= 0; }
inline bool SameSide(double dist) const {
return (dist > 0) == (distance > 0);
}
inline int Inside() const { return distance > 0 ? 1 : -1; }
inline int NeighborInside(int i) const {
return Inside() * (edgeVerts[i] == kNone ? 1 : -1);
}
};
struct NearSurface {
VecView<vec3> vertPos;
VecView<int> vertIndex;
HashTableD<GridVert> gridVerts;
VecView<const double> voxels;
const std::function<double(vec3)> sdf;
const vec3 origin;
const ivec3 gridSize;
const ivec3 gridPow;
const vec3 spacing;
const double level;
const double tol;
inline void operator()(Uint64 index) {
ZoneScoped;
if (gridVerts.Full()) return;
const ivec4 gridIndex = DecodeIndex(index, gridPow);
if (la::any(la::greater(ivec3(gridIndex), gridSize))) return;
GridVert gridVert;
gridVert.distance = voxels[EncodeIndex(gridIndex + kVoxelOffset, gridPow)];
bool keep = false;
double vMax = 0;
int closestNeighbor = -1;
int opposedVerts = 0;
for (int i = 0; i < 7; ++i) {
const double val =
voxels[EncodeIndex(Neighbor(gridIndex, i) + kVoxelOffset, gridPow)];
const double valOp = voxels[EncodeIndex(
Neighbor(gridIndex, i + 7) + kVoxelOffset, gridPow)];
if (!gridVert.SameSide(val)) {
gridVert.edgeVerts[i] = kCrossing;
keep = true;
if (!gridVert.SameSide(valOp)) {
++opposedVerts;
}
// Approximate bound on vert movement.
if (la::abs(val) > kD * la::abs(gridVert.distance) &&
la::abs(val) > la::abs(vMax)) {
vMax = val;
closestNeighbor = i;
}
} else if (!gridVert.SameSide(valOp) &&
la::abs(valOp) > kD * la::abs(gridVert.distance) &&
la::abs(valOp) > la::abs(vMax)) {
vMax = valOp;
closestNeighbor = i + 7;
}
}
// This is where we collapse all the crossing edge verts into this GridVert,
// speeding up the algorithm and avoiding poor quality triangles. Without
// this step the result is guaranteed 2-manifold, but with this step it can
// become an even-manifold with kissing verts. These must be removed in a
// post-process: CleanupTopology().
if (closestNeighbor >= 0 && opposedVerts <= kMaxOpposed) {
const vec3 gridPos = Position(gridIndex, origin, spacing);
const ivec4 neighborIndex = Neighbor(gridIndex, closestNeighbor);
const vec3 pos = FindSurface(gridPos, gridVert.distance,
Position(neighborIndex, origin, spacing),
vMax, tol, level, sdf);
// Bound the delta of each vert to ensure the tetrahedron cannot invert.
if (la::all(la::less(la::abs(pos - gridPos), kS * spacing))) {
const int idx = AtomicAdd(vertIndex[0], 1);
vertPos[idx] = Bound(pos, origin, spacing, gridSize);
gridVert.movedVert = idx;
for (int j = 0; j < 7; ++j) {
if (gridVert.edgeVerts[j] == kCrossing) gridVert.edgeVerts[j] = idx;
}
keep = true;
}
} else {
for (int j = 0; j < 7; ++j) gridVert.edgeVerts[j] = kNone;
}
if (keep) gridVerts.Insert(index, gridVert);
}
};
struct ComputeVerts {
VecView<vec3> vertPos;
VecView<int> vertIndex;
HashTableD<GridVert> gridVerts;
VecView<const double> voxels;
const std::function<double(vec3)> sdf;
const vec3 origin;
const ivec3 gridSize;
const ivec3 gridPow;
const vec3 spacing;
const double level;
const double tol;
void operator()(int idx) {
ZoneScoped;
Uint64 baseKey = gridVerts.KeyAt(idx);
if (baseKey == kOpen) return;
GridVert& gridVert = gridVerts.At(idx);
if (gridVert.HasMoved()) return;
const ivec4 gridIndex = DecodeIndex(baseKey, gridPow);
const vec3 position = Position(gridIndex, origin, spacing);
// These seven edges are uniquely owned by this gridVert; any of them
// which intersect the surface create a vert.
for (int i = 0; i < 7; ++i) {
const ivec4 neighborIndex = Neighbor(gridIndex, i);
const GridVert& neighbor = gridVerts[EncodeIndex(neighborIndex, gridPow)];
const double val =
std::isfinite(neighbor.distance)
? neighbor.distance
: voxels[EncodeIndex(neighborIndex + kVoxelOffset, gridPow)];
if (gridVert.SameSide(val)) continue;
if (neighbor.HasMoved()) {
gridVert.edgeVerts[i] = neighbor.movedVert;
continue;
}
const int idx = AtomicAdd(vertIndex[0], 1);
const vec3 pos = FindSurface(position, gridVert.distance,
Position(neighborIndex, origin, spacing),
val, tol, level, sdf);
vertPos[idx] = Bound(pos, origin, spacing, gridSize);
gridVert.edgeVerts[i] = idx;
}
}
};
struct BuildTris {
VecView<ivec3> triVerts;
VecView<int> triIndex;
const HashTableD<GridVert> gridVerts;
const ivec3 gridPow;
void CreateTri(const ivec3& tri, const int edges[6]) {
if (tri[0] < 0) return;
const ivec3 verts(edges[tri[0]], edges[tri[1]], edges[tri[2]]);
if (verts[0] == verts[1] || verts[1] == verts[2] || verts[2] == verts[0])
return;
int idx = AtomicAdd(triIndex[0], 1);
triVerts[idx] = verts;
}
void CreateTris(const ivec4& tet, const int edges[6]) {
const int i = (tet[0] > 0 ? 1 : 0) + (tet[1] > 0 ? 2 : 0) +
(tet[2] > 0 ? 4 : 0) + (tet[3] > 0 ? 8 : 0);
CreateTri(TetTri0(i), edges);
CreateTri(TetTri1(i), edges);
}
void operator()(int idx) {
ZoneScoped;
Uint64 baseKey = gridVerts.KeyAt(idx);
if (baseKey == kOpen) return;
const GridVert& base = gridVerts.At(idx);
const ivec4 baseIndex = DecodeIndex(baseKey, gridPow);
ivec4 leadIndex = baseIndex;
if (leadIndex.w == 0)
leadIndex.w = 1;
else {
leadIndex += 1;
leadIndex.w = 0;
}
// This GridVert is in charge of the 6 tetrahedra surrounding its edge in
// the (1,1,1) direction (edge 0).
ivec4 tet(base.NeighborInside(0), base.Inside(), -2, -2);
ivec4 thisIndex = baseIndex;
thisIndex.x += 1;
GridVert thisVert = gridVerts[EncodeIndex(thisIndex, gridPow)];
tet[2] = base.NeighborInside(1);
for (const int i : {0, 1, 2}) {
thisIndex = leadIndex;
--thisIndex[Prev3(i)];
// Indices take unsigned input, so check for negatives, given the
// decrement. If negative, the vert is outside and only connected to other
// outside verts - no edgeVerts.
GridVert nextVert = thisIndex[Prev3(i)] < 0
? GridVert()
: gridVerts[EncodeIndex(thisIndex, gridPow)];
tet[3] = base.NeighborInside(Prev3(i) + 4);
const int edges1[6] = {base.edgeVerts[0],
base.edgeVerts[i + 1],
nextVert.edgeVerts[Next3(i) + 4],
nextVert.edgeVerts[Prev3(i) + 1],
thisVert.edgeVerts[i + 4],
base.edgeVerts[Prev3(i) + 4]};
thisVert = nextVert;
CreateTris(tet, edges1);
thisIndex = baseIndex;
++thisIndex[Next3(i)];
nextVert = gridVerts[EncodeIndex(thisIndex, gridPow)];
tet[2] = tet[3];
tet[3] = base.NeighborInside(Next3(i) + 1);
const int edges2[6] = {base.edgeVerts[0],
edges1[5],
thisVert.edgeVerts[i + 4],
nextVert.edgeVerts[Next3(i) + 4],
edges1[3],
base.edgeVerts[Next3(i) + 1]};
thisVert = nextVert;
CreateTris(tet, edges2);
tet[2] = tet[3];
}
}
};
} // namespace
namespace manifold {
/**
* Constructs a level-set manifold from the input Signed-Distance Function
* (SDF). This uses a form of Marching Tetrahedra (akin to Marching
* Cubes, but better for manifoldness). Instead of using a cubic grid, it uses a
* body-centered cubic grid (two shifted cubic grids). These grid points are
* snapped to the surface where possible to keep short edges from forming.
*
* @param sdf The signed-distance functor, containing this function signature:
* `double operator()(vec3 point)`, which returns the
* signed distance of a given point in R^3. Positive values are inside,
* negative outside. There is no requirement that the function be a true
* distance, or even continuous.
* @param bounds An axis-aligned box that defines the extent of the grid.
* @param edgeLength Approximate maximum edge length of the triangles in the
* final result. This affects grid spacing, and hence has a strong effect on
* performance.
* @param level Extract the surface at this value of your sdf; defaults to
* zero. You can inset your mesh by using a positive value, or outset it with a
* negative value.
* @param tolerance Ensure each vertex is within this distance of the true
* surface. Defaults to -1, which will return the interpolated
* crossing-point based on the two nearest grid points. Small positive values
* will require more sdf evaluations per output vertex.
* @param canParallel Parallel policies violate will crash language runtimes
* with runtime locks that expect to not be called back by unregistered threads.
* This allows bindings use LevelSet despite being compiled with MANIFOLD_PAR
* active.
*/
Manifold Manifold::LevelSet(std::function<double(vec3)> sdf, Box bounds,
double edgeLength, double level, double tolerance,
bool canParallel) {
if (tolerance <= 0) {
tolerance = std::numeric_limits<double>::infinity();
}
auto pImpl_ = std::make_shared<Impl>();
auto& vertPos = pImpl_->vertPos_;
const vec3 dim = bounds.Size();
const ivec3 gridSize(dim / edgeLength + 1.0);
const vec3 spacing = dim / (vec3(gridSize - 1));
const ivec3 gridPow(la::log2(gridSize + 2) + 1);
const Uint64 maxIndex = EncodeIndex(ivec4(gridSize + 2, 1), gridPow);
// Parallel policies violate will crash language runtimes with runtime locks
// that expect to not be called back by unregistered threads. This allows
// bindings use LevelSet despite being compiled with MANIFOLD_PAR
// active.
const auto pol = canParallel ? autoPolicy(maxIndex) : ExecutionPolicy::Seq;
const vec3 origin = bounds.min;
Vec<double> voxels(maxIndex);
for_each_n(
pol, countAt(0_uz), maxIndex,
[&voxels, sdf, level, origin, spacing, gridSize, gridPow](Uint64 idx) {
voxels[idx] = BoundedSDF(DecodeIndex(idx, gridPow) - kVoxelOffset,
origin, spacing, gridSize, level, sdf);
});
size_t tableSize = std::min(
2 * maxIndex, static_cast<Uint64>(10 * la::pow(maxIndex, 0.667)));
HashTable<GridVert> gridVerts(tableSize);
vertPos.resize(gridVerts.Size() * 7);
while (1) {
Vec<int> index(1, 0);
for_each_n(pol, countAt(0_uz), EncodeIndex(ivec4(gridSize, 1), gridPow),
NearSurface({vertPos, index, gridVerts.D(), voxels, sdf, origin,
gridSize, gridPow, spacing, level, tolerance}));
if (gridVerts.Full()) { // Resize HashTable
const vec3 lastVert = vertPos[index[0] - 1];
const Uint64 lastIndex =
EncodeIndex(ivec4(ivec3((lastVert - origin) / spacing), 1), gridPow);
const double ratio = static_cast<double>(maxIndex) / lastIndex;
if (ratio > 1000) // do not trust the ratio if it is too large
tableSize *= 2;
else
tableSize *= ratio;
gridVerts = HashTable<GridVert>(tableSize);
vertPos = Vec<vec3>(gridVerts.Size() * 7);
} else { // Success
for_each_n(
pol, countAt(0), gridVerts.Size(),
ComputeVerts({vertPos, index, gridVerts.D(), voxels, sdf, origin,
gridSize, gridPow, spacing, level, tolerance}));
vertPos.resize(index[0]);
break;
}
}
Vec<ivec3> triVerts(gridVerts.Entries() * 12); // worst case
Vec<int> index(1, 0);
for_each_n(pol, countAt(0), gridVerts.Size(),
BuildTris({triVerts, index, gridVerts.D(), gridPow}));
triVerts.resize(index[0]);
pImpl_->CreateHalfedges(triVerts);
pImpl_->CleanupTopology();
pImpl_->Finish();
pImpl_->InitializeOriginal();
return Manifold(pImpl_);
}
} // namespace manifold