using System;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Runtime.InteropServices;
#nullable enable
namespace Godot
{
/// <summary>
/// 4-element structure that can be used to represent positions in 4D space or any other pair of numeric values.
/// </summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Vector4 : IEquatable<Vector4>
{
/// <summary>
/// Enumerated index values for the axes.
/// Returned by <see cref="MaxAxisIndex"/> and <see cref="MinAxisIndex"/>.
/// </summary>
public enum Axis
{
/// <summary>
/// The vector's X axis.
/// </summary>
X = 0,
/// <summary>
/// The vector's Y axis.
/// </summary>
Y,
/// <summary>
/// The vector's Z axis.
/// </summary>
Z,
/// <summary>
/// The vector's W axis.
/// </summary>
W
}
/// <summary>
/// The vector's X component. Also accessible by using the index position <c>[0]</c>.
/// </summary>
public real_t X;
/// <summary>
/// The vector's Y component. Also accessible by using the index position <c>[1]</c>.
/// </summary>
public real_t Y;
/// <summary>
/// The vector's Z component. Also accessible by using the index position <c>[2]</c>.
/// </summary>
public real_t Z;
/// <summary>
/// The vector's W component. Also accessible by using the index position <c>[3]</c>.
/// </summary>
public real_t W;
/// <summary>
/// Access vector components using their index.
/// </summary>
/// <exception cref="ArgumentOutOfRangeException">
/// <paramref name="index"/> is not 0, 1, 2 or 3.
/// </exception>
/// <value>
/// <c>[0]</c> is equivalent to <see cref="X"/>,
/// <c>[1]</c> is equivalent to <see cref="Y"/>,
/// <c>[2]</c> is equivalent to <see cref="Z"/>.
/// <c>[3]</c> is equivalent to <see cref="W"/>.
/// </value>
public real_t this[int index]
{
readonly get
{
switch (index)
{
case 0:
return X;
case 1:
return Y;
case 2:
return Z;
case 3:
return W;
default:
throw new ArgumentOutOfRangeException(nameof(index));
}
}
set
{
switch (index)
{
case 0:
X = value;
return;
case 1:
Y = value;
return;
case 2:
Z = value;
return;
case 3:
W = value;
return;
default:
throw new ArgumentOutOfRangeException(nameof(index));
}
}
}
/// <summary>
/// Helper method for deconstruction into a tuple.
/// </summary>
public readonly void Deconstruct(out real_t x, out real_t y, out real_t z, out real_t w)
{
x = X;
y = Y;
z = Z;
w = W;
}
internal void Normalize()
{
real_t lengthsq = LengthSquared();
if (lengthsq == 0)
{
X = Y = Z = W = 0f;
}
else
{
real_t length = Mathf.Sqrt(lengthsq);
X /= length;
Y /= length;
Z /= length;
W /= length;
}
}
/// <summary>
/// Returns a new vector with all components in absolute values (i.e. positive).
/// </summary>
/// <returns>A vector with <see cref="Mathf.Abs(real_t)"/> called on each component.</returns>
public readonly Vector4 Abs()
{
return new Vector4(Mathf.Abs(X), Mathf.Abs(Y), Mathf.Abs(Z), Mathf.Abs(W));
}
/// <summary>
/// Returns a new vector with all components rounded up (towards positive infinity).
/// </summary>
/// <returns>A vector with <see cref="Mathf.Ceil(real_t)"/> called on each component.</returns>
public readonly Vector4 Ceil()
{
return new Vector4(Mathf.Ceil(X), Mathf.Ceil(Y), Mathf.Ceil(Z), Mathf.Ceil(W));
}
/// <summary>
/// Returns a new vector with all components clamped between the
/// components of <paramref name="min"/> and <paramref name="max"/> using
/// <see cref="Mathf.Clamp(real_t, real_t, real_t)"/>.
/// </summary>
/// <param name="min">The vector with minimum allowed values.</param>
/// <param name="max">The vector with maximum allowed values.</param>
/// <returns>The vector with all components clamped.</returns>
public readonly Vector4 Clamp(Vector4 min, Vector4 max)
{
return new Vector4
(
Mathf.Clamp(X, min.X, max.X),
Mathf.Clamp(Y, min.Y, max.Y),
Mathf.Clamp(Z, min.Z, max.Z),
Mathf.Clamp(W, min.W, max.W)
);
}
/// <summary>
/// Returns a new vector with all components clamped between the
/// <paramref name="min"/> and <paramref name="max"/> using
/// <see cref="Mathf.Clamp(real_t, real_t, real_t)"/>.
/// </summary>
/// <param name="min">The minimum allowed value.</param>
/// <param name="max">The maximum allowed value.</param>
/// <returns>The vector with all components clamped.</returns>
public readonly Vector4 Clamp(real_t min, real_t max)
{
return new Vector4
(
Mathf.Clamp(X, min, max),
Mathf.Clamp(Y, min, max),
Mathf.Clamp(Z, min, max),
Mathf.Clamp(W, min, max)
);
}
/// <summary>
/// Performs a cubic interpolation between vectors <paramref name="preA"/>, this vector,
/// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
/// </summary>
/// <param name="b">The destination vector.</param>
/// <param name="preA">A vector before this vector.</param>
/// <param name="postB">A vector after <paramref name="b"/>.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The interpolated vector.</returns>
public readonly Vector4 CubicInterpolate(Vector4 b, Vector4 preA, Vector4 postB, real_t weight)
{
return new Vector4
(
Mathf.CubicInterpolate(X, b.X, preA.X, postB.X, weight),
Mathf.CubicInterpolate(Y, b.Y, preA.Y, postB.Y, weight),
Mathf.CubicInterpolate(Z, b.Z, preA.Z, postB.Z, weight),
Mathf.CubicInterpolate(W, b.W, preA.W, postB.W, weight)
);
}
/// <summary>
/// Performs a cubic interpolation between vectors <paramref name="preA"/>, this vector,
/// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
/// It can perform smoother interpolation than <see cref="CubicInterpolate"/>
/// by the time values.
/// </summary>
/// <param name="b">The destination vector.</param>
/// <param name="preA">A vector before this vector.</param>
/// <param name="postB">A vector after <paramref name="b"/>.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <param name="t"></param>
/// <param name="preAT"></param>
/// <param name="postBT"></param>
/// <returns>The interpolated vector.</returns>
public readonly Vector4 CubicInterpolateInTime(Vector4 b, Vector4 preA, Vector4 postB, real_t weight, real_t t, real_t preAT, real_t postBT)
{
return new Vector4
(
Mathf.CubicInterpolateInTime(X, b.X, preA.X, postB.X, weight, t, preAT, postBT),
Mathf.CubicInterpolateInTime(Y, b.Y, preA.Y, postB.Y, weight, t, preAT, postBT),
Mathf.CubicInterpolateInTime(Z, b.Z, preA.Z, postB.Z, weight, t, preAT, postBT),
Mathf.CubicInterpolateInTime(W, b.W, preA.W, postB.W, weight, t, preAT, postBT)
);
}
/// <summary>
/// Returns the normalized vector pointing from this vector to <paramref name="to"/>.
/// </summary>
/// <param name="to">The other vector to point towards.</param>
/// <returns>The direction from this vector to <paramref name="to"/>.</returns>
public readonly Vector4 DirectionTo(Vector4 to)
{
Vector4 ret = new Vector4(to.X - X, to.Y - Y, to.Z - Z, to.W - W);
ret.Normalize();
return ret;
}
/// <summary>
/// Returns the squared distance between this vector and <paramref name="to"/>.
/// This method runs faster than <see cref="DistanceTo"/>, so prefer it if
/// you need to compare vectors or need the squared distance for some formula.
/// </summary>
/// <param name="to">The other vector to use.</param>
/// <returns>The squared distance between the two vectors.</returns>
public readonly real_t DistanceSquaredTo(Vector4 to)
{
return (to - this).LengthSquared();
}
/// <summary>
/// Returns the distance between this vector and <paramref name="to"/>.
/// </summary>
/// <param name="to">The other vector to use.</param>
/// <returns>The distance between the two vectors.</returns>
public readonly real_t DistanceTo(Vector4 to)
{
return (to - this).Length();
}
/// <summary>
/// Returns the dot product of this vector and <paramref name="with"/>.
/// </summary>
/// <param name="with">The other vector to use.</param>
/// <returns>The dot product of the two vectors.</returns>
public readonly real_t Dot(Vector4 with)
{
return (X * with.X) + (Y * with.Y) + (Z * with.Z) + (W * with.W);
}
/// <summary>
/// Returns a new vector with all components rounded down (towards negative infinity).
/// </summary>
/// <returns>A vector with <see cref="Mathf.Floor(real_t)"/> called on each component.</returns>
public readonly Vector4 Floor()
{
return new Vector4(Mathf.Floor(X), Mathf.Floor(Y), Mathf.Floor(Z), Mathf.Floor(W));
}
/// <summary>
/// Returns the inverse of this vector. This is the same as <c>new Vector4(1 / v.X, 1 / v.Y, 1 / v.Z, 1 / v.W)</c>.
/// </summary>
/// <returns>The inverse of this vector.</returns>
public readonly Vector4 Inverse()
{
return new Vector4(1 / X, 1 / Y, 1 / Z, 1 / W);
}
/// <summary>
/// Returns <see langword="true"/> if this vector is finite, by calling
/// <see cref="Mathf.IsFinite(real_t)"/> on each component.
/// </summary>
/// <returns>Whether this vector is finite or not.</returns>
public readonly bool IsFinite()
{
return Mathf.IsFinite(X) && Mathf.IsFinite(Y) && Mathf.IsFinite(Z) && Mathf.IsFinite(W);
}
/// <summary>
/// Returns <see langword="true"/> if the vector is normalized, and <see langword="false"/> otherwise.
/// </summary>
/// <returns>A <see langword="bool"/> indicating whether or not the vector is normalized.</returns>
public readonly bool IsNormalized()
{
return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon;
}
/// <summary>
/// Returns the length (magnitude) of this vector.
/// </summary>
/// <seealso cref="LengthSquared"/>
/// <returns>The length of this vector.</returns>
public readonly real_t Length()
{
real_t x2 = X * X;
real_t y2 = Y * Y;
real_t z2 = Z * Z;
real_t w2 = W * W;
return Mathf.Sqrt(x2 + y2 + z2 + w2);
}
/// <summary>
/// Returns the squared length (squared magnitude) of this vector.
/// This method runs faster than <see cref="Length"/>, so prefer it if
/// you need to compare vectors or need the squared length for some formula.
/// </summary>
/// <returns>The squared length of this vector.</returns>
public readonly real_t LengthSquared()
{
real_t x2 = X * X;
real_t y2 = Y * Y;
real_t z2 = Z * Z;
real_t w2 = W * W;
return x2 + y2 + z2 + w2;
}
/// <summary>
/// Returns the result of the linear interpolation between
/// this vector and <paramref name="to"/> by amount <paramref name="weight"/>.
/// </summary>
/// <param name="to">The destination vector for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting vector of the interpolation.</returns>
public readonly Vector4 Lerp(Vector4 to, real_t weight)
{
return new Vector4
(
Mathf.Lerp(X, to.X, weight),
Mathf.Lerp(Y, to.Y, weight),
Mathf.Lerp(Z, to.Z, weight),
Mathf.Lerp(W, to.W, weight)
);
}
/// <summary>
/// Returns the result of the component-wise maximum between
/// this vector and <paramref name="with"/>.
/// Equivalent to <c>new Vector4(Mathf.Max(X, with.X), Mathf.Max(Y, with.Y), Mathf.Max(Z, with.Z), Mathf.Max(W, with.W))</c>.
/// </summary>
/// <param name="with">The other vector to use.</param>
/// <returns>The resulting maximum vector.</returns>
public readonly Vector4 Max(Vector4 with)
{
return new Vector4
(
Mathf.Max(X, with.X),
Mathf.Max(Y, with.Y),
Mathf.Max(Z, with.Z),
Mathf.Max(W, with.W)
);
}
/// <summary>
/// Returns the result of the component-wise maximum between
/// this vector and <paramref name="with"/>.
/// Equivalent to <c>new Vector4(Mathf.Max(X, with), Mathf.Max(Y, with), Mathf.Max(Z, with), Mathf.Max(W, with))</c>.
/// </summary>
/// <param name="with">The other value to use.</param>
/// <returns>The resulting maximum vector.</returns>
public readonly Vector4 Max(real_t with)
{
return new Vector4
(
Mathf.Max(X, with),
Mathf.Max(Y, with),
Mathf.Max(Z, with),
Mathf.Max(W, with)
);
}
/// <summary>
/// Returns the result of the component-wise minimum between
/// this vector and <paramref name="with"/>.
/// Equivalent to <c>new Vector4(Mathf.Min(X, with.X), Mathf.Min(Y, with.Y), Mathf.Min(Z, with.Z), Mathf.Min(W, with.W))</c>.
/// </summary>
/// <param name="with">The other vector to use.</param>
/// <returns>The resulting minimum vector.</returns>
public readonly Vector4 Min(Vector4 with)
{
return new Vector4
(
Mathf.Min(X, with.X),
Mathf.Min(Y, with.Y),
Mathf.Min(Z, with.Z),
Mathf.Min(W, with.W)
);
}
/// <summary>
/// Returns the result of the component-wise minimum between
/// this vector and <paramref name="with"/>.
/// Equivalent to <c>new Vector4(Mathf.Min(X, with), Mathf.Min(Y, with), Mathf.Min(Z, with), Mathf.Min(W, with))</c>.
/// </summary>
/// <param name="with">The other value to use.</param>
/// <returns>The resulting minimum vector.</returns>
public readonly Vector4 Min(real_t with)
{
return new Vector4
(
Mathf.Min(X, with),
Mathf.Min(Y, with),
Mathf.Min(Z, with),
Mathf.Min(W, with)
);
}
/// <summary>
/// Returns the axis of the vector's highest value. See <see cref="Axis"/>.
/// If all components are equal, this method returns <see cref="Axis.X"/>.
/// </summary>
/// <returns>The index of the highest axis.</returns>
public readonly Axis MaxAxisIndex()
{
int max_index = 0;
real_t max_value = X;
for (int i = 1; i < 4; i++)
{
if (this[i] > max_value)
{
max_index = i;
max_value = this[i];
}
}
return (Axis)max_index;
}
/// <summary>
/// Returns the axis of the vector's lowest value. See <see cref="Axis"/>.
/// If all components are equal, this method returns <see cref="Axis.W"/>.
/// </summary>
/// <returns>The index of the lowest axis.</returns>
public readonly Axis MinAxisIndex()
{
int min_index = 0;
real_t min_value = X;
for (int i = 1; i < 4; i++)
{
if (this[i] <= min_value)
{
min_index = i;
min_value = this[i];
}
}
return (Axis)min_index;
}
/// <summary>
/// Returns the vector scaled to unit length. Equivalent to <c>v / v.Length()</c>.
/// </summary>
/// <returns>A normalized version of the vector.</returns>
public readonly Vector4 Normalized()
{
Vector4 v = this;
v.Normalize();
return v;
}
/// <summary>
/// Returns a vector composed of the <see cref="Mathf.PosMod(real_t, real_t)"/> of this vector's components
/// and <paramref name="mod"/>.
/// </summary>
/// <param name="mod">A value representing the divisor of the operation.</param>
/// <returns>
/// A vector with each component <see cref="Mathf.PosMod(real_t, real_t)"/> by <paramref name="mod"/>.
/// </returns>
public readonly Vector4 PosMod(real_t mod)
{
return new Vector4(
Mathf.PosMod(X, mod),
Mathf.PosMod(Y, mod),
Mathf.PosMod(Z, mod),
Mathf.PosMod(W, mod)
);
}
/// <summary>
/// Returns a vector composed of the <see cref="Mathf.PosMod(real_t, real_t)"/> of this vector's components
/// and <paramref name="modv"/>'s components.
/// </summary>
/// <param name="modv">A vector representing the divisors of the operation.</param>
/// <returns>
/// A vector with each component <see cref="Mathf.PosMod(real_t, real_t)"/> by <paramref name="modv"/>'s components.
/// </returns>
public readonly Vector4 PosMod(Vector4 modv)
{
return new Vector4(
Mathf.PosMod(X, modv.X),
Mathf.PosMod(Y, modv.Y),
Mathf.PosMod(Z, modv.Z),
Mathf.PosMod(W, modv.W)
);
}
/// <summary>
/// Returns this vector with all components rounded to the nearest integer,
/// with halfway cases rounded towards the nearest multiple of two.
/// </summary>
/// <returns>The rounded vector.</returns>
public readonly Vector4 Round()
{
return new Vector4(Mathf.Round(X), Mathf.Round(Y), Mathf.Round(Z), Mathf.Round(W));
}
/// <summary>
/// Returns a vector with each component set to one or negative one, depending
/// on the signs of this vector's components, or zero if the component is zero,
/// by calling <see cref="Mathf.Sign(real_t)"/> on each component.
/// </summary>
/// <returns>A vector with all components as either <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
public readonly Vector4 Sign()
{
Vector4 v;
v.X = Mathf.Sign(X);
v.Y = Mathf.Sign(Y);
v.Z = Mathf.Sign(Z);
v.W = Mathf.Sign(W);
return v;
}
/// <summary>
/// Returns a new vector with each component snapped to the nearest multiple of the corresponding component in <paramref name="step"/>.
/// This can also be used to round to an arbitrary number of decimals.
/// </summary>
/// <param name="step">A vector value representing the step size to snap to.</param>
/// <returns>The snapped vector.</returns>
public readonly Vector4 Snapped(Vector4 step)
{
return new Vector4(
Mathf.Snapped(X, step.X),
Mathf.Snapped(Y, step.Y),
Mathf.Snapped(Z, step.Z),
Mathf.Snapped(W, step.W)
);
}
/// <summary>
/// Returns a new vector with each component snapped to the nearest multiple of <paramref name="step"/>.
/// This can also be used to round to an arbitrary number of decimals.
/// </summary>
/// <param name="step">The step size to snap to.</param>
/// <returns>The snapped vector.</returns>
public readonly Vector4 Snapped(real_t step)
{
return new Vector4(
Mathf.Snapped(X, step),
Mathf.Snapped(Y, step),
Mathf.Snapped(Z, step),
Mathf.Snapped(W, step)
);
}
// Constants
private static readonly Vector4 _zero = new Vector4(0, 0, 0, 0);
private static readonly Vector4 _one = new Vector4(1, 1, 1, 1);
private static readonly Vector4 _inf = new Vector4(Mathf.Inf, Mathf.Inf, Mathf.Inf, Mathf.Inf);
/// <summary>
/// Zero vector, a vector with all components set to <c>0</c>.
/// </summary>
/// <value>Equivalent to <c>new Vector4(0, 0, 0, 0)</c>.</value>
public static Vector4 Zero { get { return _zero; } }
/// <summary>
/// One vector, a vector with all components set to <c>1</c>.
/// </summary>
/// <value>Equivalent to <c>new Vector4(1, 1, 1, 1)</c>.</value>
public static Vector4 One { get { return _one; } }
/// <summary>
/// Infinity vector, a vector with all components set to <see cref="Mathf.Inf"/>.
/// </summary>
/// <value>Equivalent to <c>new Vector4(Mathf.Inf, Mathf.Inf, Mathf.Inf, Mathf.Inf)</c>.</value>
public static Vector4 Inf { get { return _inf; } }
/// <summary>
/// Constructs a new <see cref="Vector4"/> with the given components.
/// </summary>
/// <param name="x">The vector's X component.</param>
/// <param name="y">The vector's Y component.</param>
/// <param name="z">The vector's Z component.</param>
/// <param name="w">The vector's W component.</param>
public Vector4(real_t x, real_t y, real_t z, real_t w)
{
X = x;
Y = y;
Z = z;
W = w;
}
/// <summary>
/// Adds each component of the <see cref="Vector4"/>
/// with the components of the given <see cref="Vector4"/>.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>The added vector.</returns>
public static Vector4 operator +(Vector4 left, Vector4 right)
{
left.X += right.X;
left.Y += right.Y;
left.Z += right.Z;
left.W += right.W;
return left;
}
/// <summary>
/// Subtracts each component of the <see cref="Vector4"/>
/// by the components of the given <see cref="Vector4"/>.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>The subtracted vector.</returns>
public static Vector4 operator -(Vector4 left, Vector4 right)
{
left.X -= right.X;
left.Y -= right.Y;
left.Z -= right.Z;
left.W -= right.W;
return left;
}
/// <summary>
/// Returns the negative value of the <see cref="Vector4"/>.
/// This is the same as writing <c>new Vector4(-v.X, -v.Y, -v.Z, -v.W)</c>.
/// This operation flips the direction of the vector while
/// keeping the same magnitude.
/// With floats, the number zero can be either positive or negative.
/// </summary>
/// <param name="vec">The vector to negate/flip.</param>
/// <returns>The negated/flipped vector.</returns>
public static Vector4 operator -(Vector4 vec)
{
vec.X = -vec.X;
vec.Y = -vec.Y;
vec.Z = -vec.Z;
vec.W = -vec.W;
return vec;
}
/// <summary>
/// Multiplies each component of the <see cref="Vector4"/>
/// by the given <see cref="real_t"/>.
/// </summary>
/// <param name="vec">The vector to multiply.</param>
/// <param name="scale">The scale to multiply by.</param>
/// <returns>The multiplied vector.</returns>
public static Vector4 operator *(Vector4 vec, real_t scale)
{
vec.X *= scale;
vec.Y *= scale;
vec.Z *= scale;
vec.W *= scale;
return vec;
}
/// <summary>
/// Multiplies each component of the <see cref="Vector4"/>
/// by the given <see cref="real_t"/>.
/// </summary>
/// <param name="scale">The scale to multiply by.</param>
/// <param name="vec">The vector to multiply.</param>
/// <returns>The multiplied vector.</returns>
public static Vector4 operator *(real_t scale, Vector4 vec)
{
vec.X *= scale;
vec.Y *= scale;
vec.Z *= scale;
vec.W *= scale;
return vec;
}
/// <summary>
/// Multiplies each component of the <see cref="Vector4"/>
/// by the components of the given <see cref="Vector4"/>.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>The multiplied vector.</returns>
public static Vector4 operator *(Vector4 left, Vector4 right)
{
left.X *= right.X;
left.Y *= right.Y;
left.Z *= right.Z;
left.W *= right.W;
return left;
}
/// <summary>
/// Divides each component of the <see cref="Vector4"/>
/// by the given <see cref="real_t"/>.
/// </summary>
/// <param name="vec">The dividend vector.</param>
/// <param name="divisor">The divisor value.</param>
/// <returns>The divided vector.</returns>
public static Vector4 operator /(Vector4 vec, real_t divisor)
{
vec.X /= divisor;
vec.Y /= divisor;
vec.Z /= divisor;
vec.W /= divisor;
return vec;
}
/// <summary>
/// Divides each component of the <see cref="Vector4"/>
/// by the components of the given <see cref="Vector4"/>.
/// </summary>
/// <param name="vec">The dividend vector.</param>
/// <param name="divisorv">The divisor vector.</param>
/// <returns>The divided vector.</returns>
public static Vector4 operator /(Vector4 vec, Vector4 divisorv)
{
vec.X /= divisorv.X;
vec.Y /= divisorv.Y;
vec.Z /= divisorv.Z;
vec.W /= divisorv.W;
return vec;
}
/// <summary>
/// Gets the remainder of each component of the <see cref="Vector4"/>
/// with the components of the given <see cref="real_t"/>.
/// This operation uses truncated division, which is often not desired
/// as it does not work well with negative numbers.
/// Consider using <see cref="PosMod(real_t)"/> instead
/// if you want to handle negative numbers.
/// </summary>
/// <example>
/// <code>
/// GD.Print(new Vector4(10, -20, 30, 40) % 7); // Prints "(3, -6, 2, 5)"
/// </code>
/// </example>
/// <param name="vec">The dividend vector.</param>
/// <param name="divisor">The divisor value.</param>
/// <returns>The remainder vector.</returns>
public static Vector4 operator %(Vector4 vec, real_t divisor)
{
vec.X %= divisor;
vec.Y %= divisor;
vec.Z %= divisor;
vec.W %= divisor;
return vec;
}
/// <summary>
/// Gets the remainder of each component of the <see cref="Vector4"/>
/// with the components of the given <see cref="Vector4"/>.
/// This operation uses truncated division, which is often not desired
/// as it does not work well with negative numbers.
/// Consider using <see cref="PosMod(Vector4)"/> instead
/// if you want to handle negative numbers.
/// </summary>
/// <example>
/// <code>
/// GD.Print(new Vector4(10, -20, 30, 10) % new Vector4(7, 8, 9, 10)); // Prints "(3, -4, 3, 0)"
/// </code>
/// </example>
/// <param name="vec">The dividend vector.</param>
/// <param name="divisorv">The divisor vector.</param>
/// <returns>The remainder vector.</returns>
public static Vector4 operator %(Vector4 vec, Vector4 divisorv)
{
vec.X %= divisorv.X;
vec.Y %= divisorv.Y;
vec.Z %= divisorv.Z;
vec.W %= divisorv.W;
return vec;
}
/// <summary>
/// Returns <see langword="true"/> if the vectors are exactly equal.
/// Note: Due to floating-point precision errors, consider using
/// <see cref="IsEqualApprox"/> instead, which is more reliable.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>Whether or not the vectors are exactly equal.</returns>
public static bool operator ==(Vector4 left, Vector4 right)
{
return left.Equals(right);
}
/// <summary>
/// Returns <see langword="true"/> if the vectors are not equal.
/// Note: Due to floating-point precision errors, consider using
/// <see cref="IsEqualApprox"/> instead, which is more reliable.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>Whether or not the vectors are not equal.</returns>
public static bool operator !=(Vector4 left, Vector4 right)
{
return !left.Equals(right);
}
/// <summary>
/// Compares two <see cref="Vector4"/> vectors by first checking if
/// the X value of the <paramref name="left"/> vector is less than
/// the X value of the <paramref name="right"/> vector.
/// If the X values are exactly equal, then it repeats this check
/// with the Y, Z and finally W values of the two vectors.
/// This operator is useful for sorting vectors.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>Whether or not the left is less than the right.</returns>
public static bool operator <(Vector4 left, Vector4 right)
{
if (left.X == right.X)
{
if (left.Y == right.Y)
{
if (left.Z == right.Z)
{
return left.W < right.W;
}
return left.Z < right.Z;
}
return left.Y < right.Y;
}
return left.X < right.X;
}
/// <summary>
/// Compares two <see cref="Vector4"/> vectors by first checking if
/// the X value of the <paramref name="left"/> vector is greater than
/// the X value of the <paramref name="right"/> vector.
/// If the X values are exactly equal, then it repeats this check
/// with the Y, Z and finally W values of the two vectors.
/// This operator is useful for sorting vectors.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>Whether or not the left is greater than the right.</returns>
public static bool operator >(Vector4 left, Vector4 right)
{
if (left.X == right.X)
{
if (left.Y == right.Y)
{
if (left.Z == right.Z)
{
return left.W > right.W;
}
return left.Z > right.Z;
}
return left.Y > right.Y;
}
return left.X > right.X;
}
/// <summary>
/// Compares two <see cref="Vector4"/> vectors by first checking if
/// the X value of the <paramref name="left"/> vector is less than
/// or equal to the X value of the <paramref name="right"/> vector.
/// If the X values are exactly equal, then it repeats this check
/// with the Y, Z and finally W values of the two vectors.
/// This operator is useful for sorting vectors.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>Whether or not the left is less than or equal to the right.</returns>
public static bool operator <=(Vector4 left, Vector4 right)
{
if (left.X == right.X)
{
if (left.Y == right.Y)
{
if (left.Z == right.Z)
{
return left.W <= right.W;
}
return left.Z < right.Z;
}
return left.Y < right.Y;
}
return left.X < right.X;
}
/// <summary>
/// Compares two <see cref="Vector4"/> vectors by first checking if
/// the X value of the <paramref name="left"/> vector is greater than
/// or equal to the X value of the <paramref name="right"/> vector.
/// If the X values are exactly equal, then it repeats this check
/// with the Y, Z and finally W values of the two vectors.
/// This operator is useful for sorting vectors.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <returns>Whether or not the left is greater than or equal to the right.</returns>
public static bool operator >=(Vector4 left, Vector4 right)
{
if (left.X == right.X)
{
if (left.Y == right.Y)
{
if (left.Z == right.Z)
{
return left.W >= right.W;
}
return left.Z > right.Z;
}
return left.Y > right.Y;
}
return left.X > right.X;
}
/// <summary>
/// Returns <see langword="true"/> if the vector is exactly equal
/// to the given object (<paramref name="obj"/>).
/// Note: Due to floating-point precision errors, consider using
/// <see cref="IsEqualApprox"/> instead, which is more reliable.
/// </summary>
/// <param name="obj">The object to compare with.</param>
/// <returns>Whether or not the vector and the object are equal.</returns>
public override readonly bool Equals([NotNullWhen(true)] object? obj)
{
return obj is Vector4 other && Equals(other);
}
/// <summary>
/// Returns <see langword="true"/> if the vectors are exactly equal.
/// Note: Due to floating-point precision errors, consider using
/// <see cref="IsEqualApprox"/> instead, which is more reliable.
/// </summary>
/// <param name="other">The other vector.</param>
/// <returns>Whether or not the vectors are exactly equal.</returns>
public readonly bool Equals(Vector4 other)
{
return X == other.X && Y == other.Y && Z == other.Z && W == other.W;
}
/// <summary>
/// Returns <see langword="true"/> if this vector and <paramref name="other"/> are approximately equal,
/// by running <see cref="Mathf.IsEqualApprox(real_t, real_t)"/> on each component.
/// </summary>
/// <param name="other">The other vector to compare.</param>
/// <returns>Whether or not the vectors are approximately equal.</returns>
public readonly bool IsEqualApprox(Vector4 other)
{
return Mathf.IsEqualApprox(X, other.X) && Mathf.IsEqualApprox(Y, other.Y) && Mathf.IsEqualApprox(Z, other.Z) && Mathf.IsEqualApprox(W, other.W);
}
/// <summary>
/// Returns <see langword="true"/> if this vector's values are approximately zero,
/// by running <see cref="Mathf.IsZeroApprox(real_t)"/> on each component.
/// This method is faster than using <see cref="IsEqualApprox"/> with one value
/// as a zero vector.
/// </summary>
/// <returns>Whether or not the vector is approximately zero.</returns>
public readonly bool IsZeroApprox()
{
return Mathf.IsZeroApprox(X) && Mathf.IsZeroApprox(Y) && Mathf.IsZeroApprox(Z) && Mathf.IsZeroApprox(W);
}
/// <summary>
/// Serves as the hash function for <see cref="Vector4"/>.
/// </summary>
/// <returns>A hash code for this vector.</returns>
public override readonly int GetHashCode()
{
return HashCode.Combine(X, Y, Z, W);
}
/// <summary>
/// Converts this <see cref="Vector4"/> to a string.
/// </summary>
/// <returns>A string representation of this vector.</returns>
public override readonly string ToString() => ToString(null);
/// <summary>
/// Converts this <see cref="Vector4"/> to a string with the given <paramref name="format"/>.
/// </summary>
/// <returns>A string representation of this vector.</returns>
public readonly string ToString(string? format)
{
return $"({X.ToString(format, CultureInfo.InvariantCulture)}, {Y.ToString(format, CultureInfo.InvariantCulture)}, {Z.ToString(format, CultureInfo.InvariantCulture)}, {W.ToString(format, CultureInfo.InvariantCulture)})";
}
}
}