using System;
using System.Runtime.CompilerServices;
namespace Godot
{
/// <summary>
/// Provides constants and static methods for common mathematical functions.
/// </summary>
public static partial class Mathf
{
// Define constants with Decimal precision and cast down to double or float.
/// <summary>
/// The circle constant, the circumference of the unit circle in radians.
/// </summary>
// 6.2831855f and 6.28318530717959
public const real_t Tau = (real_t)6.2831853071795864769252867666M;
/// <summary>
/// Constant that represents how many times the diameter of a circle
/// fits around its perimeter. This is equivalent to <c>Mathf.Tau / 2</c>.
/// </summary>
// 3.1415927f and 3.14159265358979
public const real_t Pi = (real_t)3.1415926535897932384626433833M;
/// <summary>
/// Positive infinity. For negative infinity, use <c>-Mathf.Inf</c>.
/// </summary>
public const real_t Inf = real_t.PositiveInfinity;
/// <summary>
/// "Not a Number", an invalid value. <c>NaN</c> has special properties, including
/// that it is not equal to itself. It is output by some invalid operations,
/// such as dividing zero by zero.
/// </summary>
public const real_t NaN = real_t.NaN;
// 0.0174532924f and 0.0174532925199433
private const float DegToRadConstF = (float)0.0174532925199432957692369077M;
private const double DegToRadConstD = (double)0.0174532925199432957692369077M;
// 57.29578f and 57.2957795130823
private const float RadToDegConstF = (float)57.295779513082320876798154814M;
private const double RadToDegConstD = (double)57.295779513082320876798154814M;
/// <summary>
/// Returns the absolute value of <paramref name="s"/> (i.e. positive value).
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>The absolute value of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Abs(int s)
{
return Math.Abs(s);
}
/// <summary>
/// Returns the absolute value of <paramref name="s"/> (i.e. positive value).
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>The absolute value of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Abs(float s)
{
return Math.Abs(s);
}
/// <summary>
/// Returns the absolute value of <paramref name="s"/> (i.e. positive value).
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>The absolute value of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Abs(double s)
{
return Math.Abs(s);
}
/// <summary>
/// Returns the arc cosine of <paramref name="s"/> in radians.
/// Use to get the angle of cosine <paramref name="s"/>.
/// </summary>
/// <param name="s">The input cosine value. Must be on the range of -1.0 to 1.0.</param>
/// <returns>
/// An angle that would result in the given cosine value. On the range <c>0</c> to <c>Tau/2</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Acos(float s)
{
return MathF.Acos(s);
}
/// <summary>
/// Returns the arc cosine of <paramref name="s"/> in radians.
/// Use to get the angle of cosine <paramref name="s"/>.
/// </summary>
/// <param name="s">The input cosine value. Must be on the range of -1.0 to 1.0.</param>
/// <returns>
/// An angle that would result in the given cosine value. On the range <c>0</c> to <c>Tau/2</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Acos(double s)
{
return Math.Acos(s);
}
/// <summary>
/// Returns the hyperbolic arc (also called inverse) cosine of <paramref name="s"/> in radians.
/// Use it to get the angle from an angle's cosine in hyperbolic space if
/// <paramref name="s"/> is larger or equal to 1.
/// </summary>
/// <param name="s">The input hyperbolic cosine value.</param>
/// <returns>
/// An angle that would result in the given hyperbolic cosine value.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Acosh(float s)
{
return MathF.Acosh(s);
}
/// <summary>
/// Returns the hyperbolic arc (also called inverse) cosine of <paramref name="s"/> in radians.
/// Use it to get the angle from an angle's cosine in hyperbolic space if
/// <paramref name="s"/> is larger or equal to 1.
/// </summary>
/// <param name="s">The input hyperbolic cosine value.</param>
/// <returns>
/// An angle that would result in the given hyperbolic cosine value.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Acosh(double s)
{
return Math.Acosh(s);
}
/// <summary>
/// Returns the difference between the two angles,
/// in range of -<see cref="Pi"/>, <see cref="Pi"/>.
/// When <paramref name="from"/> and <paramref name="to"/> are opposite,
/// returns -<see cref="Pi"/> if <paramref name="from"/> is smaller than <paramref name="to"/>,
/// or <see cref="Pi"/> otherwise.
/// </summary>
/// <param name="from">The start angle.</param>
/// <param name="to">The destination angle.</param>
/// <returns>The difference between the two angles.</returns>
public static float AngleDifference(float from, float to)
{
float difference = (to - from) % MathF.Tau;
return ((2.0f * difference) % MathF.Tau) - difference;
}
/// <summary>
/// Returns the difference between the two angles,
/// in range of -<see cref="Pi"/>, <see cref="Pi"/>.
/// When <paramref name="from"/> and <paramref name="to"/> are opposite,
/// returns -<see cref="Pi"/> if <paramref name="from"/> is smaller than <paramref name="to"/>,
/// or <see cref="Pi"/> otherwise.
/// </summary>
/// <param name="from">The start angle.</param>
/// <param name="to">The destination angle.</param>
/// <returns>The difference between the two angles.</returns>
public static double AngleDifference(double from, double to)
{
double difference = (to - from) % Math.Tau;
return ((2.0 * difference) % Math.Tau) - difference;
}
/// <summary>
/// Returns the arc sine of <paramref name="s"/> in radians.
/// Use to get the angle of sine <paramref name="s"/>.
/// </summary>
/// <param name="s">The input sine value. Must be on the range of -1.0 to 1.0.</param>
/// <returns>
/// An angle that would result in the given sine value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Asin(float s)
{
return MathF.Asin(s);
}
/// <summary>
/// Returns the arc sine of <paramref name="s"/> in radians.
/// Use to get the angle of sine <paramref name="s"/>.
/// </summary>
/// <param name="s">The input sine value. Must be on the range of -1.0 to 1.0.</param>
/// <returns>
/// An angle that would result in the given sine value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Asin(double s)
{
return Math.Asin(s);
}
/// <summary>
/// Returns the hyperbolic arc (also called inverse) sine of <paramref name="s"/> in radians.
/// Use it to get the angle from an angle's sine in hyperbolic space if
/// <paramref name="s"/> is larger or equal to 1.
/// </summary>
/// <param name="s">The input hyperbolic sine value.</param>
/// <returns>
/// An angle that would result in the given hyperbolic sine value.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Asinh(float s)
{
return MathF.Asinh(s);
}
/// <summary>
/// Returns the hyperbolic arc (also called inverse) sine of <paramref name="s"/> in radians.
/// Use it to get the angle from an angle's sine in hyperbolic space if
/// <paramref name="s"/> is larger or equal to 1.
/// </summary>
/// <param name="s">The input hyperbolic sine value.</param>
/// <returns>
/// An angle that would result in the given hyperbolic sine value.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Asinh(double s)
{
return Math.Asinh(s);
}
/// <summary>
/// Returns the arc tangent of <paramref name="s"/> in radians.
/// Use to get the angle of tangent <paramref name="s"/>.
///
/// The method cannot know in which quadrant the angle should fall.
/// See <see cref="Atan2(float, float)"/> if you have both <c>y</c> and <c>x</c>.
/// </summary>
/// <param name="s">The input tangent value.</param>
/// <returns>
/// An angle that would result in the given tangent value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Atan(float s)
{
return MathF.Atan(s);
}
/// <summary>
/// Returns the arc tangent of <paramref name="s"/> in radians.
/// Use to get the angle of tangent <paramref name="s"/>.
///
/// The method cannot know in which quadrant the angle should fall.
/// See <see cref="Atan2(double, double)"/> if you have both <c>y</c> and <c>x</c>.
/// </summary>
/// <param name="s">The input tangent value.</param>
/// <returns>
/// An angle that would result in the given tangent value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Atan(double s)
{
return Math.Atan(s);
}
/// <summary>
/// Returns the arc tangent of <paramref name="y"/> and <paramref name="x"/> in radians.
/// Use to get the angle of the tangent of <c>y/x</c>. To compute the value, the method takes into
/// account the sign of both arguments in order to determine the quadrant.
///
/// Important note: The Y coordinate comes first, by convention.
/// </summary>
/// <param name="y">The Y coordinate of the point to find the angle to.</param>
/// <param name="x">The X coordinate of the point to find the angle to.</param>
/// <returns>
/// An angle that would result in the given tangent value. On the range <c>-Tau/2</c> to <c>Tau/2</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Atan2(float y, float x)
{
return MathF.Atan2(y, x);
}
/// <summary>
/// Returns the arc tangent of <paramref name="y"/> and <paramref name="x"/> in radians.
/// Use to get the angle of the tangent of <c>y/x</c>. To compute the value, the method takes into
/// account the sign of both arguments in order to determine the quadrant.
///
/// Important note: The Y coordinate comes first, by convention.
/// </summary>
/// <param name="y">The Y coordinate of the point to find the angle to.</param>
/// <param name="x">The X coordinate of the point to find the angle to.</param>
/// <returns>
/// An angle that would result in the given tangent value. On the range <c>-Tau/2</c> to <c>Tau/2</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Atan2(double y, double x)
{
return Math.Atan2(y, x);
}
/// <summary>
/// Returns the hyperbolic arc (also called inverse) tangent of <paramref name="s"/> in radians.
/// Use it to get the angle from an angle's tangent in hyperbolic space if
/// <paramref name="s"/> is between -1 and 1 (non-inclusive).
/// </summary>
/// <param name="s">The input hyperbolic tangent value.</param>
/// <returns>
/// An angle that would result in the given hyperbolic tangent value.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Atanh(float s)
{
return MathF.Atanh(s);
}
/// <summary>
/// Returns the hyperbolic arc (also called inverse) tangent of <paramref name="s"/> in radians.
/// Use it to get the angle from an angle's tangent in hyperbolic space if
/// <paramref name="s"/> is between -1 and 1 (non-inclusive).
/// </summary>
/// <param name="s">The input hyperbolic tangent value.</param>
/// <returns>
/// An angle that would result in the given hyperbolic tangent value.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Atanh(double s)
{
return Math.Atanh(s);
}
/// <summary>
/// Rounds <paramref name="s"/> upward (towards positive infinity).
/// </summary>
/// <param name="s">The number to ceil.</param>
/// <returns>The smallest whole number that is not less than <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Ceil(float s)
{
return MathF.Ceiling(s);
}
/// <summary>
/// Rounds <paramref name="s"/> upward (towards positive infinity).
/// </summary>
/// <param name="s">The number to ceil.</param>
/// <returns>The smallest whole number that is not less than <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Ceil(double s)
{
return Math.Ceiling(s);
}
/// <summary>
/// Clamps a <paramref name="value"/> so that it is not less than <paramref name="min"/>
/// and not more than <paramref name="max"/>.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum allowed value.</param>
/// <param name="max">The maximum allowed value.</param>
/// <returns>The clamped value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Clamp(int value, int min, int max)
{
return Math.Clamp(value, min, max);
}
/// <summary>
/// Clamps a <paramref name="value"/> so that it is not less than <paramref name="min"/>
/// and not more than <paramref name="max"/>.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum allowed value.</param>
/// <param name="max">The maximum allowed value.</param>
/// <returns>The clamped value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Clamp(float value, float min, float max)
{
return Math.Clamp(value, min, max);
}
/// <summary>
/// Clamps a <paramref name="value"/> so that it is not less than <paramref name="min"/>
/// and not more than <paramref name="max"/>.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum allowed value.</param>
/// <param name="max">The maximum allowed value.</param>
/// <returns>The clamped value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Clamp(double value, double min, double max)
{
return Math.Clamp(value, min, max);
}
/// <summary>
/// Returns the cosine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The cosine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Cos(float s)
{
return MathF.Cos(s);
}
/// <summary>
/// Returns the cosine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The cosine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Cos(double s)
{
return Math.Cos(s);
}
/// <summary>
/// Returns the hyperbolic cosine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic cosine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Cosh(float s)
{
return MathF.Cosh(s);
}
/// <summary>
/// Returns the hyperbolic cosine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic cosine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Cosh(double s)
{
return Math.Cosh(s);
}
/// <summary>
/// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
/// with pre and post values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static float CubicInterpolate(float from, float to, float pre, float post, float weight)
{
return 0.5f *
((from * 2.0f) +
(-pre + to) * weight +
(2.0f * pre - 5.0f * from + 4.0f * to - post) * (weight * weight) +
(-pre + 3.0f * from - 3.0f * to + post) * (weight * weight * weight));
}
/// <summary>
/// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
/// with pre and post values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static double CubicInterpolate(double from, double to, double pre, double post, double weight)
{
return 0.5 *
((from * 2.0) +
(-pre + to) * weight +
(2.0 * pre - 5.0 * from + 4.0 * to - post) * (weight * weight) +
(-pre + 3.0 * from - 3.0 * to + post) * (weight * weight * weight));
}
/// <summary>
/// Cubic interpolates between two rotation values with shortest path
/// by the factor defined in <paramref name="weight"/> with pre and post values.
/// See also <see cref="LerpAngle(float, float, float)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static float CubicInterpolateAngle(float from, float to, float pre, float post, float weight)
{
float fromRot = from % MathF.Tau;
float preDiff = (pre - fromRot) % MathF.Tau;
float preRot = fromRot + (2.0f * preDiff) % MathF.Tau - preDiff;
float toDiff = (to - fromRot) % MathF.Tau;
float toRot = fromRot + (2.0f * toDiff) % MathF.Tau - toDiff;
float postDiff = (post - toRot) % MathF.Tau;
float postRot = toRot + (2.0f * postDiff) % MathF.Tau - postDiff;
return CubicInterpolate(fromRot, toRot, preRot, postRot, weight);
}
/// <summary>
/// Cubic interpolates between two rotation values with shortest path
/// by the factor defined in <paramref name="weight"/> with pre and post values.
/// See also <see cref="LerpAngle(double, double, double)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static double CubicInterpolateAngle(double from, double to, double pre, double post, double weight)
{
double fromRot = from % Math.Tau;
double preDiff = (pre - fromRot) % Math.Tau;
double preRot = fromRot + (2.0 * preDiff) % Math.Tau - preDiff;
double toDiff = (to - fromRot) % Math.Tau;
double toRot = fromRot + (2.0 * toDiff) % Math.Tau - toDiff;
double postDiff = (post - toRot) % Math.Tau;
double postRot = toRot + (2.0 * postDiff) % Math.Tau - postDiff;
return CubicInterpolate(fromRot, toRot, preRot, postRot, weight);
}
/// <summary>
/// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
/// with pre and post values.
/// It can perform smoother interpolation than
/// <see cref="CubicInterpolate(float, float, float, float, float)"/>
/// by the time values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <param name="toT"></param>
/// <param name="preT"></param>
/// <param name="postT"></param>
/// <returns>The resulting value of the interpolation.</returns>
public static float CubicInterpolateInTime(float from, float to, float pre, float post, float weight, float toT, float preT, float postT)
{
/* Barry-Goldman method */
float t = Lerp(0.0f, toT, weight);
float a1 = Lerp(pre, from, preT == 0 ? 0.0f : (t - preT) / -preT);
float a2 = Lerp(from, to, toT == 0 ? 0.5f : t / toT);
float a3 = Lerp(to, post, postT - toT == 0 ? 1.0f : (t - toT) / (postT - toT));
float b1 = Lerp(a1, a2, toT - preT == 0 ? 0.0f : (t - preT) / (toT - preT));
float b2 = Lerp(a2, a3, postT == 0 ? 1.0f : t / postT);
return Lerp(b1, b2, toT == 0 ? 0.5f : t / toT);
}
/// <summary>
/// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
/// with pre and post values.
/// It can perform smoother interpolation than
/// <see cref="CubicInterpolate(double, double, double, double, double)"/>
/// by the time values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <param name="toT"></param>
/// <param name="preT"></param>
/// <param name="postT"></param>
/// <returns>The resulting value of the interpolation.</returns>
public static double CubicInterpolateInTime(double from, double to, double pre, double post, double weight, double toT, double preT, double postT)
{
/* Barry-Goldman method */
double t = Lerp(0.0, toT, weight);
double a1 = Lerp(pre, from, preT == 0 ? 0.0 : (t - preT) / -preT);
double a2 = Lerp(from, to, toT == 0 ? 0.5 : t / toT);
double a3 = Lerp(to, post, postT - toT == 0 ? 1.0 : (t - toT) / (postT - toT));
double b1 = Lerp(a1, a2, toT - preT == 0 ? 0.0 : (t - preT) / (toT - preT));
double b2 = Lerp(a2, a3, postT == 0 ? 1.0 : t / postT);
return Lerp(b1, b2, toT == 0 ? 0.5 : t / toT);
}
/// <summary>
/// Cubic interpolates between two rotation values with shortest path
/// by the factor defined in <paramref name="weight"/> with pre and post values.
/// See also <see cref="LerpAngle(float, float, float)"/>.
/// It can perform smoother interpolation than
/// <see cref="CubicInterpolateAngle(float, float, float, float, float)"/>
/// by the time values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <param name="toT"></param>
/// <param name="preT"></param>
/// <param name="postT"></param>
/// <returns>The resulting value of the interpolation.</returns>
public static float CubicInterpolateAngleInTime(float from, float to, float pre, float post, float weight, float toT, float preT, float postT)
{
float fromRot = from % MathF.Tau;
float preDiff = (pre - fromRot) % MathF.Tau;
float preRot = fromRot + (2.0f * preDiff) % MathF.Tau - preDiff;
float toDiff = (to - fromRot) % MathF.Tau;
float toRot = fromRot + (2.0f * toDiff) % MathF.Tau - toDiff;
float postDiff = (post - toRot) % MathF.Tau;
float postRot = toRot + (2.0f * postDiff) % MathF.Tau - postDiff;
return CubicInterpolateInTime(fromRot, toRot, preRot, postRot, weight, toT, preT, postT);
}
/// <summary>
/// Cubic interpolates between two rotation values with shortest path
/// by the factor defined in <paramref name="weight"/> with pre and post values.
/// See also <see cref="LerpAngle(double, double, double)"/>.
/// It can perform smoother interpolation than
/// <see cref="CubicInterpolateAngle(double, double, double, double, double)"/>
/// by the time values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="pre">The value which before "from" value for interpolation.</param>
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <param name="toT"></param>
/// <param name="preT"></param>
/// <param name="postT"></param>
/// <returns>The resulting value of the interpolation.</returns>
public static double CubicInterpolateAngleInTime(double from, double to, double pre, double post, double weight, double toT, double preT, double postT)
{
double fromRot = from % Math.Tau;
double preDiff = (pre - fromRot) % Math.Tau;
double preRot = fromRot + (2.0 * preDiff) % Math.Tau - preDiff;
double toDiff = (to - fromRot) % Math.Tau;
double toRot = fromRot + (2.0 * toDiff) % Math.Tau - toDiff;
double postDiff = (post - toRot) % Math.Tau;
double postRot = toRot + (2.0 * postDiff) % Math.Tau - postDiff;
return CubicInterpolateInTime(fromRot, toRot, preRot, postRot, weight, toT, preT, postT);
}
/// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="start">The start value for the interpolation.</param>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static float BezierInterpolate(float start, float control1, float control2, float end, float t)
{
// Formula from Wikipedia article on Bezier curves
float omt = 1.0f - t;
float omt2 = omt * omt;
float omt3 = omt2 * omt;
float t2 = t * t;
float t3 = t2 * t;
return start * omt3 + control1 * omt2 * t * 3.0f + control2 * omt * t2 * 3.0f + end * t3;
}
/// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="start">The start value for the interpolation.</param>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static double BezierInterpolate(double start, double control1, double control2, double end, double t)
{
// Formula from Wikipedia article on Bezier curves
double omt = 1.0 - t;
double omt2 = omt * omt;
double omt3 = omt2 * omt;
double t2 = t * t;
double t3 = t2 * t;
return start * omt3 + control1 * omt2 * t * 3.0 + control2 * omt * t2 * 3.0 + end * t3;
}
/// <summary>
/// Returns the derivative at the given <paramref name="t"/> on a one dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="start">The start value for the interpolation.</param>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static float BezierDerivative(float start, float control1, float control2, float end, float t)
{
// Formula from Wikipedia article on Bezier curves
float omt = 1.0f - t;
float omt2 = omt * omt;
float t2 = t * t;
float d = (control1 - start) * 3.0f * omt2 + (control2 - control1) * 6.0f * omt * t + (end - control2) * 3.0f * t2;
return d;
}
/// <summary>
/// Returns the derivative at the given <paramref name="t"/> on a one dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="start">The start value for the interpolation.</param>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static double BezierDerivative(double start, double control1, double control2, double end, double t)
{
// Formula from Wikipedia article on Bezier curves
double omt = 1.0 - t;
double omt2 = omt * omt;
double t2 = t * t;
double d = (control1 - start) * 3.0 * omt2 + (control2 - control1) * 6.0 * omt * t + (end - control2) * 3.0 * t2;
return d;
}
/// <summary>
/// Converts from decibels to linear energy (audio).
/// </summary>
/// <seealso cref="LinearToDb(float)"/>
/// <param name="db">Decibels to convert.</param>
/// <returns>Audio volume as linear energy.</returns>
public static float DbToLinear(float db)
{
return MathF.Exp(db * 0.11512925464970228420089957273422f);
}
/// <summary>
/// Converts from decibels to linear energy (audio).
/// </summary>
/// <seealso cref="LinearToDb(double)"/>
/// <param name="db">Decibels to convert.</param>
/// <returns>Audio volume as linear energy.</returns>
public static double DbToLinear(double db)
{
return Math.Exp(db * 0.11512925464970228420089957273422);
}
/// <summary>
/// Converts an angle expressed in degrees to radians.
/// </summary>
/// <param name="deg">An angle expressed in degrees.</param>
/// <returns>The same angle expressed in radians.</returns>
public static float DegToRad(float deg)
{
return deg * DegToRadConstF;
}
/// <summary>
/// Converts an angle expressed in degrees to radians.
/// </summary>
/// <param name="deg">An angle expressed in degrees.</param>
/// <returns>The same angle expressed in radians.</returns>
public static double DegToRad(double deg)
{
return deg * DegToRadConstD;
}
/// <summary>
/// Easing function, based on exponent. The <paramref name="curve"/> values are:
/// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
/// Negative values are in-out/out-in.
/// </summary>
/// <param name="s">The value to ease.</param>
/// <param name="curve">
/// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
/// </param>
/// <returns>The eased value.</returns>
public static float Ease(float s, float curve)
{
if (s < 0.0f)
{
s = 0.0f;
}
else if (s > 1.0f)
{
s = 1.0f;
}
if (curve > 0.0f)
{
if (curve < 1.0f)
{
return 1.0f - MathF.Pow(1.0f - s, 1.0f / curve);
}
return MathF.Pow(s, curve);
}
if (curve < 0.0f)
{
if (s < 0.5f)
{
return MathF.Pow(s * 2.0f, -curve) * 0.5f;
}
return ((1.0f - MathF.Pow(1.0f - ((s - 0.5f) * 2.0f), -curve)) * 0.5f) + 0.5f;
}
return 0.0f;
}
/// <summary>
/// Easing function, based on exponent. The <paramref name="curve"/> values are:
/// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
/// Negative values are in-out/out-in.
/// </summary>
/// <param name="s">The value to ease.</param>
/// <param name="curve">
/// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
/// </param>
/// <returns>The eased value.</returns>
public static double Ease(double s, double curve)
{
if (s < 0.0)
{
s = 0.0;
}
else if (s > 1.0)
{
s = 1.0;
}
if (curve > 0)
{
if (curve < 1.0)
{
return 1.0 - Math.Pow(1.0 - s, 1.0 / curve);
}
return Math.Pow(s, curve);
}
if (curve < 0.0)
{
if (s < 0.5)
{
return Math.Pow(s * 2.0, -curve) * 0.5;
}
return ((1.0 - Math.Pow(1.0 - ((s - 0.5) * 2.0), -curve)) * 0.5) + 0.5;
}
return 0.0;
}
/// <summary>
/// The natural exponential function. It raises the mathematical
/// constant <c>e</c> to the power of <paramref name="s"/> and returns it.
/// </summary>
/// <param name="s">The exponent to raise <c>e</c> to.</param>
/// <returns><c>e</c> raised to the power of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Exp(float s)
{
return MathF.Exp(s);
}
/// <summary>
/// The natural exponential function. It raises the mathematical
/// constant <c>e</c> to the power of <paramref name="s"/> and returns it.
/// </summary>
/// <param name="s">The exponent to raise <c>e</c> to.</param>
/// <returns><c>e</c> raised to the power of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Exp(double s)
{
return Math.Exp(s);
}
/// <summary>
/// Rounds <paramref name="s"/> downward (towards negative infinity).
/// </summary>
/// <param name="s">The number to floor.</param>
/// <returns>The largest whole number that is not more than <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Floor(float s)
{
return MathF.Floor(s);
}
/// <summary>
/// Rounds <paramref name="s"/> downward (towards negative infinity).
/// </summary>
/// <param name="s">The number to floor.</param>
/// <returns>The largest whole number that is not more than <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Floor(double s)
{
return Math.Floor(s);
}
/// <summary>
/// Returns a normalized value considering the given range.
/// This is the opposite of <see cref="Lerp(float, float, float)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">The interpolated value.</param>
/// <returns>
/// The resulting value of the inverse interpolation.
/// The returned value will be between 0.0 and 1.0 if <paramref name="weight"/> is
/// between <paramref name="from"/> and <paramref name="to"/> (inclusive).
/// </returns>
public static float InverseLerp(float from, float to, float weight)
{
return (weight - from) / (to - from);
}
/// <summary>
/// Returns a normalized value considering the given range.
/// This is the opposite of <see cref="Lerp(double, double, double)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">The interpolated value.</param>
/// <returns>
/// The resulting value of the inverse interpolation.
/// The returned value will be between 0.0 and 1.0 if <paramref name="weight"/> is
/// between <paramref name="from"/> and <paramref name="to"/> (inclusive).
/// </returns>
public static double InverseLerp(double from, double to, double weight)
{
return (weight - from) / (to - from);
}
/// <summary>
/// Returns <see langword="true"/> if <paramref name="a"/> and <paramref name="b"/> are approximately equal
/// to each other.
/// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>A <see langword="bool"/> for whether or not the two values are approximately equal.</returns>
public static bool IsEqualApprox(float a, float b)
{
// Check for exact equality first, required to handle "infinity" values.
if (a == b)
{
return true;
}
// Then check for approximate equality.
float tolerance = EpsilonF * Math.Abs(a);
if (tolerance < EpsilonF)
{
tolerance = EpsilonF;
}
return Math.Abs(a - b) < tolerance;
}
/// <summary>
/// Returns <see langword="true"/> if <paramref name="a"/> and <paramref name="b"/> are approximately equal
/// to each other.
/// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>A <see langword="bool"/> for whether or not the two values are approximately equal.</returns>
public static bool IsEqualApprox(double a, double b)
{
// Check for exact equality first, required to handle "infinity" values.
if (a == b)
{
return true;
}
// Then check for approximate equality.
double tolerance = EpsilonD * Math.Abs(a);
if (tolerance < EpsilonD)
{
tolerance = EpsilonD;
}
return Math.Abs(a - b) < tolerance;
}
/// <summary>
/// Returns whether <paramref name="s"/> is a finite value, i.e. it is not
/// <see cref="NaN"/>, positive infinite, or negative infinity.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is a finite value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsFinite(float s)
{
return float.IsFinite(s);
}
/// <summary>
/// Returns whether <paramref name="s"/> is a finite value, i.e. it is not
/// <see cref="NaN"/>, positive infinite, or negative infinity.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is a finite value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsFinite(double s)
{
return double.IsFinite(s);
}
/// <summary>
/// Returns whether <paramref name="s"/> is an infinity value (either positive infinity or negative infinity).
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is an infinity value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsInf(float s)
{
return float.IsInfinity(s);
}
/// <summary>
/// Returns whether <paramref name="s"/> is an infinity value (either positive infinity or negative infinity).
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is an infinity value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsInf(double s)
{
return double.IsInfinity(s);
}
/// <summary>
/// Returns whether <paramref name="s"/> is a <c>NaN</c> ("Not a Number" or invalid) value.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is a <c>NaN</c> value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsNaN(float s)
{
return float.IsNaN(s);
}
/// <summary>
/// Returns whether <paramref name="s"/> is a <c>NaN</c> ("Not a Number" or invalid) value.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is a <c>NaN</c> value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsNaN(double s)
{
return double.IsNaN(s);
}
/// <summary>
/// Returns <see langword="true"/> if <paramref name="s"/> is zero or almost zero.
/// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
///
/// This method is faster than using <see cref="IsEqualApprox(float, float)"/> with
/// one value as zero.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is nearly zero.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsZeroApprox(float s)
{
return Math.Abs(s) < EpsilonF;
}
/// <summary>
/// Returns <see langword="true"/> if <paramref name="s"/> is zero or almost zero.
/// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
///
/// This method is faster than using <see cref="IsEqualApprox(double, double)"/> with
/// one value as zero.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is nearly zero.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsZeroApprox(double s)
{
return Math.Abs(s) < EpsilonD;
}
/// <summary>
/// Linearly interpolates between two values by a normalized value.
/// This is the opposite <see cref="InverseLerp(float, float, float)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static float Lerp(float from, float to, float weight)
{
return from + ((to - from) * weight);
}
/// <summary>
/// Linearly interpolates between two values by a normalized value.
/// This is the opposite <see cref="InverseLerp(double, double, double)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static double Lerp(double from, double to, double weight)
{
return from + ((to - from) * weight);
}
/// <summary>
/// Linearly interpolates between two angles (in radians) by a normalized value.
///
/// Similar to <see cref="Lerp(float, float, float)"/>,
/// but interpolates correctly when the angles wrap around <see cref="Tau"/>.
/// </summary>
/// <param name="from">The start angle for interpolation.</param>
/// <param name="to">The destination angle for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting angle of the interpolation.</returns>
public static float LerpAngle(float from, float to, float weight)
{
return from + AngleDifference(from, to) * weight;
}
/// <summary>
/// Linearly interpolates between two angles (in radians) by a normalized value.
///
/// Similar to <see cref="Lerp(double, double, double)"/>,
/// but interpolates correctly when the angles wrap around <see cref="Tau"/>.
/// </summary>
/// <param name="from">The start angle for interpolation.</param>
/// <param name="to">The destination angle for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting angle of the interpolation.</returns>
public static double LerpAngle(double from, double to, double weight)
{
return from + AngleDifference(from, to) * weight;
}
/// <summary>
/// Converts from linear energy to decibels (audio).
/// This can be used to implement volume sliders that behave as expected (since volume isn't linear).
/// </summary>
/// <seealso cref="DbToLinear(float)"/>
/// <example>
/// <code>
/// // "slider" refers to a node that inherits Range such as HSlider or VSlider.
/// // Its range must be configured to go from 0 to 1.
/// // Change the bus name if you'd like to change the volume of a specific bus only.
/// AudioServer.SetBusVolumeDb(AudioServer.GetBusIndex("Master"), GD.LinearToDb(slider.value));
/// </code>
/// </example>
/// <param name="linear">The linear energy to convert.</param>
/// <returns>Audio as decibels.</returns>
public static float LinearToDb(float linear)
{
return MathF.Log(linear) * 8.6858896380650365530225783783321f;
}
/// <summary>
/// Converts from linear energy to decibels (audio).
/// This can be used to implement volume sliders that behave as expected (since volume isn't linear).
/// </summary>
/// <seealso cref="DbToLinear(double)"/>
/// <example>
/// <code>
/// // "slider" refers to a node that inherits Range such as HSlider or VSlider.
/// // Its range must be configured to go from 0 to 1.
/// // Change the bus name if you'd like to change the volume of a specific bus only.
/// AudioServer.SetBusVolumeDb(AudioServer.GetBusIndex("Master"), GD.LinearToDb(slider.value));
/// </code>
/// </example>
/// <param name="linear">The linear energy to convert.</param>
/// <returns>Audio as decibels.</returns>
public static double LinearToDb(double linear)
{
return Math.Log(linear) * 8.6858896380650365530225783783321;
}
/// <summary>
/// Natural logarithm. The amount of time needed to reach a certain level of continuous growth.
///
/// Note: This is not the same as the "log" function on most calculators, which uses a base 10 logarithm.
/// </summary>
/// <param name="s">The input value.</param>
/// <returns>The natural log of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Log(float s)
{
return MathF.Log(s);
}
/// <summary>
/// Natural logarithm. The amount of time needed to reach a certain level of continuous growth.
///
/// Note: This is not the same as the "log" function on most calculators, which uses a base 10 logarithm.
/// </summary>
/// <param name="s">The input value.</param>
/// <returns>The natural log of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Log(double s)
{
return Math.Log(s);
}
/// <summary>
/// Returns the maximum of two values.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is higher.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Max(int a, int b)
{
return Math.Max(a, b);
}
/// <summary>
/// Returns the maximum of two values.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is higher.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Max(float a, float b)
{
return Math.Max(a, b);
}
/// <summary>
/// Returns the maximum of two values.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is higher.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Max(double a, double b)
{
return Math.Max(a, b);
}
/// <summary>
/// Returns the minimum of two values.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is lower.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Min(int a, int b)
{
return Math.Min(a, b);
}
/// <summary>
/// Returns the minimum of two values.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is lower.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Min(float a, float b)
{
return Math.Min(a, b);
}
/// <summary>
/// Returns the minimum of two values.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is lower.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Min(double a, double b)
{
return Math.Min(a, b);
}
/// <summary>
/// Moves <paramref name="from"/> toward <paramref name="to"/> by the <paramref name="delta"/> value.
///
/// Use a negative <paramref name="delta"/> value to move away.
/// </summary>
/// <param name="from">The start value.</param>
/// <param name="to">The value to move towards.</param>
/// <param name="delta">The amount to move by.</param>
/// <returns>The value after moving.</returns>
public static float MoveToward(float from, float to, float delta)
{
if (Math.Abs(to - from) <= delta)
return to;
return from + (Math.Sign(to - from) * delta);
}
/// <summary>
/// Moves <paramref name="from"/> toward <paramref name="to"/> by the <paramref name="delta"/> value.
///
/// Use a negative <paramref name="delta"/> value to move away.
/// </summary>
/// <param name="from">The start value.</param>
/// <param name="to">The value to move towards.</param>
/// <param name="delta">The amount to move by.</param>
/// <returns>The value after moving.</returns>
public static double MoveToward(double from, double to, double delta)
{
if (Math.Abs(to - from) <= delta)
return to;
return from + (Math.Sign(to - from) * delta);
}
/// <summary>
/// Returns the nearest larger power of 2 for the integer <paramref name="value"/>.
/// </summary>
/// <param name="value">The input value.</param>
/// <returns>The nearest larger power of 2.</returns>
public static int NearestPo2(int value)
{
value--;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value++;
return value;
}
/// <summary>
/// Performs a canonical Modulus operation, where the output is on the range [0, <paramref name="b"/>).
/// </summary>
/// <param name="a">The dividend, the primary input.</param>
/// <param name="b">The divisor. The output is on the range [0, <paramref name="b"/>).</param>
/// <returns>The resulting output.</returns>
public static int PosMod(int a, int b)
{
int c = a % b;
if ((c < 0 && b > 0) || (c > 0 && b < 0))
{
c += b;
}
return c;
}
/// <summary>
/// Performs a canonical Modulus operation, where the output is on the range [0, <paramref name="b"/>).
/// </summary>
/// <param name="a">The dividend, the primary input.</param>
/// <param name="b">The divisor. The output is on the range [0, <paramref name="b"/>).</param>
/// <returns>The resulting output.</returns>
public static float PosMod(float a, float b)
{
float c = a % b;
if ((c < 0 && b > 0) || (c > 0 && b < 0))
{
c += b;
}
return c;
}
/// <summary>
/// Performs a canonical Modulus operation, where the output is on the range [0, <paramref name="b"/>).
/// </summary>
/// <param name="a">The dividend, the primary input.</param>
/// <param name="b">The divisor. The output is on the range [0, <paramref name="b"/>).</param>
/// <returns>The resulting output.</returns>
public static double PosMod(double a, double b)
{
double c = a % b;
if ((c < 0 && b > 0) || (c > 0 && b < 0))
{
c += b;
}
return c;
}
/// <summary>
/// Returns the result of <paramref name="x"/> raised to the power of <paramref name="y"/>.
/// </summary>
/// <param name="x">The base.</param>
/// <param name="y">The exponent.</param>
/// <returns><paramref name="x"/> raised to the power of <paramref name="y"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Pow(float x, float y)
{
return MathF.Pow(x, y);
}
/// <summary>
/// Returns the result of <paramref name="x"/> raised to the power of <paramref name="y"/>.
/// </summary>
/// <param name="x">The base.</param>
/// <param name="y">The exponent.</param>
/// <returns><paramref name="x"/> raised to the power of <paramref name="y"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Pow(double x, double y)
{
return Math.Pow(x, y);
}
/// <summary>
/// Converts an angle expressed in radians to degrees.
/// </summary>
/// <param name="rad">An angle expressed in radians.</param>
/// <returns>The same angle expressed in degrees.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float RadToDeg(float rad)
{
return rad * RadToDegConstF;
}
/// <summary>
/// Converts an angle expressed in radians to degrees.
/// </summary>
/// <param name="rad">An angle expressed in radians.</param>
/// <returns>The same angle expressed in degrees.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double RadToDeg(double rad)
{
return rad * RadToDegConstD;
}
/// <summary>
/// Maps a <paramref name="value"/> from [<paramref name="inFrom"/>, <paramref name="inTo"/>]
/// to [<paramref name="outFrom"/>, <paramref name="outTo"/>].
/// </summary>
/// <param name="value">The value to map.</param>
/// <param name="inFrom">The start value for the input interpolation.</param>
/// <param name="inTo">The destination value for the input interpolation.</param>
/// <param name="outFrom">The start value for the output interpolation.</param>
/// <param name="outTo">The destination value for the output interpolation.</param>
/// <returns>The resulting mapped value mapped.</returns>
public static float Remap(float value, float inFrom, float inTo, float outFrom, float outTo)
{
return Lerp(outFrom, outTo, InverseLerp(inFrom, inTo, value));
}
/// <summary>
/// Maps a <paramref name="value"/> from [<paramref name="inFrom"/>, <paramref name="inTo"/>]
/// to [<paramref name="outFrom"/>, <paramref name="outTo"/>].
/// </summary>
/// <param name="value">The value to map.</param>
/// <param name="inFrom">The start value for the input interpolation.</param>
/// <param name="inTo">The destination value for the input interpolation.</param>
/// <param name="outFrom">The start value for the output interpolation.</param>
/// <param name="outTo">The destination value for the output interpolation.</param>
/// <returns>The resulting mapped value mapped.</returns>
public static double Remap(double value, double inFrom, double inTo, double outFrom, double outTo)
{
return Lerp(outFrom, outTo, InverseLerp(inFrom, inTo, value));
}
/// <summary>
/// Rotates <paramref name="from"/> toward <paramref name="to"/> by the <paramref name="delta"/> amount. Will not go past <paramref name="to"/>.
/// Similar to <see cref="MoveToward(float, float, float)"/> but interpolates correctly when the angles wrap around <see cref="Tau"/>.
/// If <paramref name="delta"/> is negative, this function will rotate away from <paramref name="to"/>, toward the opposite angle, and will not go past the opposite angle.
/// </summary>
/// <param name="from">The start angle.</param>
/// <param name="to">The angle to move towards.</param>
/// <param name="delta">The amount to move by.</param>
/// <returns>The angle after moving.</returns>
public static float RotateToward(float from, float to, float delta)
{
float difference = AngleDifference(from, to);
float absDifference = Math.Abs(difference);
return from + Math.Clamp(delta, absDifference - MathF.PI, absDifference) * (difference >= 0.0f ? 1.0f : -1.0f);
}
/// <summary>
/// Rotates <paramref name="from"/> toward <paramref name="to"/> by the <paramref name="delta"/> amount. Will not go past <paramref name="to"/>.
/// Similar to <see cref="MoveToward(double, double, double)"/> but interpolates correctly when the angles wrap around <see cref="Tau"/>.
/// If <paramref name="delta"/> is negative, this function will rotate away from <paramref name="to"/>, toward the opposite angle, and will not go past the opposite angle.
/// </summary>
/// <param name="from">The start angle.</param>
/// <param name="to">The angle to move towards.</param>
/// <param name="delta">The amount to move by.</param>
/// <returns>The angle after moving.</returns>
public static double RotateToward(double from, double to, double delta)
{
double difference = AngleDifference(from, to);
double absDifference = Math.Abs(difference);
return from + Math.Clamp(delta, absDifference - Math.PI, absDifference) * (difference >= 0.0 ? 1.0 : -1.0);
}
/// <summary>
/// Rounds <paramref name="s"/> to the nearest whole number,
/// with halfway cases rounded towards the nearest multiple of two.
/// </summary>
/// <param name="s">The number to round.</param>
/// <returns>The rounded number.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Round(float s)
{
return MathF.Round(s);
}
/// <summary>
/// Rounds <paramref name="s"/> to the nearest whole number,
/// with halfway cases rounded towards the nearest multiple of two.
/// </summary>
/// <param name="s">The number to round.</param>
/// <returns>The rounded number.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Round(double s)
{
return Math.Round(s);
}
/// <summary>
/// Returns the sign of <paramref name="s"/>: <c>-1</c> or <c>1</c>.
/// Returns <c>0</c> if <paramref name="s"/> is <c>0</c>.
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>One of three possible values: <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Sign(int s)
{
return Math.Sign(s);
}
/// <summary>
/// Returns the sign of <paramref name="s"/>: <c>-1</c> or <c>1</c>.
/// Returns <c>0</c> if <paramref name="s"/> is <c>0</c>.
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>One of three possible values: <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Sign(float s)
{
return Math.Sign(s);
}
/// <summary>
/// Returns the sign of <paramref name="s"/>: <c>-1</c> or <c>1</c>.
/// Returns <c>0</c> if <paramref name="s"/> is <c>0</c>.
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>One of three possible values: <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Sign(double s)
{
return Math.Sign(s);
}
/// <summary>
/// Returns the sine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The sine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sin(float s)
{
return MathF.Sin(s);
}
/// <summary>
/// Returns the sine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The sine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Sin(double s)
{
return Math.Sin(s);
}
/// <summary>
/// Returns the hyperbolic sine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic sine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sinh(float s)
{
return MathF.Sinh(s);
}
/// <summary>
/// Returns the hyperbolic sine of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic sine of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Sinh(double s)
{
return Math.Sinh(s);
}
/// <summary>
/// Returns a number smoothly interpolated between <paramref name="from"/> and <paramref name="to"/>,
/// based on the <paramref name="weight"/>. Similar to <see cref="Lerp(float, float, float)"/>,
/// but interpolates faster at the beginning and slower at the end.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">A value representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static float SmoothStep(float from, float to, float weight)
{
if (IsEqualApprox(from, to))
{
return from;
}
float x = Math.Clamp((weight - from) / (to - from), 0.0f, 1.0f);
return x * x * (3 - (2 * x));
}
/// <summary>
/// Returns a number smoothly interpolated between <paramref name="from"/> and <paramref name="to"/>,
/// based on the <paramref name="weight"/>. Similar to <see cref="Lerp(double, double, double)"/>,
/// but interpolates faster at the beginning and slower at the end.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">A value representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static double SmoothStep(double from, double to, double weight)
{
if (IsEqualApprox(from, to))
{
return from;
}
double x = Math.Clamp((weight - from) / (to - from), 0.0, 1.0);
return x * x * (3 - (2 * x));
}
/// <summary>
/// Returns the square root of <paramref name="s"/>, where <paramref name="s"/> is a non-negative number.
///
/// If you need negative inputs, use <see cref="System.Numerics.Complex"/>.
/// </summary>
/// <param name="s">The input number. Must not be negative.</param>
/// <returns>The square root of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sqrt(float s)
{
return MathF.Sqrt(s);
}
/// <summary>
/// Returns the square root of <paramref name="s"/>, where <paramref name="s"/> is a non-negative number.
///
/// If you need negative inputs, use <see cref="System.Numerics.Complex"/>.
/// </summary>
/// <param name="s">The input number. Must not be negative.</param>
/// <returns>The square root of <paramref name="s"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Sqrt(double s)
{
return Math.Sqrt(s);
}
/// <summary>
/// Returns the position of the first non-zero digit, after the
/// decimal point. Note that the maximum return value is 10,
/// which is a design decision in the implementation.
/// </summary>
/// <param name="step">The input value.</param>
/// <returns>The position of the first non-zero digit.</returns>
public static int StepDecimals(double step)
{
double[] sd = new double[]
{
0.9999,
0.09999,
0.009999,
0.0009999,
0.00009999,
0.000009999,
0.0000009999,
0.00000009999,
0.000000009999,
};
double abs = Math.Abs(step);
double decs = abs - (int)abs; // Strip away integer part
for (int i = 0; i < sd.Length; i++)
{
if (decs >= sd[i])
{
return i;
}
}
return 0;
}
/// <summary>
/// Snaps float value <paramref name="s"/> to a given <paramref name="step"/>.
/// This can also be used to round a floating point number to an arbitrary number of decimals.
/// </summary>
/// <param name="s">The value to snap.</param>
/// <param name="step">The step size to snap to.</param>
/// <returns>The snapped value.</returns>
public static float Snapped(float s, float step)
{
if (step != 0f)
{
return MathF.Floor((s / step) + 0.5f) * step;
}
return s;
}
/// <summary>
/// Snaps float value <paramref name="s"/> to a given <paramref name="step"/>.
/// This can also be used to round a floating point number to an arbitrary number of decimals.
/// </summary>
/// <param name="s">The value to snap.</param>
/// <param name="step">The step size to snap to.</param>
/// <returns>The snapped value.</returns>
public static double Snapped(double s, double step)
{
if (step != 0f)
{
return Math.Floor((s / step) + 0.5f) * step;
}
return s;
}
/// <summary>
/// Returns the tangent of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The tangent of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Tan(float s)
{
return MathF.Tan(s);
}
/// <summary>
/// Returns the tangent of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The tangent of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Tan(double s)
{
return Math.Tan(s);
}
/// <summary>
/// Returns the hyperbolic tangent of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic tangent of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Tanh(float s)
{
return MathF.Tanh(s);
}
/// <summary>
/// Returns the hyperbolic tangent of angle <paramref name="s"/> in radians.
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic tangent of that angle.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Tanh(double s)
{
return Math.Tanh(s);
}
/// <summary>
/// Wraps <paramref name="value"/> between <paramref name="min"/> and <paramref name="max"/>.
/// Usable for creating loop-alike behavior or infinite surfaces.
/// If <paramref name="min"/> is <c>0</c>, this is equivalent
/// to <see cref="PosMod(int, int)"/>, so prefer using that instead.
/// </summary>
/// <param name="value">The value to wrap.</param>
/// <param name="min">The minimum allowed value and lower bound of the range.</param>
/// <param name="max">The maximum allowed value and upper bound of the range.</param>
/// <returns>The wrapped value.</returns>
public static int Wrap(int value, int min, int max)
{
int range = max - min;
if (range == 0)
return min;
return min + ((((value - min) % range) + range) % range);
}
/// <summary>
/// Wraps <paramref name="value"/> between <paramref name="min"/> and <paramref name="max"/>.
/// Usable for creating loop-alike behavior or infinite surfaces.
/// If <paramref name="min"/> is <c>0</c>, this is equivalent
/// to <see cref="PosMod(float, float)"/>, so prefer using that instead.
/// </summary>
/// <param name="value">The value to wrap.</param>
/// <param name="min">The minimum allowed value and lower bound of the range.</param>
/// <param name="max">The maximum allowed value and upper bound of the range.</param>
/// <returns>The wrapped value.</returns>
public static float Wrap(float value, float min, float max)
{
float range = max - min;
if (IsZeroApprox(range))
{
return min;
}
return min + ((((value - min) % range) + range) % range);
}
/// <summary>
/// Wraps <paramref name="value"/> between <paramref name="min"/> and <paramref name="max"/>.
/// Usable for creating loop-alike behavior or infinite surfaces.
/// If <paramref name="min"/> is <c>0</c>, this is equivalent
/// to <see cref="PosMod(double, double)"/>, so prefer using that instead.
/// </summary>
/// <param name="value">The value to wrap.</param>
/// <param name="min">The minimum allowed value and lower bound of the range.</param>
/// <param name="max">The maximum allowed value and upper bound of the range.</param>
/// <returns>The wrapped value.</returns>
public static double Wrap(double value, double min, double max)
{
double range = max - min;
if (IsZeroApprox(range))
{
return min;
}
return min + ((((value - min) % range) + range) % range);
}
/// <summary>
/// Returns the <paramref name="value"/> wrapped between <c>0</c> and the <paramref name="length"/>.
/// If the limit is reached, the next value the function returned is decreased to the <c>0</c> side
/// or increased to the <paramref name="length"/> side (like a triangle wave).
/// If <paramref name="length"/> is less than zero, it becomes positive.
/// </summary>
/// <param name="value">The value to pingpong.</param>
/// <param name="length">The maximum value of the function.</param>
/// <returns>The ping-ponged value.</returns>
public static float PingPong(float value, float length)
{
return (length != 0.0f) ? Math.Abs(Fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
static float Fract(float value)
{
return value - MathF.Floor(value);
}
}
/// <summary>
/// Returns the <paramref name="value"/> wrapped between <c>0</c> and the <paramref name="length"/>.
/// If the limit is reached, the next value the function returned is decreased to the <c>0</c> side
/// or increased to the <paramref name="length"/> side (like a triangle wave).
/// If <paramref name="length"/> is less than zero, it becomes positive.
/// </summary>
/// <param name="value">The value to pingpong.</param>
/// <param name="length">The maximum value of the function.</param>
/// <returns>The ping-ponged value.</returns>
public static double PingPong(double value, double length)
{
return (length != 0.0) ? Math.Abs(Fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
static double Fract(double value)
{
return value - Math.Floor(value);
}
}
}
}