godot/doc/classes/Viewport.xml

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Viewport" inherits="Node" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
	<brief_description>
		Abstract base class for viewports. Encapsulates drawing and interaction with a game world.
	</brief_description>
	<description>
		A [Viewport] creates a different view into the screen, or a sub-view inside another viewport. Child 2D nodes will display on it, and child Camera3D 3D nodes will render on it too.
		Optionally, a viewport can have its own 2D or 3D world, so it doesn't share what it draws with other viewports.
		Viewports can also choose to be audio listeners, so they generate positional audio depending on a 2D or 3D camera child of it.
		Also, viewports can be assigned to different screens in case the devices have multiple screens.
		Finally, viewports can also behave as render targets, in which case they will not be visible unless the associated texture is used to draw.
	</description>
	<tutorials>
		<link title="Using Viewports">$DOCS_URL/tutorials/rendering/viewports.html</link>
		<link title="Viewport and canvas transforms">$DOCS_URL/tutorials/2d/2d_transforms.html</link>
		<link title="GUI in 3D Viewport Demo">https://godotengine.org/asset-library/asset/2807</link>
		<link title="3D in 2D Viewport Demo">https://godotengine.org/asset-library/asset/2804</link>
		<link title="2D in 3D Viewport Demo">https://godotengine.org/asset-library/asset/2803</link>
		<link title="Screen Capture Demo">https://godotengine.org/asset-library/asset/2808</link>
		<link title="Dynamic Split Screen Demo">https://godotengine.org/asset-library/asset/2806</link>
		<link title="3D Resolution Scaling Demo">https://godotengine.org/asset-library/asset/2805</link>
	</tutorials>
	<methods>
		<method name="find_world_2d" qualifiers="const">
			<return type="World2D" />
			<description>
				Returns the first valid [World2D] for this viewport, searching the [member world_2d] property of itself and any Viewport ancestor.
			</description>
		</method>
		<method name="find_world_3d" qualifiers="const">
			<return type="World3D" />
			<description>
				Returns the first valid [World3D] for this viewport, searching the [member world_3d] property of itself and any Viewport ancestor.
			</description>
		</method>
		<method name="get_audio_listener_2d" qualifiers="const">
			<return type="AudioListener2D" />
			<description>
				Returns the currently active 2D audio listener. Returns [code]null[/code] if there are no active 2D audio listeners, in which case the active 2D camera will be treated as listener.
			</description>
		</method>
		<method name="get_audio_listener_3d" qualifiers="const">
			<return type="AudioListener3D" />
			<description>
				Returns the currently active 3D audio listener. Returns [code]null[/code] if there are no active 3D audio listeners, in which case the active 3D camera will be treated as listener.
			</description>
		</method>
		<method name="get_camera_2d" qualifiers="const">
			<return type="Camera2D" />
			<description>
				Returns the currently active 2D camera. Returns null if there are no active cameras.
			</description>
		</method>
		<method name="get_camera_3d" qualifiers="const">
			<return type="Camera3D" />
			<description>
				Returns the currently active 3D camera.
			</description>
		</method>
		<method name="get_canvas_cull_mask_bit" qualifiers="const">
			<return type="bool" />
			<param index="0" name="layer" type="int" />
			<description>
				Returns an individual bit on the rendering layer mask.
			</description>
		</method>
		<method name="get_embedded_subwindows" qualifiers="const">
			<return type="Window[]" />
			<description>
				Returns a list of the visible embedded [Window]s inside the viewport.
				[b]Note:[/b] [Window]s inside other viewports will not be listed.
			</description>
		</method>
		<method name="get_final_transform" qualifiers="const">
			<return type="Transform2D" />
			<description>
				Returns the transform from the viewport's coordinate system to the embedder's coordinate system.
			</description>
		</method>
		<method name="get_mouse_position" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns the mouse's position in this [Viewport] using the coordinate system of this [Viewport].
			</description>
		</method>
		<method name="get_positional_shadow_atlas_quadrant_subdiv" qualifiers="const">
			<return type="int" enum="Viewport.PositionalShadowAtlasQuadrantSubdiv" />
			<param index="0" name="quadrant" type="int" />
			<description>
				Returns the positional shadow atlas quadrant subdivision of the specified quadrant.
			</description>
		</method>
		<method name="get_render_info">
			<return type="int" />
			<param index="0" name="type" type="int" enum="Viewport.RenderInfoType" />
			<param index="1" name="info" type="int" enum="Viewport.RenderInfo" />
			<description>
				Returns rendering statistics of the given type. See [enum RenderInfoType] and [enum RenderInfo] for options.
			</description>
		</method>
		<method name="get_screen_transform" qualifiers="const">
			<return type="Transform2D" />
			<description>
				Returns the transform from the Viewport's coordinates to the screen coordinates of the containing window manager window.
			</description>
		</method>
		<method name="get_texture" qualifiers="const">
			<return type="ViewportTexture" />
			<description>
				Returns the viewport's texture.
				[b]Note:[/b] When trying to store the current texture (e.g. in a file), it might be completely black or outdated if used too early, especially when used in e.g. [method Node._ready]. To make sure the texture you get is correct, you can await [signal RenderingServer.frame_post_draw] signal.
				[codeblock]
				func _ready():
				    await RenderingServer.frame_post_draw
				    $Viewport.get_texture().get_image().save_png("user://Screenshot.png")
				[/codeblock]
				[b]Note:[/b] When [member use_hdr_2d] is [code]true[/code] the returned texture will be an HDR image encoded in linear space.
			</description>
		</method>
		<method name="get_viewport_rid" qualifiers="const">
			<return type="RID" />
			<description>
				Returns the viewport's RID from the [RenderingServer].
			</description>
		</method>
		<method name="get_visible_rect" qualifiers="const">
			<return type="Rect2" />
			<description>
				Returns the visible rectangle in global screen coordinates.
			</description>
		</method>
		<method name="gui_cancel_drag">
			<return type="void" />
			<description>
				Cancels the drag operation that was previously started through [method Control._get_drag_data] or forced with [method Control.force_drag].
			</description>
		</method>
		<method name="gui_get_drag_data" qualifiers="const">
			<return type="Variant" />
			<description>
				Returns the drag data from the GUI, that was previously returned by [method Control._get_drag_data].
			</description>
		</method>
		<method name="gui_get_focus_owner" qualifiers="const">
			<return type="Control" />
			<description>
				Returns the [Control] having the focus within this viewport. If no [Control] has the focus, returns null.
			</description>
		</method>
		<method name="gui_get_hovered_control" qualifiers="const">
			<return type="Control" />
			<description>
				Returns the [Control] that the mouse is currently hovering over in this viewport. If no [Control] has the cursor, returns null.
				Typically the leaf [Control] node or deepest level of the subtree which claims hover. This is very useful when used together with [method Node.is_ancestor_of] to find if the mouse is within a control tree.
			</description>
		</method>
		<method name="gui_is_drag_successful" qualifiers="const">
			<return type="bool" />
			<description>
				Returns [code]true[/code] if the drag operation is successful.
			</description>
		</method>
		<method name="gui_is_dragging" qualifiers="const">
			<return type="bool" />
			<description>
				Returns [code]true[/code] if a drag operation is currently ongoing and where the drop action could happen in this viewport.
				Alternative to [constant Node.NOTIFICATION_DRAG_BEGIN] and [constant Node.NOTIFICATION_DRAG_END] when you prefer polling the value.
			</description>
		</method>
		<method name="gui_release_focus">
			<return type="void" />
			<description>
				Removes the focus from the currently focused [Control] within this viewport. If no [Control] has the focus, does nothing.
			</description>
		</method>
		<method name="is_input_handled" qualifiers="const">
			<return type="bool" />
			<description>
				Returns whether the current [InputEvent] has been handled. Input events are not handled until [method set_input_as_handled] has been called during the lifetime of an [InputEvent].
				This is usually done as part of input handling methods like [method Node._input], [method Control._gui_input] or others, as well as in corresponding signal handlers.
				If [member handle_input_locally] is set to [code]false[/code], this method will try finding the first parent viewport that is set to handle input locally, and return its value for [method is_input_handled] instead.
			</description>
		</method>
		<method name="push_input">
			<return type="void" />
			<param index="0" name="event" type="InputEvent" />
			<param index="1" name="in_local_coords" type="bool" default="false" />
			<description>
				Triggers the given [param event] in this [Viewport]. This can be used to pass an [InputEvent] between viewports, or to locally apply inputs that were sent over the network or saved to a file.
				If [param in_local_coords] is [code]false[/code], the event's position is in the embedder's coordinates and will be converted to viewport coordinates. If [param in_local_coords] is [code]true[/code], the event's position is in viewport coordinates.
				While this method serves a similar purpose as [method Input.parse_input_event], it does not remap the specified [param event] based on project settings like [member ProjectSettings.input_devices/pointing/emulate_touch_from_mouse].
				Calling this method will propagate calls to child nodes for following methods in the given order:
				- [method Node._input]
				- [method Control._gui_input] for [Control] nodes
				- [method Node._shortcut_input]
				- [method Node._unhandled_key_input]
				- [method Node._unhandled_input]
				If an earlier method marks the input as handled via [method set_input_as_handled], any later method in this list will not be called.
				If none of the methods handle the event and [member physics_object_picking] is [code]true[/code], the event is used for physics object picking.
			</description>
		</method>
		<method name="push_text_input">
			<return type="void" />
			<param index="0" name="text" type="String" />
			<description>
				Helper method which calls the [code]set_text()[/code] method on the currently focused [Control], provided that it is defined (e.g. if the focused Control is [Button] or [LineEdit]).
			</description>
		</method>
		<method name="push_unhandled_input" deprecated="Use [method push_input] instead.">
			<return type="void" />
			<param index="0" name="event" type="InputEvent" />
			<param index="1" name="in_local_coords" type="bool" default="false" />
			<description>
				Triggers the given [param event] in this [Viewport]. This can be used to pass an [InputEvent] between viewports, or to locally apply inputs that were sent over the network or saved to a file.
				If [param in_local_coords] is [code]false[/code], the event's position is in the embedder's coordinates and will be converted to viewport coordinates. If [param in_local_coords] is [code]true[/code], the event's position is in viewport coordinates.
				Calling this method will propagate calls to child nodes for following methods in the given order:
				- [method Node._shortcut_input]
				- [method Node._unhandled_key_input]
				- [method Node._unhandled_input]
				If an earlier method marks the input as handled via [method set_input_as_handled], any later method in this list will not be called.
				If none of the methods handle the event and [member physics_object_picking] is [code]true[/code], the event is used for physics object picking.
				[b]Note:[/b] This method doesn't propagate input events to embedded [Window]s or [SubViewport]s.
			</description>
		</method>
		<method name="set_canvas_cull_mask_bit">
			<return type="void" />
			<param index="0" name="layer" type="int" />
			<param index="1" name="enable" type="bool" />
			<description>
				Set/clear individual bits on the rendering layer mask. This simplifies editing this [Viewport]'s layers.
			</description>
		</method>
		<method name="set_input_as_handled">
			<return type="void" />
			<description>
				Stops the input from propagating further down the [SceneTree].
				[b]Note:[/b] This does not affect the methods in [Input], only the way events are propagated.
			</description>
		</method>
		<method name="set_positional_shadow_atlas_quadrant_subdiv">
			<return type="void" />
			<param index="0" name="quadrant" type="int" />
			<param index="1" name="subdiv" type="int" enum="Viewport.PositionalShadowAtlasQuadrantSubdiv" />
			<description>
				Sets the number of subdivisions to use in the specified quadrant. A higher number of subdivisions allows you to have more shadows in the scene at once, but reduces the quality of the shadows. A good practice is to have quadrants with a varying number of subdivisions and to have as few subdivisions as possible.
			</description>
		</method>
		<method name="update_mouse_cursor_state">
			<return type="void" />
			<description>
				Force instantly updating the display based on the current mouse cursor position. This includes updating the mouse cursor shape and sending necessary [signal Control.mouse_entered], [signal CollisionObject2D.mouse_entered], [signal CollisionObject3D.mouse_entered] and [signal Window.mouse_entered] signals and their respective [code]mouse_exited[/code] counterparts.
			</description>
		</method>
		<method name="warp_mouse">
			<return type="void" />
			<param index="0" name="position" type="Vector2" />
			<description>
				Moves the mouse pointer to the specified position in this [Viewport] using the coordinate system of this [Viewport].
				[b]Note:[/b] [method warp_mouse] is only supported on Windows, macOS and Linux. It has no effect on Android, iOS and Web.
			</description>
		</method>
	</methods>
	<members>
		<member name="audio_listener_enable_2d" type="bool" setter="set_as_audio_listener_2d" getter="is_audio_listener_2d" default="false">
			If [code]true[/code], the viewport will process 2D audio streams.
		</member>
		<member name="audio_listener_enable_3d" type="bool" setter="set_as_audio_listener_3d" getter="is_audio_listener_3d" default="false">
			If [code]true[/code], the viewport will process 3D audio streams.
		</member>
		<member name="canvas_cull_mask" type="int" setter="set_canvas_cull_mask" getter="get_canvas_cull_mask" default="4294967295">
			The rendering layers in which this [Viewport] renders [CanvasItem] nodes.
		</member>
		<member name="canvas_item_default_texture_filter" type="int" setter="set_default_canvas_item_texture_filter" getter="get_default_canvas_item_texture_filter" enum="Viewport.DefaultCanvasItemTextureFilter" default="1">
			Sets the default filter mode used by [CanvasItem]s in this Viewport. See [enum DefaultCanvasItemTextureFilter] for options.
		</member>
		<member name="canvas_item_default_texture_repeat" type="int" setter="set_default_canvas_item_texture_repeat" getter="get_default_canvas_item_texture_repeat" enum="Viewport.DefaultCanvasItemTextureRepeat" default="0">
			Sets the default repeat mode used by [CanvasItem]s in this Viewport. See [enum DefaultCanvasItemTextureRepeat] for options.
		</member>
		<member name="canvas_transform" type="Transform2D" setter="set_canvas_transform" getter="get_canvas_transform">
			The canvas transform of the viewport, useful for changing the on-screen positions of all child [CanvasItem]s. This is relative to the global canvas transform of the viewport.
		</member>
		<member name="debug_draw" type="int" setter="set_debug_draw" getter="get_debug_draw" enum="Viewport.DebugDraw" default="0">
			The overlay mode for test rendered geometry in debug purposes.
		</member>
		<member name="disable_3d" type="bool" setter="set_disable_3d" getter="is_3d_disabled" default="false">
			Disable 3D rendering (but keep 2D rendering).
		</member>
		<member name="fsr_sharpness" type="float" setter="set_fsr_sharpness" getter="get_fsr_sharpness" default="0.2">
			Determines how sharp the upscaled image will be when using the FSR upscaling mode. Sharpness halves with every whole number. Values go from 0.0 (sharpest) to 2.0. Values above 2.0 won't make a visible difference.
			To control this property on the root viewport, set the [member ProjectSettings.rendering/scaling_3d/fsr_sharpness] project setting.
		</member>
		<member name="global_canvas_transform" type="Transform2D" setter="set_global_canvas_transform" getter="get_global_canvas_transform">
			The global canvas transform of the viewport. The canvas transform is relative to this.
		</member>
		<member name="gui_disable_input" type="bool" setter="set_disable_input" getter="is_input_disabled" default="false">
			If [code]true[/code], the viewport will not receive input events.
		</member>
		<member name="gui_embed_subwindows" type="bool" setter="set_embedding_subwindows" getter="is_embedding_subwindows" default="false">
			If [code]true[/code], sub-windows (popups and dialogs) will be embedded inside application window as control-like nodes. If [code]false[/code], they will appear as separate windows handled by the operating system.
		</member>
		<member name="gui_snap_controls_to_pixels" type="bool" setter="set_snap_controls_to_pixels" getter="is_snap_controls_to_pixels_enabled" default="true">
			If [code]true[/code], the GUI controls on the viewport will lay pixel perfectly.
		</member>
		<member name="handle_input_locally" type="bool" setter="set_handle_input_locally" getter="is_handling_input_locally" default="true">
			If [code]true[/code], this viewport will mark incoming input events as handled by itself. If [code]false[/code], this is instead done by the first parent viewport that is set to handle input locally.
			A [SubViewportContainer] will automatically set this property to [code]false[/code] for the [Viewport] contained inside of it.
			See also [method set_input_as_handled] and [method is_input_handled].
		</member>
		<member name="mesh_lod_threshold" type="float" setter="set_mesh_lod_threshold" getter="get_mesh_lod_threshold" default="1.0">
			The automatic LOD bias to use for meshes rendered within the [Viewport] (this is analogous to [member ReflectionProbe.mesh_lod_threshold]). Higher values will use less detailed versions of meshes that have LOD variations generated. If set to [code]0.0[/code], automatic LOD is disabled. Increase [member mesh_lod_threshold] to improve performance at the cost of geometry detail.
			To control this property on the root viewport, set the [member ProjectSettings.rendering/mesh_lod/lod_change/threshold_pixels] project setting.
			[b]Note:[/b] [member mesh_lod_threshold] does not affect [GeometryInstance3D] visibility ranges (also known as "manual" LOD or hierarchical LOD).
		</member>
		<member name="msaa_2d" type="int" setter="set_msaa_2d" getter="get_msaa_2d" enum="Viewport.MSAA" default="0">
			The multisample antialiasing mode for 2D/Canvas rendering. A higher number results in smoother edges at the cost of significantly worse performance. A value of [constant Viewport.MSAA_2X] or [constant Viewport.MSAA_4X] is best unless targeting very high-end systems. This has no effect on shader-induced aliasing or texture aliasing.
			See also [member ProjectSettings.rendering/anti_aliasing/quality/msaa_2d] and [method RenderingServer.viewport_set_msaa_2d].
		</member>
		<member name="msaa_3d" type="int" setter="set_msaa_3d" getter="get_msaa_3d" enum="Viewport.MSAA" default="0">
			The multisample antialiasing mode for 3D rendering. A higher number results in smoother edges at the cost of significantly worse performance. A value of [constant Viewport.MSAA_2X] or [constant Viewport.MSAA_4X] is best unless targeting very high-end systems. See also bilinear scaling 3d [member scaling_3d_mode] for supersampling, which provides higher quality but is much more expensive. This has no effect on shader-induced aliasing or texture aliasing.
			See also [member ProjectSettings.rendering/anti_aliasing/quality/msaa_3d] and [method RenderingServer.viewport_set_msaa_3d].
		</member>
		<member name="own_world_3d" type="bool" setter="set_use_own_world_3d" getter="is_using_own_world_3d" default="false">
			If [code]true[/code], the viewport will use a unique copy of the [World3D] defined in [member world_3d].
		</member>
		<member name="physics_interpolation_mode" type="int" setter="set_physics_interpolation_mode" getter="get_physics_interpolation_mode" overrides="Node" enum="Node.PhysicsInterpolationMode" default="1" />
		<member name="physics_object_picking" type="bool" setter="set_physics_object_picking" getter="get_physics_object_picking" default="false">
			If [code]true[/code], the objects rendered by viewport become subjects of mouse picking process.
			[b]Note:[/b] The number of simultaneously pickable objects is limited to 64 and they are selected in a non-deterministic order, which can be different in each picking process.
		</member>
		<member name="physics_object_picking_first_only" type="bool" setter="set_physics_object_picking_first_only" getter="get_physics_object_picking_first_only" default="false">
			If [code]true[/code], the input_event signal will only be sent to one physics object in the mouse picking process. If you want to get the top object only, you must also enable [member physics_object_picking_sort].
			If [code]false[/code], an input_event signal will be sent to all physics objects in the mouse picking process.
			This applies to 2D CanvasItem object picking only.
		</member>
		<member name="physics_object_picking_sort" type="bool" setter="set_physics_object_picking_sort" getter="get_physics_object_picking_sort" default="false">
			If [code]true[/code], objects receive mouse picking events sorted primarily by their [member CanvasItem.z_index] and secondarily by their position in the scene tree. If [code]false[/code], the order is undetermined.
			[b]Note:[/b] This setting is disabled by default because of its potential expensive computational cost.
			[b]Note:[/b] Sorting happens after selecting the pickable objects. Because of the limitation of 64 simultaneously pickable objects, it is not guaranteed that the object with the highest [member CanvasItem.z_index] receives the picking event.
		</member>
		<member name="positional_shadow_atlas_16_bits" type="bool" setter="set_positional_shadow_atlas_16_bits" getter="get_positional_shadow_atlas_16_bits" default="true">
			Use 16 bits for the omni/spot shadow depth map. Enabling this results in shadows having less precision and may result in shadow acne, but can lead to performance improvements on some devices.
		</member>
		<member name="positional_shadow_atlas_quad_0" type="int" setter="set_positional_shadow_atlas_quadrant_subdiv" getter="get_positional_shadow_atlas_quadrant_subdiv" enum="Viewport.PositionalShadowAtlasQuadrantSubdiv" default="2">
			The subdivision amount of the first quadrant on the shadow atlas.
		</member>
		<member name="positional_shadow_atlas_quad_1" type="int" setter="set_positional_shadow_atlas_quadrant_subdiv" getter="get_positional_shadow_atlas_quadrant_subdiv" enum="Viewport.PositionalShadowAtlasQuadrantSubdiv" default="2">
			The subdivision amount of the second quadrant on the shadow atlas.
		</member>
		<member name="positional_shadow_atlas_quad_2" type="int" setter="set_positional_shadow_atlas_quadrant_subdiv" getter="get_positional_shadow_atlas_quadrant_subdiv" enum="Viewport.PositionalShadowAtlasQuadrantSubdiv" default="3">
			The subdivision amount of the third quadrant on the shadow atlas.
		</member>
		<member name="positional_shadow_atlas_quad_3" type="int" setter="set_positional_shadow_atlas_quadrant_subdiv" getter="get_positional_shadow_atlas_quadrant_subdiv" enum="Viewport.PositionalShadowAtlasQuadrantSubdiv" default="4">
			The subdivision amount of the fourth quadrant on the shadow atlas.
		</member>
		<member name="positional_shadow_atlas_size" type="int" setter="set_positional_shadow_atlas_size" getter="get_positional_shadow_atlas_size" default="2048">
			The shadow atlas' resolution (used for omni and spot lights). The value is rounded up to the nearest power of 2.
			[b]Note:[/b] If this is set to [code]0[/code], no positional shadows will be visible at all. This can improve performance significantly on low-end systems by reducing both the CPU and GPU load (as fewer draw calls are needed to draw the scene without shadows).
		</member>
		<member name="scaling_3d_mode" type="int" setter="set_scaling_3d_mode" getter="get_scaling_3d_mode" enum="Viewport.Scaling3DMode" default="0">
			Sets scaling 3d mode. Bilinear scaling renders at different resolution to either undersample or supersample the viewport. FidelityFX Super Resolution 1.0, abbreviated to FSR, is an upscaling technology that produces high quality images at fast framerates by using a spatially aware upscaling algorithm. FSR is slightly more expensive than bilinear, but it produces significantly higher image quality. FSR should be used where possible.
			To control this property on the root viewport, set the [member ProjectSettings.rendering/scaling_3d/mode] project setting.
		</member>
		<member name="scaling_3d_scale" type="float" setter="set_scaling_3d_scale" getter="get_scaling_3d_scale" default="1.0">
			Scales the 3D render buffer based on the viewport size uses an image filter specified in [member ProjectSettings.rendering/scaling_3d/mode] to scale the output image to the full viewport size. Values lower than [code]1.0[/code] can be used to speed up 3D rendering at the cost of quality (undersampling). Values greater than [code]1.0[/code] are only valid for bilinear mode and can be used to improve 3D rendering quality at a high performance cost (supersampling). See also [member ProjectSettings.rendering/anti_aliasing/quality/msaa_3d] for multi-sample antialiasing, which is significantly cheaper but only smooths the edges of polygons.
			When using FSR upscaling, AMD recommends exposing the following values as preset options to users "Ultra Quality: 0.77", "Quality: 0.67", "Balanced: 0.59", "Performance: 0.5" instead of exposing the entire scale.
			To control this property on the root viewport, set the [member ProjectSettings.rendering/scaling_3d/scale] project setting.
		</member>
		<member name="screen_space_aa" type="int" setter="set_screen_space_aa" getter="get_screen_space_aa" enum="Viewport.ScreenSpaceAA" default="0">
			Sets the screen-space antialiasing method used. Screen-space antialiasing works by selectively blurring edges in a post-process shader. It differs from MSAA which takes multiple coverage samples while rendering objects. Screen-space AA methods are typically faster than MSAA and will smooth out specular aliasing, but tend to make scenes appear blurry.
			See also [member ProjectSettings.rendering/anti_aliasing/quality/screen_space_aa] and [method RenderingServer.viewport_set_screen_space_aa].
		</member>
		<member name="sdf_oversize" type="int" setter="set_sdf_oversize" getter="get_sdf_oversize" enum="Viewport.SDFOversize" default="1">
			Controls how much of the original viewport's size should be covered by the 2D signed distance field. This SDF can be sampled in [CanvasItem] shaders and is also used for [GPUParticles2D] collision. Higher values allow portions of occluders located outside the viewport to still be taken into account in the generated signed distance field, at the cost of performance. If you notice particles falling through [LightOccluder2D]s as the occluders leave the viewport, increase this setting.
			The percentage is added on each axis and on both sides. For example, with the default [constant SDF_OVERSIZE_120_PERCENT], the signed distance field will cover 20% of the viewport's size outside the viewport on each side (top, right, bottom, left).
		</member>
		<member name="sdf_scale" type="int" setter="set_sdf_scale" getter="get_sdf_scale" enum="Viewport.SDFScale" default="1">
			The resolution scale to use for the 2D signed distance field. Higher values lead to a more precise and more stable signed distance field as the camera moves, at the cost of performance.
		</member>
		<member name="snap_2d_transforms_to_pixel" type="bool" setter="set_snap_2d_transforms_to_pixel" getter="is_snap_2d_transforms_to_pixel_enabled" default="false">
			If [code]true[/code], [CanvasItem] nodes will internally snap to full pixels. Their position can still be sub-pixel, but the decimals will not have effect. This can lead to a crisper appearance at the cost of less smooth movement, especially when [Camera2D] smoothing is enabled.
		</member>
		<member name="snap_2d_vertices_to_pixel" type="bool" setter="set_snap_2d_vertices_to_pixel" getter="is_snap_2d_vertices_to_pixel_enabled" default="false">
			If [code]true[/code], vertices of [CanvasItem] nodes will snap to full pixels. Only affects the final vertex positions, not the transforms. This can lead to a crisper appearance at the cost of less smooth movement, especially when [Camera2D] smoothing is enabled.
		</member>
		<member name="texture_mipmap_bias" type="float" setter="set_texture_mipmap_bias" getter="get_texture_mipmap_bias" default="0.0">
			Affects the final texture sharpness by reading from a lower or higher mipmap (also called "texture LOD bias"). Negative values make mipmapped textures sharper but grainier when viewed at a distance, while positive values make mipmapped textures blurrier (even when up close).
			Enabling temporal antialiasing ([member use_taa]) will automatically apply a [code]-0.5[/code] offset to this value, while enabling FXAA ([member screen_space_aa]) will automatically apply a [code]-0.25[/code] offset to this value. If both TAA and FXAA are enabled at the same time, an offset of [code]-0.75[/code] is applied to this value.
			[b]Note:[/b] If [member scaling_3d_scale] is lower than [code]1.0[/code] (exclusive), [member texture_mipmap_bias] is used to adjust the automatic mipmap bias which is calculated internally based on the scale factor. The formula for this is [code]log2(scaling_3d_scale) + mipmap_bias[/code].
			To control this property on the root viewport, set the [member ProjectSettings.rendering/textures/default_filters/texture_mipmap_bias] project setting.
		</member>
		<member name="transparent_bg" type="bool" setter="set_transparent_background" getter="has_transparent_background" default="false">
			If [code]true[/code], the viewport should render its background as transparent.
		</member>
		<member name="use_debanding" type="bool" setter="set_use_debanding" getter="is_using_debanding" default="false">
			If [code]true[/code], uses a fast post-processing filter to make banding significantly less visible in 3D. 2D rendering is [i]not[/i] affected by debanding unless the [member Environment.background_mode] is [constant Environment.BG_CANVAS].
			In some cases, debanding may introduce a slightly noticeable dithering pattern. It's recommended to enable debanding only when actually needed since the dithering pattern will make lossless-compressed screenshots larger.
			See also [member ProjectSettings.rendering/anti_aliasing/quality/use_debanding] and [method RenderingServer.viewport_set_use_debanding].
		</member>
		<member name="use_hdr_2d" type="bool" setter="set_use_hdr_2d" getter="is_using_hdr_2d" default="false">
			If [code]true[/code], 2D rendering will use an high dynamic range (HDR) format framebuffer matching the bit depth of the 3D framebuffer. When using the Forward+ renderer this will be an [code]RGBA16[/code] framebuffer, while when using the Mobile renderer it will be an [code]RGB10_A2[/code] framebuffer. Additionally, 2D rendering will take place in linear color space and will be converted to sRGB space immediately before blitting to the screen (if the Viewport is attached to the screen). Practically speaking, this means that the end result of the Viewport will not be clamped into the [code]0-1[/code] range and can be used in 3D rendering without color space adjustments. This allows 2D rendering to take advantage of effects requiring high dynamic range (e.g. 2D glow) as well as substantially improves the appearance of effects requiring highly detailed gradients.
			[b]Note:[/b] This setting will have no effect when using the GL Compatibility renderer as the GL Compatibility renderer always renders in low dynamic range for performance reasons.
		</member>
		<member name="use_occlusion_culling" type="bool" setter="set_use_occlusion_culling" getter="is_using_occlusion_culling" default="false">
			If [code]true[/code], [OccluderInstance3D] nodes will be usable for occlusion culling in 3D for this viewport. For the root viewport, [member ProjectSettings.rendering/occlusion_culling/use_occlusion_culling] must be set to [code]true[/code] instead.
			[b]Note:[/b] Enabling occlusion culling has a cost on the CPU. Only enable occlusion culling if you actually plan to use it, and think whether your scene can actually benefit from occlusion culling. Large, open scenes with few or no objects blocking the view will generally not benefit much from occlusion culling. Large open scenes generally benefit more from mesh LOD and visibility ranges ([member GeometryInstance3D.visibility_range_begin] and [member GeometryInstance3D.visibility_range_end]) compared to occlusion culling.
			[b]Note:[/b] Due to memory constraints, occlusion culling is not supported by default in Web export templates. It can be enabled by compiling custom Web export templates with [code]module_raycast_enabled=yes[/code].
		</member>
		<member name="use_taa" type="bool" setter="set_use_taa" getter="is_using_taa" default="false">
			Enables temporal antialiasing for this viewport. TAA works by jittering the camera and accumulating the images of the last rendered frames, motion vector rendering is used to account for camera and object motion.
			[b]Note:[/b] The implementation is not complete yet, some visual instances such as particles and skinned meshes may show artifacts.
			See also [member ProjectSettings.rendering/anti_aliasing/quality/use_taa] and [method RenderingServer.viewport_set_use_taa].
		</member>
		<member name="use_xr" type="bool" setter="set_use_xr" getter="is_using_xr" default="false">
			If [code]true[/code], the viewport will use the primary XR interface to render XR output. When applicable this can result in a stereoscopic image and the resulting render being output to a headset.
		</member>
		<member name="vrs_mode" type="int" setter="set_vrs_mode" getter="get_vrs_mode" enum="Viewport.VRSMode" default="0">
			The Variable Rate Shading (VRS) mode that is used for this viewport. Note, if hardware does not support VRS this property is ignored.
		</member>
		<member name="vrs_texture" type="Texture2D" setter="set_vrs_texture" getter="get_vrs_texture">
			Texture to use when [member vrs_mode] is set to [constant Viewport.VRS_TEXTURE].
			The texture [i]must[/i] use a lossless compression format so that colors can be matched precisely. The following VRS densities are mapped to various colors, with brighter colors representing a lower level of shading precision:
			[codeblock lang=text]
			- 1×1 = rgb(0, 0, 0)     - #000000
			- 1×2 = rgb(0, 85, 0)    - #005500
			- 2×1 = rgb(85, 0, 0)    - #550000
			- 2×2 = rgb(85, 85, 0)   - #555500
			- 2×4 = rgb(85, 170, 0)  - #55aa00
			- 4×2 = rgb(170, 85, 0)  - #aa5500
			- 4×4 = rgb(170, 170, 0) - #aaaa00
			- 4×8 = rgb(170, 255, 0) - #aaff00 - Not supported on most hardware
			- 8×4 = rgb(255, 170, 0) - #ffaa00 - Not supported on most hardware
			- 8×8 = rgb(255, 255, 0) - #ffff00 - Not supported on most hardware
			[/codeblock]
		</member>
		<member name="vrs_update_mode" type="int" setter="set_vrs_update_mode" getter="get_vrs_update_mode" enum="Viewport.VRSUpdateMode" default="1">
			Sets the update mode for Variable Rate Shading (VRS) for the viewport. VRS requires the input texture to be converted to the format usable by the VRS method supported by the hardware. The update mode defines how often this happens. If the GPU does not support VRS, or VRS is not enabled, this property is ignored.
		</member>
		<member name="world_2d" type="World2D" setter="set_world_2d" getter="get_world_2d">
			The custom [World2D] which can be used as 2D environment source.
		</member>
		<member name="world_3d" type="World3D" setter="set_world_3d" getter="get_world_3d">
			The custom [World3D] which can be used as 3D environment source.
		</member>
	</members>
	<signals>
		<signal name="gui_focus_changed">
			<param index="0" name="node" type="Control" />
			<description>
				Emitted when a Control node grabs keyboard focus.
				[b]Note:[/b] A Control node losing focus doesn't cause this signal to be emitted.
			</description>
		</signal>
		<signal name="size_changed">
			<description>
				Emitted when the size of the viewport is changed, whether by resizing of window, or some other means.
			</description>
		</signal>
	</signals>
	<constants>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_DISABLED" value="0" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will not be used.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_1" value="1" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will only be used by one shadow map.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_4" value="2" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will be split in 4 and used by up to 4 shadow maps.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_16" value="3" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will be split 16 ways and used by up to 16 shadow maps.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_64" value="4" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will be split 64 ways and used by up to 64 shadow maps.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_256" value="5" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will be split 256 ways and used by up to 256 shadow maps. Unless the [member positional_shadow_atlas_size] is very high, the shadows in this quadrant will be very low resolution.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_1024" value="6" enum="PositionalShadowAtlasQuadrantSubdiv">
			This quadrant will be split 1024 ways and used by up to 1024 shadow maps. Unless the [member positional_shadow_atlas_size] is very high, the shadows in this quadrant will be very low resolution.
		</constant>
		<constant name="SHADOW_ATLAS_QUADRANT_SUBDIV_MAX" value="7" enum="PositionalShadowAtlasQuadrantSubdiv">
			Represents the size of the [enum PositionalShadowAtlasQuadrantSubdiv] enum.
		</constant>
		<constant name="SCALING_3D_MODE_BILINEAR" value="0" enum="Scaling3DMode">
			Use bilinear scaling for the viewport's 3D buffer. The amount of scaling can be set using [member scaling_3d_scale]. Values less than [code]1.0[/code] will result in undersampling while values greater than [code]1.0[/code] will result in supersampling. A value of [code]1.0[/code] disables scaling.
		</constant>
		<constant name="SCALING_3D_MODE_FSR" value="1" enum="Scaling3DMode">
			Use AMD FidelityFX Super Resolution 1.0 upscaling for the viewport's 3D buffer. The amount of scaling can be set using [member scaling_3d_scale]. Values less than [code]1.0[/code] will be result in the viewport being upscaled using FSR. Values greater than [code]1.0[/code] are not supported and bilinear downsampling will be used instead. A value of [code]1.0[/code] disables scaling.
		</constant>
		<constant name="SCALING_3D_MODE_FSR2" value="2" enum="Scaling3DMode">
			Use AMD FidelityFX Super Resolution 2.2 upscaling for the viewport's 3D buffer. The amount of scaling can be set using [member Viewport.scaling_3d_scale]. Values less than [code]1.0[/code] will be result in the viewport being upscaled using FSR2. Values greater than [code]1.0[/code] are not supported and bilinear downsampling will be used instead. A value of [code]1.0[/code] will use FSR2 at native resolution as a TAA solution.
		</constant>
		<constant name="SCALING_3D_MODE_MAX" value="3" enum="Scaling3DMode">
			Represents the size of the [enum Scaling3DMode] enum.
		</constant>
		<constant name="MSAA_DISABLED" value="0" enum="MSAA">
			Multisample antialiasing mode disabled. This is the default value, and is also the fastest setting.
		</constant>
		<constant name="MSAA_2X" value="1" enum="MSAA">
			Use 2× Multisample Antialiasing. This has a moderate performance cost. It helps reduce aliasing noticeably, but 4× MSAA still looks substantially better.
		</constant>
		<constant name="MSAA_4X" value="2" enum="MSAA">
			Use 4× Multisample Antialiasing. This has a significant performance cost, and is generally a good compromise between performance and quality.
		</constant>
		<constant name="MSAA_8X" value="3" enum="MSAA">
			Use 8× Multisample Antialiasing. This has a very high performance cost. The difference between 4× and 8× MSAA may not always be visible in real gameplay conditions. Likely unsupported on low-end and older hardware.
		</constant>
		<constant name="MSAA_MAX" value="4" enum="MSAA">
			Represents the size of the [enum MSAA] enum.
		</constant>
		<constant name="SCREEN_SPACE_AA_DISABLED" value="0" enum="ScreenSpaceAA">
			Do not perform any antialiasing in the full screen post-process.
		</constant>
		<constant name="SCREEN_SPACE_AA_FXAA" value="1" enum="ScreenSpaceAA">
			Use fast approximate antialiasing. FXAA is a popular screen-space antialiasing method, which is fast but will make the image look blurry, especially at lower resolutions. It can still work relatively well at large resolutions such as 1440p and 4K.
		</constant>
		<constant name="SCREEN_SPACE_AA_MAX" value="2" enum="ScreenSpaceAA">
			Represents the size of the [enum ScreenSpaceAA] enum.
		</constant>
		<constant name="RENDER_INFO_OBJECTS_IN_FRAME" value="0" enum="RenderInfo">
			Amount of objects in frame.
		</constant>
		<constant name="RENDER_INFO_PRIMITIVES_IN_FRAME" value="1" enum="RenderInfo">
			Amount of vertices in frame.
		</constant>
		<constant name="RENDER_INFO_DRAW_CALLS_IN_FRAME" value="2" enum="RenderInfo">
			Amount of draw calls in frame.
		</constant>
		<constant name="RENDER_INFO_MAX" value="3" enum="RenderInfo">
			Represents the size of the [enum RenderInfo] enum.
		</constant>
		<constant name="RENDER_INFO_TYPE_VISIBLE" value="0" enum="RenderInfoType">
			Visible render pass (excluding shadows).
		</constant>
		<constant name="RENDER_INFO_TYPE_SHADOW" value="1" enum="RenderInfoType">
			Shadow render pass. Objects will be rendered several times depending on the number of amounts of lights with shadows and the number of directional shadow splits.
		</constant>
		<constant name="RENDER_INFO_TYPE_CANVAS" value="2" enum="RenderInfoType">
			Canvas item rendering. This includes all 2D rendering.
		</constant>
		<constant name="RENDER_INFO_TYPE_MAX" value="3" enum="RenderInfoType">
			Represents the size of the [enum RenderInfoType] enum.
		</constant>
		<constant name="DEBUG_DRAW_DISABLED" value="0" enum="DebugDraw">
			Objects are displayed normally.
		</constant>
		<constant name="DEBUG_DRAW_UNSHADED" value="1" enum="DebugDraw">
			Objects are displayed without light information.
		</constant>
		<constant name="DEBUG_DRAW_LIGHTING" value="2" enum="DebugDraw">
			Objects are displayed without textures and only with lighting information.
		</constant>
		<constant name="DEBUG_DRAW_OVERDRAW" value="3" enum="DebugDraw">
			Objects are displayed semi-transparent with additive blending so you can see where they are drawing over top of one another. A higher overdraw means you are wasting performance on drawing pixels that are being hidden behind others.
		</constant>
		<constant name="DEBUG_DRAW_WIREFRAME" value="4" enum="DebugDraw">
			Objects are displayed as wireframe models.
		</constant>
		<constant name="DEBUG_DRAW_NORMAL_BUFFER" value="5" enum="DebugDraw">
			Objects are displayed without lighting information and their textures replaced by normal mapping.
		</constant>
		<constant name="DEBUG_DRAW_VOXEL_GI_ALBEDO" value="6" enum="DebugDraw">
			Objects are displayed with only the albedo value from [VoxelGI]s.
		</constant>
		<constant name="DEBUG_DRAW_VOXEL_GI_LIGHTING" value="7" enum="DebugDraw">
			Objects are displayed with only the lighting value from [VoxelGI]s.
		</constant>
		<constant name="DEBUG_DRAW_VOXEL_GI_EMISSION" value="8" enum="DebugDraw">
			Objects are displayed with only the emission color from [VoxelGI]s.
		</constant>
		<constant name="DEBUG_DRAW_SHADOW_ATLAS" value="9" enum="DebugDraw">
			Draws the shadow atlas that stores shadows from [OmniLight3D]s and [SpotLight3D]s in the upper left quadrant of the [Viewport].
		</constant>
		<constant name="DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS" value="10" enum="DebugDraw">
			Draws the shadow atlas that stores shadows from [DirectionalLight3D]s in the upper left quadrant of the [Viewport].
		</constant>
		<constant name="DEBUG_DRAW_SCENE_LUMINANCE" value="11" enum="DebugDraw">
			Draws the scene luminance buffer (if available) in the upper left quadrant of the [Viewport].
		</constant>
		<constant name="DEBUG_DRAW_SSAO" value="12" enum="DebugDraw">
			Draws the screen-space ambient occlusion texture instead of the scene so that you can clearly see how it is affecting objects. In order for this display mode to work, you must have [member Environment.ssao_enabled] set in your [WorldEnvironment].
		</constant>
		<constant name="DEBUG_DRAW_SSIL" value="13" enum="DebugDraw">
			Draws the screen-space indirect lighting texture instead of the scene so that you can clearly see how it is affecting objects. In order for this display mode to work, you must have [member Environment.ssil_enabled] set in your [WorldEnvironment].
		</constant>
		<constant name="DEBUG_DRAW_PSSM_SPLITS" value="14" enum="DebugDraw">
			Colors each PSSM split for the [DirectionalLight3D]s in the scene a different color so you can see where the splits are. In order, they will be colored red, green, blue, and yellow.
		</constant>
		<constant name="DEBUG_DRAW_DECAL_ATLAS" value="15" enum="DebugDraw">
			Draws the decal atlas used by [Decal]s and light projector textures in the upper left quadrant of the [Viewport].
		</constant>
		<constant name="DEBUG_DRAW_SDFGI" value="16" enum="DebugDraw">
			Draws the cascades used to render signed distance field global illumination (SDFGI).
			Does nothing if the current environment's [member Environment.sdfgi_enabled] is [code]false[/code] or SDFGI is not supported on the platform.
		</constant>
		<constant name="DEBUG_DRAW_SDFGI_PROBES" value="17" enum="DebugDraw">
			Draws the probes used for signed distance field global illumination (SDFGI).
			Does nothing if the current environment's [member Environment.sdfgi_enabled] is [code]false[/code] or SDFGI is not supported on the platform.
		</constant>
		<constant name="DEBUG_DRAW_GI_BUFFER" value="18" enum="DebugDraw">
			Draws the buffer used for global illumination (GI).
		</constant>
		<constant name="DEBUG_DRAW_DISABLE_LOD" value="19" enum="DebugDraw">
			Draws all of the objects at their highest polycount, without low level of detail (LOD).
		</constant>
		<constant name="DEBUG_DRAW_CLUSTER_OMNI_LIGHTS" value="20" enum="DebugDraw">
			Draws the cluster used by [OmniLight3D] nodes to optimize light rendering.
		</constant>
		<constant name="DEBUG_DRAW_CLUSTER_SPOT_LIGHTS" value="21" enum="DebugDraw">
			Draws the cluster used by [SpotLight3D] nodes to optimize light rendering.
		</constant>
		<constant name="DEBUG_DRAW_CLUSTER_DECALS" value="22" enum="DebugDraw">
			Draws the cluster used by [Decal] nodes to optimize decal rendering.
		</constant>
		<constant name="DEBUG_DRAW_CLUSTER_REFLECTION_PROBES" value="23" enum="DebugDraw">
			Draws the cluster used by [ReflectionProbe] nodes to optimize decal rendering.
		</constant>
		<constant name="DEBUG_DRAW_OCCLUDERS" value="24" enum="DebugDraw">
			Draws the buffer used for occlusion culling.
		</constant>
		<constant name="DEBUG_DRAW_MOTION_VECTORS" value="25" enum="DebugDraw">
			Draws vector lines over the viewport to indicate the movement of pixels between frames.
		</constant>
		<constant name="DEBUG_DRAW_INTERNAL_BUFFER" value="26" enum="DebugDraw">
			Draws the internal resolution buffer of the scene before post-processing is applied.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_FILTER_NEAREST" value="0" enum="DefaultCanvasItemTextureFilter">
			The texture filter reads from the nearest pixel only. This makes the texture look pixelated from up close, and grainy from a distance (due to mipmaps not being sampled).
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_FILTER_LINEAR" value="1" enum="DefaultCanvasItemTextureFilter">
			The texture filter blends between the nearest 4 pixels. This makes the texture look smooth from up close, and grainy from a distance (due to mipmaps not being sampled).
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS" value="2" enum="DefaultCanvasItemTextureFilter">
			The texture filter blends between the nearest 4 pixels and between the nearest 2 mipmaps (or uses the nearest mipmap if [member ProjectSettings.rendering/textures/default_filters/use_nearest_mipmap_filter] is [code]true[/code]). This makes the texture look smooth from up close, and smooth from a distance.
			Use this for non-pixel art textures that may be viewed at a low scale (e.g. due to [Camera2D] zoom or sprite scaling), as mipmaps are important to smooth out pixels that are smaller than on-screen pixels.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS" value="3" enum="DefaultCanvasItemTextureFilter">
			The texture filter reads from the nearest pixel and blends between the nearest 2 mipmaps (or uses the nearest mipmap if [member ProjectSettings.rendering/textures/default_filters/use_nearest_mipmap_filter] is [code]true[/code]). This makes the texture look pixelated from up close, and smooth from a distance.
			Use this for non-pixel art textures that may be viewed at a low scale (e.g. due to [Camera2D] zoom or sprite scaling), as mipmaps are important to smooth out pixels that are smaller than on-screen pixels.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_FILTER_MAX" value="4" enum="DefaultCanvasItemTextureFilter">
			Represents the size of the [enum DefaultCanvasItemTextureFilter] enum.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_REPEAT_DISABLED" value="0" enum="DefaultCanvasItemTextureRepeat">
			Disables textures repeating. Instead, when reading UVs outside the 0-1 range, the value will be clamped to the edge of the texture, resulting in a stretched out look at the borders of the texture.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_REPEAT_ENABLED" value="1" enum="DefaultCanvasItemTextureRepeat">
			Enables the texture to repeat when UV coordinates are outside the 0-1 range. If using one of the linear filtering modes, this can result in artifacts at the edges of a texture when the sampler filters across the edges of the texture.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_REPEAT_MIRROR" value="2" enum="DefaultCanvasItemTextureRepeat">
			Flip the texture when repeating so that the edge lines up instead of abruptly changing.
		</constant>
		<constant name="DEFAULT_CANVAS_ITEM_TEXTURE_REPEAT_MAX" value="3" enum="DefaultCanvasItemTextureRepeat">
			Represents the size of the [enum DefaultCanvasItemTextureRepeat] enum.
		</constant>
		<constant name="SDF_OVERSIZE_100_PERCENT" value="0" enum="SDFOversize">
			The signed distance field only covers the viewport's own rectangle.
		</constant>
		<constant name="SDF_OVERSIZE_120_PERCENT" value="1" enum="SDFOversize">
			The signed distance field is expanded to cover 20% of the viewport's size around the borders.
		</constant>
		<constant name="SDF_OVERSIZE_150_PERCENT" value="2" enum="SDFOversize">
			The signed distance field is expanded to cover 50% of the viewport's size around the borders.
		</constant>
		<constant name="SDF_OVERSIZE_200_PERCENT" value="3" enum="SDFOversize">
			The signed distance field is expanded to cover 100% (double) of the viewport's size around the borders.
		</constant>
		<constant name="SDF_OVERSIZE_MAX" value="4" enum="SDFOversize">
			Represents the size of the [enum SDFOversize] enum.
		</constant>
		<constant name="SDF_SCALE_100_PERCENT" value="0" enum="SDFScale">
			The signed distance field is rendered at full resolution.
		</constant>
		<constant name="SDF_SCALE_50_PERCENT" value="1" enum="SDFScale">
			The signed distance field is rendered at half the resolution of this viewport.
		</constant>
		<constant name="SDF_SCALE_25_PERCENT" value="2" enum="SDFScale">
			The signed distance field is rendered at a quarter the resolution of this viewport.
		</constant>
		<constant name="SDF_SCALE_MAX" value="3" enum="SDFScale">
			Represents the size of the [enum SDFScale] enum.
		</constant>
		<constant name="VRS_DISABLED" value="0" enum="VRSMode">
			Variable Rate Shading is disabled.
		</constant>
		<constant name="VRS_TEXTURE" value="1" enum="VRSMode">
			Variable Rate Shading uses a texture. Note, for stereoscopic use a texture atlas with a texture for each view.
		</constant>
		<constant name="VRS_XR" value="2" enum="VRSMode">
			Variable Rate Shading's texture is supplied by the primary [XRInterface].
		</constant>
		<constant name="VRS_MAX" value="3" enum="VRSMode">
			Represents the size of the [enum VRSMode] enum.
		</constant>
		<constant name="VRS_UPDATE_DISABLED" value="0" enum="VRSUpdateMode">
			The input texture for variable rate shading will not be processed.
		</constant>
		<constant name="VRS_UPDATE_ONCE" value="1" enum="VRSUpdateMode">
			The input texture for variable rate shading will be processed once.
		</constant>
		<constant name="VRS_UPDATE_ALWAYS" value="2" enum="VRSUpdateMode">
			The input texture for variable rate shading will be processed each frame.
		</constant>
		<constant name="VRS_UPDATE_MAX" value="3" enum="VRSUpdateMode">
			Represents the size of the [enum VRSUpdateMode] enum.
		</constant>
	</constants>
</class>