using System;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Runtime.InteropServices;
#nullable enable
namespace Godot
{
/// <summary>
/// A 4x4 matrix used for 3D projective transformations. It can represent transformations such as
/// translation, rotation, scaling, shearing, and perspective division. It consists of four
/// <see cref="Vector4"/> columns.
/// For purely linear transformations (translation, rotation, and scale), it is recommended to use
/// <see cref="Transform3D"/>, as it is more performant and has a lower memory footprint.
/// Used internally as <see cref="Camera3D"/>'s projection matrix.
/// </summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Projection : IEquatable<Projection>
{
/// <summary>
/// Enumerated index values for the planes.
/// </summary>
public enum Planes
{
/// <summary>
/// The projection's near plane.
/// </summary>
Near,
/// <summary>
/// The projection's far plane.
/// </summary>
Far,
/// <summary>
/// The projection's left plane.
/// </summary>
Left,
/// <summary>
/// The projection's top plane.
/// </summary>
Top,
/// <summary>
/// The projection's right plane.
/// </summary>
Right,
/// <summary>
/// The projection's bottom plane.
/// </summary>
Bottom,
}
/// <summary>
/// The projection's X column. Also accessible by using the index position <c>[0]</c>.
/// </summary>
public Vector4 X;
/// <summary>
/// The projection's Y column. Also accessible by using the index position <c>[1]</c>.
/// </summary>
public Vector4 Y;
/// <summary>
/// The projection's Z column. Also accessible by using the index position <c>[2]</c>.
/// </summary>
public Vector4 Z;
/// <summary>
/// The projection's W column. Also accessible by using the index position <c>[3]</c>.
/// </summary>
public Vector4 W;
/// <summary>
/// Access whole columns in the form of <see cref="Vector4"/>.
/// </summary>
/// <param name="column">Which column vector.</param>
/// <exception cref="ArgumentOutOfRangeException">
/// <paramref name="column"/> is not 0, 1, 2 or 3.
/// </exception>
public Vector4 this[int column]
{
readonly get
{
switch (column)
{
case 0:
return X;
case 1:
return Y;
case 2:
return Z;
case 3:
return W;
default:
throw new ArgumentOutOfRangeException(nameof(column));
}
}
set
{
switch (column)
{
case 0:
X = value;
return;
case 1:
Y = value;
return;
case 2:
Z = value;
return;
case 3:
W = value;
return;
default:
throw new ArgumentOutOfRangeException(nameof(column));
}
}
}
/// <summary>
/// Access single values.
/// </summary>
/// <param name="column">Which column vector.</param>
/// <param name="row">Which row of the column.</param>
/// <exception cref="ArgumentOutOfRangeException">
/// <paramref name="column"/> or <paramref name="row"/> are not 0, 1, 2 or 3.
/// </exception>
public real_t this[int column, int row]
{
readonly get
{
switch (column)
{
case 0:
return X[row];
case 1:
return Y[row];
case 2:
return Z[row];
case 3:
return W[row];
default:
throw new ArgumentOutOfRangeException(nameof(column));
}
}
set
{
switch (column)
{
case 0:
X[row] = value;
return;
case 1:
Y[row] = value;
return;
case 2:
Z[row] = value;
return;
case 3:
W[row] = value;
return;
default:
throw new ArgumentOutOfRangeException(nameof(column));
}
}
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions from a depth range of
/// <c>-1</c> to <c>1</c> to one that ranges from <c>0</c> to <c>1</c>, and flips the projected
/// positions vertically, according to <paramref name="flipY"/>.
/// </summary>
/// <param name="flipY">If the projection should be flipped vertically.</param>
/// <returns>The created projection.</returns>
public static Projection CreateDepthCorrection(bool flipY)
{
return new Projection(
new Vector4(1, 0, 0, 0),
new Vector4(0, flipY ? -1 : 1, 0, 0),
new Vector4(0, 0, (real_t)0.5, 0),
new Vector4(0, 0, (real_t)0.5, 1)
);
}
/// <summary>
/// Creates a new <see cref="Projection"/> that scales a given projection to fit around
/// a given <see cref="Aabb"/> in projection space.
/// </summary>
/// <param name="aabb">The Aabb to fit the projection around.</param>
/// <returns>The created projection.</returns>
public static Projection CreateFitAabb(Aabb aabb)
{
Vector3 min = aabb.Position;
Vector3 max = aabb.Position + aabb.Size;
return new Projection(
new Vector4(2 / (max.X - min.X), 0, 0, 0),
new Vector4(0, 2 / (max.Y - min.Y), 0, 0),
new Vector4(0, 0, 2 / (max.Z - min.Z), 0),
new Vector4(-(max.X + min.X) / (max.X - min.X), -(max.Y + min.Y) / (max.Y - min.Y), -(max.Z + min.Z) / (max.Z - min.Z), 1)
);
}
/// <summary>
/// Creates a new <see cref="Projection"/> for projecting positions onto a head-mounted display with
/// the given X:Y aspect ratio, distance between eyes, display width, distance to lens, oversampling factor,
/// and depth clipping planes.
/// <paramref name="eye"/> creates the projection for the left eye when set to 1,
/// or the right eye when set to 2.
/// </summary>
/// <param name="eye">
/// The eye to create the projection for.
/// The left eye when set to 1, the right eye when set to 2.
/// </param>
/// <param name="aspect">The aspect ratio.</param>
/// <param name="intraocularDist">The distance between the eyes.</param>
/// <param name="displayWidth">The display width.</param>
/// <param name="displayToLens">The distance to the lens.</param>
/// <param name="oversample">The oversampling factor.</param>
/// <param name="zNear">The near clipping distance.</param>
/// <param name="zFar">The far clipping distance.</param>
/// <returns>The created projection.</returns>
public static Projection CreateForHmd(int eye, real_t aspect, real_t intraocularDist, real_t displayWidth, real_t displayToLens, real_t oversample, real_t zNear, real_t zFar)
{
real_t f1 = (intraocularDist * (real_t)0.5) / displayToLens;
real_t f2 = ((displayWidth - intraocularDist) * (real_t)0.5) / displayToLens;
real_t f3 = (displayWidth / (real_t)4.0) / displayToLens;
real_t add = ((f1 + f2) * (oversample - (real_t)1.0)) / (real_t)2.0;
f1 += add;
f2 += add;
f3 *= oversample;
f3 /= aspect;
switch (eye)
{
case 1:
return CreateFrustum(-f2 * zNear, f1 * zNear, -f3 * zNear, f3 * zNear, zNear, zFar);
case 2:
return CreateFrustum(-f1 * zNear, f2 * zNear, -f3 * zNear, f3 * zNear, zNear, zFar);
default:
return Zero;
}
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions in a frustum with
/// the given clipping planes.
/// </summary>
/// <param name="left">The left clipping distance.</param>
/// <param name="right">The right clipping distance.</param>
/// <param name="bottom">The bottom clipping distance.</param>
/// <param name="top">The top clipping distance.</param>
/// <param name="depthNear">The near clipping distance.</param>
/// <param name="depthFar">The far clipping distance.</param>
/// <returns>The created projection.</returns>
public static Projection CreateFrustum(real_t left, real_t right, real_t bottom, real_t top, real_t depthNear, real_t depthFar)
{
if (right <= left)
{
throw new ArgumentException("right is less or equal to left.");
}
if (top <= bottom)
{
throw new ArgumentException("top is less or equal to bottom.");
}
if (depthFar <= depthNear)
{
throw new ArgumentException("far is less or equal to near.");
}
real_t x = 2 * depthNear / (right - left);
real_t y = 2 * depthNear / (top - bottom);
real_t a = (right + left) / (right - left);
real_t b = (top + bottom) / (top - bottom);
real_t c = -(depthFar + depthNear) / (depthFar - depthNear);
real_t d = -2 * depthFar * depthNear / (depthFar - depthNear);
return new Projection(
new Vector4(x, 0, 0, 0),
new Vector4(0, y, 0, 0),
new Vector4(a, b, c, -1),
new Vector4(0, 0, d, 0)
);
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions in a frustum with
/// the given size, X:Y aspect ratio, offset, and clipping planes.
/// <paramref name="flipFov"/> determines whether the projection's field of view is flipped over its diagonal.
/// </summary>
/// <param name="size">The frustum size.</param>
/// <param name="aspect">The aspect ratio.</param>
/// <param name="offset">The offset to apply.</param>
/// <param name="depthNear">The near clipping distance.</param>
/// <param name="depthFar">The far clipping distance.</param>
/// <param name="flipFov">If the field of view is flipped over the projection's diagonal.</param>
/// <returns>The created projection.</returns>
public static Projection CreateFrustumAspect(real_t size, real_t aspect, Vector2 offset, real_t depthNear, real_t depthFar, bool flipFov)
{
if (!flipFov)
{
size *= aspect;
}
return CreateFrustum(-size / 2 + offset.X, +size / 2 + offset.X, -size / aspect / 2 + offset.Y, +size / aspect / 2 + offset.Y, depthNear, depthFar);
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions into the given <see cref="Rect2"/>.
/// </summary>
/// <param name="rect">The Rect2 to project positions into.</param>
/// <returns>The created projection.</returns>
public static Projection CreateLightAtlasRect(Rect2 rect)
{
return new Projection(
new Vector4(rect.Size.X, 0, 0, 0),
new Vector4(0, rect.Size.Y, 0, 0),
new Vector4(0, 0, 1, 0),
new Vector4(rect.Position.X, rect.Position.Y, 0, 1)
);
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions using an orthogonal projection with
/// the given clipping planes.
/// </summary>
/// <param name="left">The left clipping distance.</param>
/// <param name="right">The right clipping distance.</param>
/// <param name="bottom">The bottom clipping distance.</param>
/// <param name="top">The top clipping distance.</param>
/// <param name="zNear">The near clipping distance.</param>
/// <param name="zFar">The far clipping distance.</param>
/// <returns>The created projection.</returns>
public static Projection CreateOrthogonal(real_t left, real_t right, real_t bottom, real_t top, real_t zNear, real_t zFar)
{
Projection proj = Projection.Identity;
proj.X.X = (real_t)2.0 / (right - left);
proj.W.X = -((right + left) / (right - left));
proj.Y.Y = (real_t)2.0 / (top - bottom);
proj.W.Y = -((top + bottom) / (top - bottom));
proj.Z.Z = (real_t)(-2.0) / (zFar - zNear);
proj.W.Z = -((zFar + zNear) / (zFar - zNear));
proj.W.W = (real_t)1.0;
return proj;
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions using an orthogonal projection with
/// the given size, X:Y aspect ratio, and clipping planes.
/// <paramref name="flipFov"/> determines whether the projection's field of view is flipped over its diagonal.
/// </summary>
/// <param name="size">The frustum size.</param>
/// <param name="aspect">The aspect ratio.</param>
/// <param name="zNear">The near clipping distance.</param>
/// <param name="zFar">The far clipping distance.</param>
/// <param name="flipFov">If the field of view is flipped over the projection's diagonal.</param>
/// <returns>The created projection.</returns>
public static Projection CreateOrthogonalAspect(real_t size, real_t aspect, real_t zNear, real_t zFar, bool flipFov)
{
if (!flipFov)
{
size *= aspect;
}
return CreateOrthogonal(-size / 2, +size / 2, -size / aspect / 2, +size / aspect / 2, zNear, zFar);
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions using a perspective projection with
/// the given Y-axis field of view (in degrees), X:Y aspect ratio, and clipping planes.
/// <paramref name="flipFov"/> determines whether the projection's field of view is flipped over its diagonal.
/// </summary>
/// <param name="fovyDegrees">The vertical field of view (in degrees).</param>
/// <param name="aspect">The aspect ratio.</param>
/// <param name="zNear">The near clipping distance.</param>
/// <param name="zFar">The far clipping distance.</param>
/// <param name="flipFov">If the field of view is flipped over the projection's diagonal.</param>
/// <returns>The created projection.</returns>
public static Projection CreatePerspective(real_t fovyDegrees, real_t aspect, real_t zNear, real_t zFar, bool flipFov)
{
if (flipFov)
{
fovyDegrees = GetFovy(fovyDegrees, (real_t)1.0 / aspect);
}
real_t radians = Mathf.DegToRad(fovyDegrees / (real_t)2.0);
real_t deltaZ = zFar - zNear;
(real_t sin, real_t cos) = Mathf.SinCos(radians);
if ((deltaZ == 0) || (sin == 0) || (aspect == 0))
{
return Zero;
}
real_t cotangent = cos / sin;
Projection proj = Projection.Identity;
proj.X.X = cotangent / aspect;
proj.Y.Y = cotangent;
proj.Z.Z = -(zFar + zNear) / deltaZ;
proj.Z.W = -1;
proj.W.Z = -2 * zNear * zFar / deltaZ;
proj.W.W = 0;
return proj;
}
/// <summary>
/// Creates a new <see cref="Projection"/> that projects positions using a perspective projection with
/// the given Y-axis field of view (in degrees), X:Y aspect ratio, and clipping distances.
/// The projection is adjusted for a head-mounted display with the given distance between eyes and distance
/// to a point that can be focused on.
/// <paramref name="eye"/> creates the projection for the left eye when set to 1,
/// or the right eye when set to 2.
/// <paramref name="flipFov"/> determines whether the projection's field of view is flipped over its diagonal.
/// </summary>
/// <param name="fovyDegrees">The vertical field of view (in degrees).</param>
/// <param name="aspect">The aspect ratio.</param>
/// <param name="zNear">The near clipping distance.</param>
/// <param name="zFar">The far clipping distance.</param>
/// <param name="flipFov">If the field of view is flipped over the projection's diagonal.</param>
/// <param name="eye">
/// The eye to create the projection for.
/// The left eye when set to 1, the right eye when set to 2.
/// </param>
/// <param name="intraocularDist">The distance between the eyes.</param>
/// <param name="convergenceDist">The distance to a point of convergence that can be focused on.</param>
/// <returns>The created projection.</returns>
public static Projection CreatePerspectiveHmd(real_t fovyDegrees, real_t aspect, real_t zNear, real_t zFar, bool flipFov, int eye, real_t intraocularDist, real_t convergenceDist)
{
if (flipFov)
{
fovyDegrees = GetFovy(fovyDegrees, (real_t)1.0 / aspect);
}
real_t ymax = zNear * Mathf.Tan(Mathf.DegToRad(fovyDegrees / (real_t)2.0));
real_t xmax = ymax * aspect;
real_t frustumshift = (intraocularDist / (real_t)2.0) * zNear / convergenceDist;
real_t left;
real_t right;
real_t modeltranslation;
switch (eye)
{
case 1:
left = -xmax + frustumshift;
right = xmax + frustumshift;
modeltranslation = intraocularDist / (real_t)2.0;
break;
case 2:
left = -xmax - frustumshift;
right = xmax - frustumshift;
modeltranslation = -intraocularDist / (real_t)2.0;
break;
default:
left = -xmax;
right = xmax;
modeltranslation = (real_t)0.0;
break;
}
Projection proj = CreateFrustum(left, right, -ymax, ymax, zNear, zFar);
Projection cm = Projection.Identity;
cm.W.X = modeltranslation;
return proj * cm;
}
/// <summary>
/// Returns a scalar value that is the signed factor by which areas are scaled by this matrix.
/// If the sign is negative, the matrix flips the orientation of the area.
/// The determinant can be used to calculate the invertibility of a matrix or solve linear systems
/// of equations involving the matrix, among other applications.
/// </summary>
/// <returns>The determinant calculated from this projection.</returns>
public readonly real_t Determinant()
{
return X.W * Y.Z * Z.Y * W.X - X.Z * Y.W * Z.Y * W.X -
X.W * Y.Y * Z.Z * W.X + X.Y * Y.W * Z.Z * W.X +
X.Z * Y.Y * Z.W * W.X - X.Y * Y.Z * Z.W * W.X -
X.W * Y.Z * Z.X * W.Y + X.Z * Y.W * Z.X * W.Y +
X.W * Y.X * Z.Z * W.Y - X.X * Y.W * Z.Z * W.Y -
X.Z * Y.X * Z.W * W.Y + X.X * Y.Z * Z.W * W.Y +
X.W * Y.Y * Z.X * W.Z - X.Y * Y.W * Z.X * W.Z -
X.W * Y.X * Z.Y * W.Z + X.X * Y.W * Z.Y * W.Z +
X.Y * Y.X * Z.W * W.Z - X.X * Y.Y * Z.W * W.Z -
X.Z * Y.Y * Z.X * W.W + X.Y * Y.Z * Z.X * W.W +
X.Z * Y.X * Z.Y * W.W - X.X * Y.Z * Z.Y * W.W -
X.Y * Y.X * Z.Z * W.W + X.X * Y.Y * Z.Z * W.W;
}
/// <summary>
/// Returns the X:Y aspect ratio of this <see cref="Projection"/>'s viewport.
/// </summary>
/// <returns>The aspect ratio from this projection's viewport.</returns>
public readonly real_t GetAspect()
{
Vector2 vpHe = GetViewportHalfExtents();
return vpHe.X / vpHe.Y;
}
/// <summary>
/// Returns the horizontal field of view of the projection (in degrees).
/// </summary>
/// <returns>The horizontal field of view of this projection.</returns>
public readonly real_t GetFov()
{
Plane rightPlane = new Plane(X.W - X.X, Y.W - Y.X, Z.W - Z.X, -W.W + W.X).Normalized();
if (Z.X == 0 && Z.Y == 0)
{
return Mathf.RadToDeg(Mathf.Acos(Mathf.Abs(rightPlane.Normal.X))) * (real_t)2.0;
}
else
{
Plane leftPlane = new Plane(X.W + X.X, Y.W + Y.X, Z.W + Z.X, W.W + W.X).Normalized();
return Mathf.RadToDeg(Mathf.Acos(Mathf.Abs(leftPlane.Normal.X))) + Mathf.RadToDeg(Mathf.Acos(Mathf.Abs(rightPlane.Normal.X)));
}
}
/// <summary>
/// Returns the vertical field of view of the projection (in degrees) associated with
/// the given horizontal field of view (in degrees) and aspect ratio.
/// </summary>
/// <param name="fovx">The horizontal field of view (in degrees).</param>
/// <param name="aspect">The aspect ratio.</param>
/// <returns>The vertical field of view of this projection.</returns>
public static real_t GetFovy(real_t fovx, real_t aspect)
{
return Mathf.RadToDeg(Mathf.Atan(aspect * Mathf.Tan(Mathf.DegToRad(fovx) * (real_t)0.5)) * (real_t)2.0);
}
/// <summary>
/// Returns the factor by which the visible level of detail is scaled by this <see cref="Projection"/>.
/// </summary>
/// <returns>The level of detail factor for this projection.</returns>
public readonly real_t GetLodMultiplier()
{
if (IsOrthogonal())
{
return GetViewportHalfExtents().X;
}
else
{
real_t zn = GetZNear();
real_t width = GetViewportHalfExtents().X * (real_t)2.0;
return (real_t)1.0 / (zn / width);
}
}
/// <summary>
/// Returns the number of pixels with the given pixel width displayed per meter, after
/// this <see cref="Projection"/> is applied.
/// </summary>
/// <param name="forPixelWidth">The width for each pixel (in meters).</param>
/// <returns>The number of pixels per meter.</returns>
public readonly int GetPixelsPerMeter(int forPixelWidth)
{
Vector3 result = this * new Vector3(1, 0, -1);
return (int)((result.X * (real_t)0.5 + (real_t)0.5) * forPixelWidth);
}
/// <summary>
/// Returns the clipping plane of this <see cref="Projection"/> whose index is given
/// by <paramref name="plane"/>.
/// <paramref name="plane"/> should be equal to one of <see cref="Planes.Near"/>,
/// <see cref="Planes.Far"/>, <see cref="Planes.Left"/>, <see cref="Planes.Top"/>,
/// <see cref="Planes.Right"/>, or <see cref="Planes.Bottom"/>.
/// </summary>
/// <param name="plane">The kind of clipping plane to get from the projection.</param>
/// <returns>The clipping plane of this projection.</returns>
public readonly Plane GetProjectionPlane(Planes plane)
{
Plane newPlane = plane switch
{
Planes.Near => new Plane(X.W + X.Z, Y.W + Y.Z, Z.W + Z.Z, W.W + W.Z),
Planes.Far => new Plane(X.W - X.Z, Y.W - Y.Z, Z.W - Z.Z, W.W - W.Z),
Planes.Left => new Plane(X.W + X.X, Y.W + Y.X, Z.W + Z.X, W.W + W.X),
Planes.Top => new Plane(X.W - X.Y, Y.W - Y.Y, Z.W - Z.Y, W.W - W.Y),
Planes.Right => new Plane(X.W - X.X, Y.W - Y.X, Z.W - Z.X, W.W - W.X),
Planes.Bottom => new Plane(X.W + X.Y, Y.W + Y.Y, Z.W + Z.Y, W.W + W.Y),
_ => new Plane(),
};
newPlane.Normal = -newPlane.Normal;
return newPlane.Normalized();
}
/// <summary>
/// Returns the dimensions of the far clipping plane of the projection, divided by two.
/// </summary>
/// <returns>The half extents for this projection's far plane.</returns>
public readonly Vector2 GetFarPlaneHalfExtents()
{
var res = GetProjectionPlane(Planes.Far).Intersect3(GetProjectionPlane(Planes.Right), GetProjectionPlane(Planes.Top));
return res is null ? default : new Vector2(res.Value.X, res.Value.Y);
}
/// <summary>
/// Returns the dimensions of the viewport plane that this <see cref="Projection"/>
/// projects positions onto, divided by two.
/// </summary>
/// <returns>The half extents for this projection's viewport plane.</returns>
public readonly Vector2 GetViewportHalfExtents()
{
var res = GetProjectionPlane(Planes.Near).Intersect3(GetProjectionPlane(Planes.Right), GetProjectionPlane(Planes.Top));
return res is null ? default : new Vector2(res.Value.X, res.Value.Y);
}
/// <summary>
/// Returns the distance for this <see cref="Projection"/> beyond which positions are clipped.
/// </summary>
/// <returns>The distance beyond which positions are clipped.</returns>
public readonly real_t GetZFar()
{
return GetProjectionPlane(Planes.Far).D;
}
/// <summary>
/// Returns the distance for this <see cref="Projection"/> before which positions are clipped.
/// </summary>
/// <returns>The distance before which positions are clipped.</returns>
public readonly real_t GetZNear()
{
return -GetProjectionPlane(Planes.Near).D;
}
/// <summary>
/// Returns a copy of this <see cref="Projection"/> with the signs of the values of the Y column flipped.
/// </summary>
/// <returns>The flipped projection.</returns>
public readonly Projection FlippedY()
{
Projection proj = this;
proj.Y = -proj.Y;
return proj;
}
/// <summary>
/// Returns a <see cref="Projection"/> with the near clipping distance adjusted to be
/// <paramref name="newZNear"/>.
/// Note: The original <see cref="Projection"/> must be a perspective projection.
/// </summary>
/// <param name="newZNear">The near clipping distance to adjust the projection to.</param>
/// <returns>The adjusted projection.</returns>
public readonly Projection PerspectiveZNearAdjusted(real_t newZNear)
{
Projection proj = this;
real_t zFar = GetZFar();
real_t zNear = newZNear;
real_t deltaZ = zFar - zNear;
proj.Z.Z = -(zFar + zNear) / deltaZ;
proj.W.Z = -2 * zNear * zFar / deltaZ;
return proj;
}
/// <summary>
/// Returns a <see cref="Projection"/> with the X and Y values from the given <see cref="Vector2"/>
/// added to the first and second values of the final column respectively.
/// </summary>
/// <param name="offset">The offset to apply to the projection.</param>
/// <returns>The offsetted projection.</returns>
public readonly Projection JitterOffseted(Vector2 offset)
{
Projection proj = this;
proj.W.X += offset.X;
proj.W.Y += offset.Y;
return proj;
}
/// <summary>
/// Returns a <see cref="Projection"/> that performs the inverse of this <see cref="Projection"/>'s
/// projective transformation.
/// </summary>
/// <returns>The inverted projection.</returns>
public readonly Projection Inverse()
{
Projection proj = this;
int i, j, k;
int[] pvt_i = new int[4];
int[] pvt_j = new int[4]; /* Locations of pivot matrix */
real_t pvt_val; /* Value of current pivot element */
real_t hold; /* Temporary storage */
real_t determinant = 1.0f;
for (k = 0; k < 4; k++)
{
/* Locate k'th pivot element */
pvt_val = proj[k][k]; /* Initialize for search */
pvt_i[k] = k;
pvt_j[k] = k;
for (i = k; i < 4; i++)
{
for (j = k; j < 4; j++)
{
if (Mathf.Abs(proj[i][j]) > Mathf.Abs(pvt_val))
{
pvt_i[k] = i;
pvt_j[k] = j;
pvt_val = proj[i][j];
}
}
}
/* Product of pivots, gives determinant when finished */
determinant *= pvt_val;
if (Mathf.IsZeroApprox(determinant))
{
return Zero;
}
/* "Interchange" rows (with sign change stuff) */
i = pvt_i[k];
if (i != k)
{ /* If rows are different */
for (j = 0; j < 4; j++)
{
hold = -proj[k][j];
proj[k, j] = proj[i][j];
proj[i, j] = hold;
}
}
/* "Interchange" columns */
j = pvt_j[k];
if (j != k)
{ /* If columns are different */
for (i = 0; i < 4; i++)
{
hold = -proj[i][k];
proj[i, k] = proj[i][j];
proj[i, j] = hold;
}
}
/* Divide column by minus pivot value */
for (i = 0; i < 4; i++)
{
if (i != k)
{
proj[i, k] /= (-pvt_val);
}
}
/* Reduce the matrix */
for (i = 0; i < 4; i++)
{
hold = proj[i][k];
for (j = 0; j < 4; j++)
{
if (i != k && j != k)
{
proj[i, j] += hold * proj[k][j];
}
}
}
/* Divide row by pivot */
for (j = 0; j < 4; j++)
{
if (j != k)
{
proj[k, j] /= pvt_val;
}
}
/* Replace pivot by reciprocal (at last we can touch it). */
proj[k, k] = (real_t)1.0 / pvt_val;
}
/* That was most of the work, one final pass of row/column interchange */
/* to finish */
for (k = 4 - 2; k >= 0; k--)
{ /* Don't need to work with 1 by 1 corner*/
i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
if (i != k)
{ /* If rows are different */
for (j = 0; j < 4; j++)
{
hold = proj[k][j];
proj[k, j] = -proj[i][j];
proj[i, j] = hold;
}
}
j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
if (j != k)
{ /* If columns are different */
for (i = 0; i < 4; i++)
{
hold = proj[i][k];
proj[i, k] = -proj[i][j];
proj[i, j] = hold;
}
}
}
return proj;
}
/// <summary>
/// Returns <see langword="true"/> if this <see cref="Projection"/> performs an orthogonal projection.
/// </summary>
/// <returns>If the projection performs an orthogonal projection.</returns>
public readonly bool IsOrthogonal()
{
return W.W == (real_t)1.0;
}
// Constants
private static readonly Projection _zero = new Projection(
new Vector4(0, 0, 0, 0),
new Vector4(0, 0, 0, 0),
new Vector4(0, 0, 0, 0),
new Vector4(0, 0, 0, 0)
);
private static readonly Projection _identity = new Projection(
new Vector4(1, 0, 0, 0),
new Vector4(0, 1, 0, 0),
new Vector4(0, 0, 1, 0),
new Vector4(0, 0, 0, 1)
);
/// <summary>
/// Zero projection, a projection with all components set to <c>0</c>.
/// </summary>
/// <value>Equivalent to <c>new Projection(Vector4.Zero, Vector4.Zero, Vector4.Zero, Vector4.Zero)</c>.</value>
public static Projection Zero { get { return _zero; } }
/// <summary>
/// The identity projection, with no distortion applied.
/// This is used as a replacement for <c>Projection()</c> in GDScript.
/// Do not use <c>new Projection()</c> with no arguments in C#, because it sets all values to zero.
/// </summary>
/// <value>Equivalent to <c>new Projection(new Vector4(1, 0, 0, 0), new Vector4(0, 1, 0, 0), new Vector4(0, 0, 1, 0), new Vector4(0, 0, 0, 1))</c>.</value>
public static Projection Identity { get { return _identity; } }
/// <summary>
/// Constructs a projection from 4 vectors (matrix columns).
/// </summary>
/// <param name="x">The X column, or column index 0.</param>
/// <param name="y">The Y column, or column index 1.</param>
/// <param name="z">The Z column, or column index 2.</param>
/// <param name="w">The W column, or column index 3.</param>
public Projection(Vector4 x, Vector4 y, Vector4 z, Vector4 w)
{
X = x;
Y = y;
Z = z;
W = w;
}
/// <summary>
/// Constructs a new <see cref="Projection"/> from a <see cref="Transform3D"/>.
/// </summary>
/// <param name="transform">The <see cref="Transform3D"/>.</param>
public Projection(Transform3D transform)
{
X = new Vector4(transform.Basis.Row0.X, transform.Basis.Row1.X, transform.Basis.Row2.X, 0);
Y = new Vector4(transform.Basis.Row0.Y, transform.Basis.Row1.Y, transform.Basis.Row2.Y, 0);
Z = new Vector4(transform.Basis.Row0.Z, transform.Basis.Row1.Z, transform.Basis.Row2.Z, 0);
W = new Vector4(transform.Origin.X, transform.Origin.Y, transform.Origin.Z, 1);
}
/// <summary>
/// Composes these two projections by multiplying them
/// together. This has the effect of applying the right
/// and then the left projection.
/// </summary>
/// <param name="left">The parent transform.</param>
/// <param name="right">The child transform.</param>
/// <returns>The composed projection.</returns>
public static Projection operator *(Projection left, Projection right)
{
return new Projection(
new Vector4(
left.X.X * right.X.X + left.Y.X * right.X.Y + left.Z.X * right.X.Z + left.W.X * right.X.W,
left.X.Y * right.X.X + left.Y.Y * right.X.Y + left.Z.Y * right.X.Z + left.W.Y * right.X.W,
left.X.Z * right.X.X + left.Y.Z * right.X.Y + left.Z.Z * right.X.Z + left.W.Z * right.X.W,
left.X.W * right.X.X + left.Y.W * right.X.Y + left.Z.W * right.X.Z + left.W.W * right.X.W
), new Vector4(
left.X.X * right.Y.X + left.Y.X * right.Y.Y + left.Z.X * right.Y.Z + left.W.X * right.Y.W,
left.X.Y * right.Y.X + left.Y.Y * right.Y.Y + left.Z.Y * right.Y.Z + left.W.Y * right.Y.W,
left.X.Z * right.Y.X + left.Y.Z * right.Y.Y + left.Z.Z * right.Y.Z + left.W.Z * right.Y.W,
left.X.W * right.Y.X + left.Y.W * right.Y.Y + left.Z.W * right.Y.Z + left.W.W * right.Y.W
), new Vector4(
left.X.X * right.Z.X + left.Y.X * right.Z.Y + left.Z.X * right.Z.Z + left.W.X * right.Z.W,
left.X.Y * right.Z.X + left.Y.Y * right.Z.Y + left.Z.Y * right.Z.Z + left.W.Y * right.Z.W,
left.X.Z * right.Z.X + left.Y.Z * right.Z.Y + left.Z.Z * right.Z.Z + left.W.Z * right.Z.W,
left.X.W * right.Z.X + left.Y.W * right.Z.Y + left.Z.W * right.Z.Z + left.W.W * right.Z.W
), new Vector4(
left.X.X * right.W.X + left.Y.X * right.W.Y + left.Z.X * right.W.Z + left.W.X * right.W.W,
left.X.Y * right.W.X + left.Y.Y * right.W.Y + left.Z.Y * right.W.Z + left.W.Y * right.W.W,
left.X.Z * right.W.X + left.Y.Z * right.W.Y + left.Z.Z * right.W.Z + left.W.Z * right.W.W,
left.X.W * right.W.X + left.Y.W * right.W.Y + left.Z.W * right.W.Z + left.W.W * right.W.W
)
);
}
/// <summary>
/// Returns a Vector4 transformed (multiplied) by the projection.
/// </summary>
/// <param name="proj">The projection to apply.</param>
/// <param name="vector">A Vector4 to transform.</param>
/// <returns>The transformed Vector4.</returns>
public static Vector4 operator *(Projection proj, Vector4 vector)
{
return new Vector4(
proj.X.X * vector.X + proj.Y.X * vector.Y + proj.Z.X * vector.Z + proj.W.X * vector.W,
proj.X.Y * vector.X + proj.Y.Y * vector.Y + proj.Z.Y * vector.Z + proj.W.Y * vector.W,
proj.X.Z * vector.X + proj.Y.Z * vector.Y + proj.Z.Z * vector.Z + proj.W.Z * vector.W,
proj.X.W * vector.X + proj.Y.W * vector.Y + proj.Z.W * vector.Z + proj.W.W * vector.W
);
}
/// <summary>
/// Returns a Vector4 transformed (multiplied) by the transpose of the projection.
/// For transforming by inverse of a projection <c>projection.Inverse() * vector</c> can be used instead. See <see cref="Inverse"/>.
/// </summary>
/// <param name="proj">The projection to apply.</param>
/// <param name="vector">A Vector4 to transform.</param>
/// <returns>The inversely transformed Vector4.</returns>
public static Vector4 operator *(Vector4 vector, Projection proj)
{
return new Vector4(
proj.X.X * vector.X + proj.X.Y * vector.Y + proj.X.Z * vector.Z + proj.X.W * vector.W,
proj.Y.X * vector.X + proj.Y.Y * vector.Y + proj.Y.Z * vector.Z + proj.Y.W * vector.W,
proj.Z.X * vector.X + proj.Z.Y * vector.Y + proj.Z.Z * vector.Z + proj.Z.W * vector.W,
proj.W.X * vector.X + proj.W.Y * vector.Y + proj.W.Z * vector.Z + proj.W.W * vector.W
);
}
/// <summary>
/// Returns a Vector3 transformed (multiplied) by the projection.
/// </summary>
/// <param name="proj">The projection to apply.</param>
/// <param name="vector">A Vector3 to transform.</param>
/// <returns>The transformed Vector3.</returns>
public static Vector3 operator *(Projection proj, Vector3 vector)
{
Vector3 ret = new Vector3(
proj.X.X * vector.X + proj.Y.X * vector.Y + proj.Z.X * vector.Z + proj.W.X,
proj.X.Y * vector.X + proj.Y.Y * vector.Y + proj.Z.Y * vector.Z + proj.W.Y,
proj.X.Z * vector.X + proj.Y.Z * vector.Y + proj.Z.Z * vector.Z + proj.W.Z
);
return ret / (proj.X.W * vector.X + proj.Y.W * vector.Y + proj.Z.W * vector.Z + proj.W.W);
}
/// <summary>
/// Returns <see langword="true"/> if the projections are exactly equal.
/// </summary>
/// <param name="left">The left projection.</param>
/// <param name="right">The right projection.</param>
/// <returns>Whether or not the projections are exactly equal.</returns>
public static bool operator ==(Projection left, Projection right)
{
return left.Equals(right);
}
/// <summary>
/// Returns <see langword="true"/> if the projections are not exactly equal.
/// </summary>
/// <param name="left">The left projection.</param>
/// <param name="right">The right projection.</param>
/// <returns>Whether or not the projections are not exactly equal.</returns>
public static bool operator !=(Projection left, Projection right)
{
return !left.Equals(right);
}
/// <summary>
/// Constructs a new <see cref="Transform3D"/> from the <see cref="Projection"/>.
/// </summary>
/// <param name="proj">The <see cref="Projection"/>.</param>
public static explicit operator Transform3D(Projection proj)
{
return new Transform3D(
new Basis(
new Vector3(proj.X.X, proj.X.Y, proj.X.Z),
new Vector3(proj.Y.X, proj.Y.Y, proj.Y.Z),
new Vector3(proj.Z.X, proj.Z.Y, proj.Z.Z)
),
new Vector3(proj.W.X, proj.W.Y, proj.W.Z)
);
}
/// <summary>
/// Returns <see langword="true"/> if the projection is exactly equal
/// to the given object (<paramref name="obj"/>).
/// </summary>
/// <param name="obj">The object to compare with.</param>
/// <returns>Whether or not the vector and the object are equal.</returns>
public override readonly bool Equals([NotNullWhen(true)] object? obj)
{
return obj is Projection other && Equals(other);
}
/// <summary>
/// Returns <see langword="true"/> if the projections are exactly equal.
/// </summary>
/// <param name="other">The other projection.</param>
/// <returns>Whether or not the projections are exactly equal.</returns>
public readonly bool Equals(Projection other)
{
return X == other.X && Y == other.Y && Z == other.Z && W == other.W;
}
/// <summary>
/// Serves as the hash function for <see cref="Projection"/>.
/// </summary>
/// <returns>A hash code for this projection.</returns>
public override readonly int GetHashCode()
{
return HashCode.Combine(X, Y, Z, W);
}
/// <summary>
/// Converts this <see cref="Projection"/> to a string.
/// </summary>
/// <returns>A string representation of this projection.</returns>
public override readonly string ToString() => ToString(null);
/// <summary>
/// Converts this <see cref="Projection"/> to a string with the given <paramref name="format"/>.
/// </summary>
/// <returns>A string representation of this projection.</returns>
public readonly string ToString(string? format)
{
return $"{X.X.ToString(format, CultureInfo.InvariantCulture)}, {X.Y.ToString(format, CultureInfo.InvariantCulture)}, {X.Z.ToString(format, CultureInfo.InvariantCulture)}, {X.W.ToString(format, CultureInfo.InvariantCulture)}\n" +
$"{Y.X.ToString(format, CultureInfo.InvariantCulture)}, {Y.Y.ToString(format, CultureInfo.InvariantCulture)}, {Y.Z.ToString(format, CultureInfo.InvariantCulture)}, {Y.W.ToString(format, CultureInfo.InvariantCulture)}\n" +
$"{Z.X.ToString(format, CultureInfo.InvariantCulture)}, {Z.Y.ToString(format, CultureInfo.InvariantCulture)}, {Z.Z.ToString(format, CultureInfo.InvariantCulture)}, {Z.W.ToString(format, CultureInfo.InvariantCulture)}\n" +
$"{W.X.ToString(format, CultureInfo.InvariantCulture)}, {W.Y.ToString(format, CultureInfo.InvariantCulture)}, {W.Z.ToString(format, CultureInfo.InvariantCulture)}, {W.W.ToString(format, CultureInfo.InvariantCulture)}\n";
}
}
}