godot/thirdparty/spirv-cross/spirv_msl.cpp

/*
 * Copyright 2016-2021 The Brenwill Workshop Ltd.
 * SPDX-License-Identifier: Apache-2.0 OR MIT
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * At your option, you may choose to accept this material under either:
 *  1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
 *  2. The MIT License, found at <http://opensource.org/licenses/MIT>.
 */

#include "spirv_msl.hpp"
#include "GLSL.std.450.h"

#include <algorithm>
#include <assert.h>
#include <numeric>

using namespace spv;
using namespace SPIRV_CROSS_NAMESPACE;
using namespace std;

static const uint32_t k_unknown_location = ~0u;
static const uint32_t k_unknown_component = ~0u;
static const char *force_inline = "static inline __attribute__((always_inline))";

CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
    : CompilerGLSL(std::move(spirv_))
{
}

CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
    : CompilerGLSL(ir_, word_count)
{
}

CompilerMSL::CompilerMSL(const ParsedIR &ir_)
    : CompilerGLSL(ir_)
{
}

CompilerMSL::CompilerMSL(ParsedIR &&ir_)
    : CompilerGLSL(std::move(ir_))
{
}

void CompilerMSL::add_msl_shader_input(const MSLShaderInterfaceVariable &si)
{
	inputs_by_location[{si.location, si.component}] = si;
	if (si.builtin != BuiltInMax && !inputs_by_builtin.count(si.builtin))
		inputs_by_builtin[si.builtin] = si;
}

void CompilerMSL::add_msl_shader_output(const MSLShaderInterfaceVariable &so)
{
	outputs_by_location[{so.location, so.component}] = so;
	if (so.builtin != BuiltInMax && !outputs_by_builtin.count(so.builtin))
		outputs_by_builtin[so.builtin] = so;
}

void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
{
	StageSetBinding tuple = { binding.stage, binding.desc_set, binding.binding };
	resource_bindings[tuple] = { binding, false };

	// If we might need to pad argument buffer members to positionally align
	// arg buffer indexes, also maintain a lookup by argument buffer index.
	if (msl_options.pad_argument_buffer_resources)
	{
		StageSetBinding arg_idx_tuple = { binding.stage, binding.desc_set, k_unknown_component };

#define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \
	arg_idx_tuple.binding = binding.msl_##rez; \
	resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding

		switch (binding.basetype)
		{
		case SPIRType::Void:
		case SPIRType::Boolean:
		case SPIRType::SByte:
		case SPIRType::UByte:
		case SPIRType::Short:
		case SPIRType::UShort:
		case SPIRType::Int:
		case SPIRType::UInt:
		case SPIRType::Int64:
		case SPIRType::UInt64:
		case SPIRType::AtomicCounter:
		case SPIRType::Half:
		case SPIRType::Float:
		case SPIRType::Double:
			ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer);
			break;
		case SPIRType::Image:
			ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
			break;
		case SPIRType::Sampler:
			ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
			break;
		case SPIRType::SampledImage:
			ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
			ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
			break;
		default:
			SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, "
			                  "all descriptor set resources must be supplied with a base type by the app.");
		}
#undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP
	}
}

void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index)
{
	SetBindingPair pair = { desc_set, binding };
	buffers_requiring_dynamic_offset[pair] = { index, 0 };
}

void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding)
{
	SetBindingPair pair = { desc_set, binding };
	inline_uniform_blocks.insert(pair);
}

void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
{
	if (desc_set < kMaxArgumentBuffers)
		argument_buffer_discrete_mask |= 1u << desc_set;
}

void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage)
{
	if (desc_set < kMaxArgumentBuffers)
	{
		if (device_storage)
			argument_buffer_device_storage_mask |= 1u << desc_set;
		else
			argument_buffer_device_storage_mask &= ~(1u << desc_set);
	}
}

bool CompilerMSL::is_msl_shader_input_used(uint32_t location)
{
	// Don't report internal location allocations to app.
	return location_inputs_in_use.count(location) != 0 &&
	       location_inputs_in_use_fallback.count(location) == 0;
}

bool CompilerMSL::is_msl_shader_output_used(uint32_t location)
{
	// Don't report internal location allocations to app.
	return location_outputs_in_use.count(location) != 0 &&
	       location_outputs_in_use_fallback.count(location) == 0;
}

uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const
{
	auto itr = builtin_to_automatic_input_location.find(builtin);
	if (itr == builtin_to_automatic_input_location.end())
		return k_unknown_location;
	else
		return itr->second;
}

uint32_t CompilerMSL::get_automatic_builtin_output_location(spv::BuiltIn builtin) const
{
	auto itr = builtin_to_automatic_output_location.find(builtin);
	if (itr == builtin_to_automatic_output_location.end())
		return k_unknown_location;
	else
		return itr->second;
}

bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const
{
	StageSetBinding tuple = { model, desc_set, binding };
	auto itr = resource_bindings.find(tuple);
	return itr != end(resource_bindings) && itr->second.second;
}

bool CompilerMSL::is_var_runtime_size_array(const SPIRVariable &var) const
{
	auto& type = get_variable_data_type(var);
	return is_runtime_size_array(type) && get_resource_array_size(type, var.self) == 0;
}

// Returns the size of the array of resources used by the variable with the specified type and id.
// The size is first retrieved from the type, but in the case of runtime array sizing,
// the size is retrieved from the resource binding added using add_msl_resource_binding().
uint32_t CompilerMSL::get_resource_array_size(const SPIRType &type, uint32_t id) const
{
	uint32_t array_size = to_array_size_literal(type);

	// If we have argument buffers, we need to honor the ABI by using the correct array size
	// from the layout. Only use shader declared size if we're not using argument buffers.
	uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
	if (!descriptor_set_is_argument_buffer(desc_set) && array_size)
		return array_size;

	StageSetBinding tuple = { get_entry_point().model, desc_set,
		                      get_decoration(id, DecorationBinding) };
	auto itr = resource_bindings.find(tuple);
	return itr != end(resource_bindings) ? itr->second.first.count : array_size;
}

uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const
{
	return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexPrimary);
}

uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const
{
	return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexSecondary);
}

uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const
{
	return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexTertiary);
}

uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const
{
	return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexQuaternary);
}

void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
{
	fragment_output_components[location] = components;
}

bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const
{
	return (builtin == BuiltInSampleMask);
}

void CompilerMSL::build_implicit_builtins()
{
	bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
	bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex &&
	                          !msl_options.vertex_for_tessellation;
	bool need_tesc_params = is_tesc_shader();
	bool need_tese_params = is_tese_shader() && msl_options.raw_buffer_tese_input;
	bool need_subgroup_mask =
	    active_input_builtins.get(BuiltInSubgroupEqMask) || active_input_builtins.get(BuiltInSubgroupGeMask) ||
	    active_input_builtins.get(BuiltInSubgroupGtMask) || active_input_builtins.get(BuiltInSubgroupLeMask) ||
	    active_input_builtins.get(BuiltInSubgroupLtMask);
	bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(BuiltInSubgroupGeMask) ||
	                                                       active_input_builtins.get(BuiltInSubgroupGtMask));
	bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index &&
	                      msl_options.multiview_layered_rendering &&
	                      (msl_options.multiview || active_input_builtins.get(BuiltInViewIndex));
	bool need_dispatch_base =
	    msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute &&
	    (active_input_builtins.get(BuiltInWorkgroupId) || active_input_builtins.get(BuiltInGlobalInvocationId));
	bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation;
	bool need_vertex_base_params =
	    need_grid_params &&
	    (active_input_builtins.get(BuiltInVertexId) || active_input_builtins.get(BuiltInVertexIndex) ||
	     active_input_builtins.get(BuiltInBaseVertex) || active_input_builtins.get(BuiltInInstanceId) ||
	     active_input_builtins.get(BuiltInInstanceIndex) || active_input_builtins.get(BuiltInBaseInstance));
	bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInSubgroupId);
	bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInNumSubgroups);
	bool force_frag_depth_passthrough =
	    get_execution_model() == ExecutionModelFragment && !uses_explicit_early_fragment_test() && need_subpass_input &&
	    msl_options.enable_frag_depth_builtin && msl_options.input_attachment_is_ds_attachment;

	if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params ||
	    need_tese_params || need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params ||
	    needs_sample_id || needs_subgroup_invocation_id || needs_subgroup_size || needs_helper_invocation ||
		has_additional_fixed_sample_mask() || need_local_invocation_index || need_workgroup_size || force_frag_depth_passthrough)
	{
		bool has_frag_coord = false;
		bool has_sample_id = false;
		bool has_vertex_idx = false;
		bool has_base_vertex = false;
		bool has_instance_idx = false;
		bool has_base_instance = false;
		bool has_invocation_id = false;
		bool has_primitive_id = false;
		bool has_subgroup_invocation_id = false;
		bool has_subgroup_size = false;
		bool has_view_idx = false;
		bool has_layer = false;
		bool has_helper_invocation = false;
		bool has_local_invocation_index = false;
		bool has_workgroup_size = false;
		bool has_frag_depth = false;
		uint32_t workgroup_id_type = 0;

		ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
			if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
				return;
			if (!interface_variable_exists_in_entry_point(var.self))
				return;
			if (!has_decoration(var.self, DecorationBuiltIn))
				return;

			BuiltIn builtin = ir.meta[var.self].decoration.builtin_type;

			if (var.storage == StorageClassOutput)
			{
				if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask)
				{
					builtin_sample_mask_id = var.self;
					mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var.self);
					does_shader_write_sample_mask = true;
				}

				if (force_frag_depth_passthrough && builtin == BuiltInFragDepth)
				{
					builtin_frag_depth_id = var.self;
					mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var.self);
					has_frag_depth = true;
				}
			}

			if (var.storage != StorageClassInput)
				return;

			// Use Metal's native frame-buffer fetch API for subpass inputs.
			if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses))
			{
				switch (builtin)
				{
				case BuiltInFragCoord:
					mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var.self);
					builtin_frag_coord_id = var.self;
					has_frag_coord = true;
					break;
				case BuiltInLayer:
					if (!msl_options.arrayed_subpass_input || msl_options.multiview)
						break;
					mark_implicit_builtin(StorageClassInput, BuiltInLayer, var.self);
					builtin_layer_id = var.self;
					has_layer = true;
					break;
				case BuiltInViewIndex:
					if (!msl_options.multiview)
						break;
					mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
					builtin_view_idx_id = var.self;
					has_view_idx = true;
					break;
				default:
					break;
				}
			}

			if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId)
			{
				builtin_sample_id_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var.self);
				has_sample_id = true;
			}

			if (need_vertex_params)
			{
				switch (builtin)
				{
				case BuiltInVertexIndex:
					builtin_vertex_idx_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var.self);
					has_vertex_idx = true;
					break;
				case BuiltInBaseVertex:
					builtin_base_vertex_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var.self);
					has_base_vertex = true;
					break;
				case BuiltInInstanceIndex:
					builtin_instance_idx_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
					has_instance_idx = true;
					break;
				case BuiltInBaseInstance:
					builtin_base_instance_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
					has_base_instance = true;
					break;
				default:
					break;
				}
			}

			if (need_tesc_params && builtin == BuiltInInvocationId)
			{
				builtin_invocation_id_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var.self);
				has_invocation_id = true;
			}

			if ((need_tesc_params || need_tese_params) && builtin == BuiltInPrimitiveId)
			{
				builtin_primitive_id_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var.self);
				has_primitive_id = true;
			}

			if (need_tese_params && builtin == BuiltInTessLevelOuter)
			{
				tess_level_outer_var_id = var.self;
			}

			if (need_tese_params && builtin == BuiltInTessLevelInner)
			{
				tess_level_inner_var_id = var.self;
			}

			if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId)
			{
				builtin_subgroup_invocation_id_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var.self);
				has_subgroup_invocation_id = true;
			}

			if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize)
			{
				builtin_subgroup_size_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var.self);
				has_subgroup_size = true;
			}

			if (need_multiview)
			{
				switch (builtin)
				{
				case BuiltInInstanceIndex:
					// The view index here is derived from the instance index.
					builtin_instance_idx_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
					has_instance_idx = true;
					break;
				case BuiltInBaseInstance:
					// If a non-zero base instance is used, we need to adjust for it when calculating the view index.
					builtin_base_instance_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
					has_base_instance = true;
					break;
				case BuiltInViewIndex:
					builtin_view_idx_id = var.self;
					mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
					has_view_idx = true;
					break;
				default:
					break;
				}
			}

			if (needs_helper_invocation && builtin == BuiltInHelperInvocation)
			{
				builtin_helper_invocation_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var.self);
				has_helper_invocation = true;
			}

			if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex)
			{
				builtin_local_invocation_index_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var.self);
				has_local_invocation_index = true;
			}

			if (need_workgroup_size && builtin == BuiltInLocalInvocationId)
			{
				builtin_workgroup_size_id = var.self;
				mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var.self);
				has_workgroup_size = true;
			}

			// The base workgroup needs to have the same type and vector size
			// as the workgroup or invocation ID, so keep track of the type that
			// was used.
			if (need_dispatch_base && workgroup_id_type == 0 &&
			    (builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId))
				workgroup_id_type = var.basetype;
		});

		// Use Metal's native frame-buffer fetch API for subpass inputs.
		if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) ||
		     (msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) &&
		    (!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input)
		{
			if (!has_frag_coord)
			{
				uint32_t offset = ir.increase_bound_by(3);
				uint32_t type_id = offset;
				uint32_t type_ptr_id = offset + 1;
				uint32_t var_id = offset + 2;

				// Create gl_FragCoord.
				SPIRType vec4_type { OpTypeVector };
				vec4_type.basetype = SPIRType::Float;
				vec4_type.width = 32;
				vec4_type.vecsize = 4;
				set<SPIRType>(type_id, vec4_type);

				SPIRType vec4_type_ptr = vec4_type;
				vec4_type_ptr.op = OpTypePointer;
				vec4_type_ptr.pointer = true;
				vec4_type_ptr.pointer_depth++;
				vec4_type_ptr.parent_type = type_id;
				vec4_type_ptr.storage = StorageClassInput;
				auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
				ptr_type.self = type_id;

				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
				builtin_frag_coord_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var_id);
			}

			if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview)
			{
				uint32_t offset = ir.increase_bound_by(2);
				uint32_t type_ptr_id = offset;
				uint32_t var_id = offset + 1;

				// Create gl_Layer.
				SPIRType uint_type_ptr = get_uint_type();
				uint_type_ptr.op = OpTypePointer;
				uint_type_ptr.pointer = true;
				uint_type_ptr.pointer_depth++;
				uint_type_ptr.parent_type = get_uint_type_id();
				uint_type_ptr.storage = StorageClassInput;
				auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
				ptr_type.self = get_uint_type_id();

				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
				builtin_layer_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInLayer, var_id);
			}

			if (!has_view_idx && msl_options.multiview)
			{
				uint32_t offset = ir.increase_bound_by(2);
				uint32_t type_ptr_id = offset;
				uint32_t var_id = offset + 1;

				// Create gl_ViewIndex.
				SPIRType uint_type_ptr = get_uint_type();
				uint_type_ptr.op = OpTypePointer;
				uint_type_ptr.pointer = true;
				uint_type_ptr.pointer_depth++;
				uint_type_ptr.parent_type = get_uint_type_id();
				uint_type_ptr.storage = StorageClassInput;
				auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
				ptr_type.self = get_uint_type_id();

				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
				builtin_view_idx_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
			}
		}

		if (!has_sample_id && (need_sample_pos || needs_sample_id))
		{
			uint32_t offset = ir.increase_bound_by(2);
			uint32_t type_ptr_id = offset;
			uint32_t var_id = offset + 1;

			// Create gl_SampleID.
			SPIRType uint_type_ptr = get_uint_type();
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = get_uint_type_id();
			uint_type_ptr.storage = StorageClassInput;
			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = get_uint_type_id();

			set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
			builtin_sample_id_id = var_id;
			mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var_id);
		}

		if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) ||
		    (need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx)))
		{
			uint32_t type_ptr_id = ir.increase_bound_by(1);

			SPIRType uint_type_ptr = get_uint_type();
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = get_uint_type_id();
			uint_type_ptr.storage = StorageClassInput;
			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = get_uint_type_id();

			if (need_vertex_params && !has_vertex_idx)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_VertexIndex.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
				builtin_vertex_idx_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var_id);
			}

			if (need_vertex_params && !has_base_vertex)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_BaseVertex.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
				builtin_base_vertex_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var_id);
			}

			if (!has_instance_idx) // Needed by both multiview and tessellation
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_InstanceIndex.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
				builtin_instance_idx_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var_id);
			}

			if (!has_base_instance) // Needed by both multiview and tessellation
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_BaseInstance.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
				builtin_base_instance_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var_id);
			}

			if (need_multiview)
			{
				// Multiview shaders are not allowed to write to gl_Layer, ostensibly because
				// it is implicitly written from gl_ViewIndex, but we have to do that explicitly.
				// Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but
				// gl_Layer is an output in vertex-pipeline shaders.
				uint32_t type_ptr_out_id = ir.increase_bound_by(2);
				SPIRType uint_type_ptr_out = get_uint_type();
				uint_type_ptr.op = OpTypePointer;
				uint_type_ptr_out.pointer = true;
				uint_type_ptr_out.pointer_depth++;
				uint_type_ptr_out.parent_type = get_uint_type_id();
				uint_type_ptr_out.storage = StorageClassOutput;
				auto &ptr_out_type = set<SPIRType>(type_ptr_out_id, uint_type_ptr_out);
				ptr_out_type.self = get_uint_type_id();
				uint32_t var_id = type_ptr_out_id + 1;
				set<SPIRVariable>(var_id, type_ptr_out_id, StorageClassOutput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
				builtin_layer_id = var_id;
				mark_implicit_builtin(StorageClassOutput, BuiltInLayer, var_id);
			}

			if (need_multiview && !has_view_idx)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_ViewIndex.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
				builtin_view_idx_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
			}
		}

		if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) ||
		    (need_tese_params && !has_primitive_id) || need_grid_params)
		{
			uint32_t type_ptr_id = ir.increase_bound_by(1);

			SPIRType uint_type_ptr = get_uint_type();
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = get_uint_type_id();
			uint_type_ptr.storage = StorageClassInput;
			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = get_uint_type_id();

			if ((need_tesc_params && msl_options.multi_patch_workgroup) || need_grid_params)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_GlobalInvocationID.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInGlobalInvocationId);
				builtin_invocation_id_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInGlobalInvocationId, var_id);
			}
			else if (need_tesc_params && !has_invocation_id)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_InvocationID.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
				builtin_invocation_id_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var_id);
			}

			if ((need_tesc_params || need_tese_params) && !has_primitive_id)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				// Create gl_PrimitiveID.
				set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
				set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
				builtin_primitive_id_id = var_id;
				mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var_id);
			}

			if (need_grid_params)
			{
				uint32_t var_id = ir.increase_bound_by(1);

				set<SPIRVariable>(var_id, build_extended_vector_type(get_uint_type_id(), 3), StorageClassInput);
				set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize);
				get_entry_point().interface_variables.push_back(var_id);
				set_name(var_id, "spvStageInputSize");
				builtin_stage_input_size_id = var_id;
			}
		}

		if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id))
		{
			uint32_t offset = ir.increase_bound_by(2);
			uint32_t type_ptr_id = offset;
			uint32_t var_id = offset + 1;

			// Create gl_SubgroupInvocationID.
			SPIRType uint_type_ptr = get_uint_type();
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = get_uint_type_id();
			uint_type_ptr.storage = StorageClassInput;
			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = get_uint_type_id();

			set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupLocalInvocationId);
			builtin_subgroup_invocation_id_id = var_id;
			mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var_id);
		}

		if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size))
		{
			uint32_t offset = ir.increase_bound_by(2);
			uint32_t type_ptr_id = offset;
			uint32_t var_id = offset + 1;

			// Create gl_SubgroupSize.
			SPIRType uint_type_ptr = get_uint_type();
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = get_uint_type_id();
			uint_type_ptr.storage = StorageClassInput;
			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = get_uint_type_id();

			set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupSize);
			builtin_subgroup_size_id = var_id;
			mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var_id);
		}

		if (need_dispatch_base || need_vertex_base_params)
		{
			if (workgroup_id_type == 0)
				workgroup_id_type = build_extended_vector_type(get_uint_type_id(), 3);
			uint32_t var_id;
			if (msl_options.supports_msl_version(1, 2))
			{
				// If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin
				// to convey this information and save a buffer slot.
				uint32_t offset = ir.increase_bound_by(1);
				var_id = offset;

				set<SPIRVariable>(var_id, workgroup_id_type, StorageClassInput);
				set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase);
				get_entry_point().interface_variables.push_back(var_id);
			}
			else
			{
				// Otherwise, we need to fall back to a good ol' fashioned buffer.
				uint32_t offset = ir.increase_bound_by(2);
				var_id = offset;
				uint32_t type_id = offset + 1;

				SPIRType var_type = get<SPIRType>(workgroup_id_type);
				var_type.storage = StorageClassUniform;
				set<SPIRType>(type_id, var_type);

				set<SPIRVariable>(var_id, type_id, StorageClassUniform);
				// This should never match anything.
				set_decoration(var_id, DecorationDescriptorSet, ~(5u));
				set_decoration(var_id, DecorationBinding, msl_options.indirect_params_buffer_index);
				set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
				                        msl_options.indirect_params_buffer_index);
			}
			set_name(var_id, "spvDispatchBase");
			builtin_dispatch_base_id = var_id;
		}

		if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask)
		{
			uint32_t offset = ir.increase_bound_by(2);
			uint32_t var_id = offset + 1;

			// Create gl_SampleMask.
			SPIRType uint_type_ptr_out = get_uint_type();
			uint_type_ptr_out.op = OpTypePointer;
			uint_type_ptr_out.pointer = true;
			uint_type_ptr_out.pointer_depth++;
			uint_type_ptr_out.parent_type = get_uint_type_id();
			uint_type_ptr_out.storage = StorageClassOutput;

			auto &ptr_out_type = set<SPIRType>(offset, uint_type_ptr_out);
			ptr_out_type.self = get_uint_type_id();
			set<SPIRVariable>(var_id, offset, StorageClassOutput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInSampleMask);
			builtin_sample_mask_id = var_id;
			mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var_id);
		}

		if (!has_helper_invocation && needs_helper_invocation)
		{
			uint32_t offset = ir.increase_bound_by(3);
			uint32_t type_id = offset;
			uint32_t type_ptr_id = offset + 1;
			uint32_t var_id = offset + 2;

			// Create gl_HelperInvocation.
			SPIRType bool_type { OpTypeBool };
			bool_type.basetype = SPIRType::Boolean;
			bool_type.width = 8;
			bool_type.vecsize = 1;
			set<SPIRType>(type_id, bool_type);

			SPIRType bool_type_ptr_in = bool_type;
			bool_type_ptr_in.op = spv::OpTypePointer;
			bool_type_ptr_in.pointer = true;
			bool_type_ptr_in.pointer_depth++;
			bool_type_ptr_in.parent_type = type_id;
			bool_type_ptr_in.storage = StorageClassInput;

			auto &ptr_in_type = set<SPIRType>(type_ptr_id, bool_type_ptr_in);
			ptr_in_type.self = type_id;
			set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInHelperInvocation);
			builtin_helper_invocation_id = var_id;
			mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var_id);
		}

		if (need_local_invocation_index && !has_local_invocation_index)
		{
			uint32_t offset = ir.increase_bound_by(2);
			uint32_t type_ptr_id = offset;
			uint32_t var_id = offset + 1;

			// Create gl_LocalInvocationIndex.
			SPIRType uint_type_ptr = get_uint_type();
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = get_uint_type_id();
			uint_type_ptr.storage = StorageClassInput;

			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = get_uint_type_id();
			set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInLocalInvocationIndex);
			builtin_local_invocation_index_id = var_id;
			mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var_id);
		}

		if (need_workgroup_size && !has_workgroup_size)
		{
			uint32_t offset = ir.increase_bound_by(2);
			uint32_t type_ptr_id = offset;
			uint32_t var_id = offset + 1;

			// Create gl_WorkgroupSize.
			uint32_t type_id = build_extended_vector_type(get_uint_type_id(), 3);
			SPIRType uint_type_ptr = get<SPIRType>(type_id);
			uint_type_ptr.op = OpTypePointer;
			uint_type_ptr.pointer = true;
			uint_type_ptr.pointer_depth++;
			uint_type_ptr.parent_type = type_id;
			uint_type_ptr.storage = StorageClassInput;

			auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
			ptr_type.self = type_id;
			set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInWorkgroupSize);
			builtin_workgroup_size_id = var_id;
			mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var_id);
		}

		if (!has_frag_depth && force_frag_depth_passthrough)
		{
			uint32_t offset = ir.increase_bound_by(3);
			uint32_t type_id = offset;
			uint32_t type_ptr_id = offset + 1;
			uint32_t var_id = offset + 2;

			// Create gl_FragDepth
			SPIRType float_type { OpTypeFloat };
			float_type.basetype = SPIRType::Float;
			float_type.width = 32;
			float_type.vecsize = 1;
			set<SPIRType>(type_id, float_type);

			SPIRType float_type_ptr_in = float_type;
			float_type_ptr_in.op = spv::OpTypePointer;
			float_type_ptr_in.pointer = true;
			float_type_ptr_in.pointer_depth++;
			float_type_ptr_in.parent_type = type_id;
			float_type_ptr_in.storage = StorageClassOutput;

			auto &ptr_in_type = set<SPIRType>(type_ptr_id, float_type_ptr_in);
			ptr_in_type.self = type_id;
			set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
			set_decoration(var_id, DecorationBuiltIn, BuiltInFragDepth);
			builtin_frag_depth_id = var_id;
			mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var_id);
			active_output_builtins.set(BuiltInFragDepth);
		}
	}

	if (needs_swizzle_buffer_def)
	{
		uint32_t var_id = build_constant_uint_array_pointer();
		set_name(var_id, "spvSwizzleConstants");
		// This should never match anything.
		set_decoration(var_id, DecorationDescriptorSet, kSwizzleBufferBinding);
		set_decoration(var_id, DecorationBinding, msl_options.swizzle_buffer_index);
		set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.swizzle_buffer_index);
		swizzle_buffer_id = var_id;
	}

	if (needs_buffer_size_buffer())
	{
		uint32_t var_id = build_constant_uint_array_pointer();
		set_name(var_id, "spvBufferSizeConstants");
		// This should never match anything.
		set_decoration(var_id, DecorationDescriptorSet, kBufferSizeBufferBinding);
		set_decoration(var_id, DecorationBinding, msl_options.buffer_size_buffer_index);
		set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.buffer_size_buffer_index);
		buffer_size_buffer_id = var_id;
	}

	if (needs_view_mask_buffer())
	{
		uint32_t var_id = build_constant_uint_array_pointer();
		set_name(var_id, "spvViewMask");
		// This should never match anything.
		set_decoration(var_id, DecorationDescriptorSet, ~(4u));
		set_decoration(var_id, DecorationBinding, msl_options.view_mask_buffer_index);
		set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.view_mask_buffer_index);
		view_mask_buffer_id = var_id;
	}

	if (!buffers_requiring_dynamic_offset.empty())
	{
		uint32_t var_id = build_constant_uint_array_pointer();
		set_name(var_id, "spvDynamicOffsets");
		// This should never match anything.
		set_decoration(var_id, DecorationDescriptorSet, ~(5u));
		set_decoration(var_id, DecorationBinding, msl_options.dynamic_offsets_buffer_index);
		set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
		                        msl_options.dynamic_offsets_buffer_index);
		dynamic_offsets_buffer_id = var_id;
	}

	// If we're returning a struct from a vertex-like entry point, we must return a position attribute.
	bool need_position = (get_execution_model() == ExecutionModelVertex || is_tese_shader()) &&
	                     !capture_output_to_buffer && !get_is_rasterization_disabled() &&
	                     !active_output_builtins.get(BuiltInPosition);

	if (need_position)
	{
		// If we can get away with returning void from entry point, we don't need to care.
		// If there is at least one other stage output, we need to return [[position]],
		// so we need to create one if it doesn't appear in the SPIR-V. Before adding the
		// implicit variable, check if it actually exists already, but just has not been used
		// or initialized, and if so, mark it as active, and do not create the implicit variable.
		bool has_output = false;
		ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
			if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self))
			{
				has_output = true;

				// Check if the var is the Position builtin
				if (has_decoration(var.self, DecorationBuiltIn) && get_decoration(var.self, DecorationBuiltIn) == BuiltInPosition)
					active_output_builtins.set(BuiltInPosition);

				// If the var is a struct, check if any members is the Position builtin
				auto &var_type = get_variable_element_type(var);
				if (var_type.basetype == SPIRType::Struct)
				{
					auto mbr_cnt = var_type.member_types.size();
					for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
					{
						auto builtin = BuiltInMax;
						bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
						if (is_builtin && builtin == BuiltInPosition)
							active_output_builtins.set(BuiltInPosition);
					}
				}
			}
		});
		need_position = has_output && !active_output_builtins.get(BuiltInPosition);
	}

	if (need_position)
	{
		uint32_t offset = ir.increase_bound_by(3);
		uint32_t type_id = offset;
		uint32_t type_ptr_id = offset + 1;
		uint32_t var_id = offset + 2;

		// Create gl_Position.
		SPIRType vec4_type { OpTypeVector };
		vec4_type.basetype = SPIRType::Float;
		vec4_type.width = 32;
		vec4_type.vecsize = 4;
		set<SPIRType>(type_id, vec4_type);

		SPIRType vec4_type_ptr = vec4_type;
		vec4_type_ptr.op = OpTypePointer;
		vec4_type_ptr.pointer = true;
		vec4_type_ptr.pointer_depth++;
		vec4_type_ptr.parent_type = type_id;
		vec4_type_ptr.storage = StorageClassOutput;
		auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
		ptr_type.self = type_id;

		set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
		set_decoration(var_id, DecorationBuiltIn, BuiltInPosition);
		mark_implicit_builtin(StorageClassOutput, BuiltInPosition, var_id);
	}
}

// Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active.
// If not, it marks it as active and forces a recompilation.
// This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted).
void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin)
{
	Bitset *active_builtins = nullptr;
	switch (storage)
	{
	case StorageClassInput:
		active_builtins = &active_input_builtins;
		break;

	case StorageClassOutput:
		active_builtins = &active_output_builtins;
		break;

	default:
		break;
	}

	// At this point, the specified builtin variable must have already been declared in the entry point.
	// If not, mark as active and force recompile.
	if (active_builtins != nullptr && !active_builtins->get(builtin))
	{
		active_builtins->set(builtin);
		force_recompile();
	}
}

void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id)
{
	Bitset *active_builtins = nullptr;
	switch (storage)
	{
	case StorageClassInput:
		active_builtins = &active_input_builtins;
		break;

	case StorageClassOutput:
		active_builtins = &active_output_builtins;
		break;

	default:
		break;
	}

	assert(active_builtins != nullptr);
	active_builtins->set(builtin);

	auto &var = get_entry_point().interface_variables;
	if (find(begin(var), end(var), VariableID(id)) == end(var))
		var.push_back(id);
}

uint32_t CompilerMSL::build_constant_uint_array_pointer()
{
	uint32_t offset = ir.increase_bound_by(3);
	uint32_t type_ptr_id = offset;
	uint32_t type_ptr_ptr_id = offset + 1;
	uint32_t var_id = offset + 2;

	// Create a buffer to hold extra data, including the swizzle constants.
	SPIRType uint_type_pointer = get_uint_type();
	uint_type_pointer.op = OpTypePointer;
	uint_type_pointer.pointer = true;
	uint_type_pointer.pointer_depth++;
	uint_type_pointer.parent_type = get_uint_type_id();
	uint_type_pointer.storage = StorageClassUniform;
	set<SPIRType>(type_ptr_id, uint_type_pointer);
	set_decoration(type_ptr_id, DecorationArrayStride, 4);

	SPIRType uint_type_pointer2 = uint_type_pointer;
	uint_type_pointer2.pointer_depth++;
	uint_type_pointer2.parent_type = type_ptr_id;
	set<SPIRType>(type_ptr_ptr_id, uint_type_pointer2);

	set<SPIRVariable>(var_id, type_ptr_ptr_id, StorageClassUniformConstant);
	return var_id;
}

static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
{
	switch (addr)
	{
	case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
		return join(prefix, "address::clamp_to_edge");
	case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
		return join(prefix, "address::clamp_to_zero");
	case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
		return join(prefix, "address::clamp_to_border");
	case MSL_SAMPLER_ADDRESS_REPEAT:
		return join(prefix, "address::repeat");
	case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
		return join(prefix, "address::mirrored_repeat");
	default:
		SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
	}
}

SPIRType &CompilerMSL::get_stage_in_struct_type()
{
	auto &si_var = get<SPIRVariable>(stage_in_var_id);
	return get_variable_data_type(si_var);
}

SPIRType &CompilerMSL::get_stage_out_struct_type()
{
	auto &so_var = get<SPIRVariable>(stage_out_var_id);
	return get_variable_data_type(so_var);
}

SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
{
	auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
	return get_variable_data_type(si_var);
}

SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
{
	auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
	return get_variable_data_type(so_var);
}

std::string CompilerMSL::get_tess_factor_struct_name()
{
	if (is_tessellating_triangles())
		return "MTLTriangleTessellationFactorsHalf";
	return "MTLQuadTessellationFactorsHalf";
}

SPIRType &CompilerMSL::get_uint_type()
{
	return get<SPIRType>(get_uint_type_id());
}

uint32_t CompilerMSL::get_uint_type_id()
{
	if (uint_type_id != 0)
		return uint_type_id;

	uint_type_id = ir.increase_bound_by(1);

	SPIRType type { OpTypeInt };
	type.basetype = SPIRType::UInt;
	type.width = 32;
	set<SPIRType>(uint_type_id, type);
	return uint_type_id;
}

void CompilerMSL::emit_entry_point_declarations()
{
	// FIXME: Get test coverage here ...
	// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
	declare_complex_constant_arrays();

	// Emit constexpr samplers here.
	for (auto &samp : constexpr_samplers_by_id)
	{
		auto &var = get<SPIRVariable>(samp.first);
		auto &type = get<SPIRType>(var.basetype);
		if (type.basetype == SPIRType::Sampler)
			add_resource_name(samp.first);

		SmallVector<string> args;
		auto &s = samp.second;

		if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
			args.push_back("coord::pixel");

		if (s.min_filter == s.mag_filter)
		{
			if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
				args.push_back("filter::linear");
		}
		else
		{
			if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
				args.push_back("min_filter::linear");
			if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
				args.push_back("mag_filter::linear");
		}

		switch (s.mip_filter)
		{
		case MSL_SAMPLER_MIP_FILTER_NONE:
			// Default
			break;
		case MSL_SAMPLER_MIP_FILTER_NEAREST:
			args.push_back("mip_filter::nearest");
			break;
		case MSL_SAMPLER_MIP_FILTER_LINEAR:
			args.push_back("mip_filter::linear");
			break;
		default:
			SPIRV_CROSS_THROW("Invalid mip filter.");
		}

		if (s.s_address == s.t_address && s.s_address == s.r_address)
		{
			if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
				args.push_back(create_sampler_address("", s.s_address));
		}
		else
		{
			if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
				args.push_back(create_sampler_address("s_", s.s_address));
			if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
				args.push_back(create_sampler_address("t_", s.t_address));
			if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
				args.push_back(create_sampler_address("r_", s.r_address));
		}

		if (s.compare_enable)
		{
			switch (s.compare_func)
			{
			case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
				args.push_back("compare_func::always");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_NEVER:
				args.push_back("compare_func::never");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
				args.push_back("compare_func::equal");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
				args.push_back("compare_func::not_equal");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_LESS:
				args.push_back("compare_func::less");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
				args.push_back("compare_func::less_equal");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_GREATER:
				args.push_back("compare_func::greater");
				break;
			case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
				args.push_back("compare_func::greater_equal");
				break;
			default:
				SPIRV_CROSS_THROW("Invalid sampler compare function.");
			}
		}

		if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
		    s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
		{
			switch (s.border_color)
			{
			case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
				args.push_back("border_color::opaque_black");
				break;
			case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
				args.push_back("border_color::opaque_white");
				break;
			case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
				args.push_back("border_color::transparent_black");
				break;
			default:
				SPIRV_CROSS_THROW("Invalid sampler border color.");
			}
		}

		if (s.anisotropy_enable)
			args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
		if (s.lod_clamp_enable)
		{
			args.push_back(join("lod_clamp(", format_float(s.lod_clamp_min), ", ", format_float(s.lod_clamp_max), ")"));
		}

		// If we would emit no arguments, then omit the parentheses entirely. Otherwise,
		// we'll wind up with a "most vexing parse" situation.
		if (args.empty())
			statement("constexpr sampler ",
			          type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
			          ";");
		else
			statement("constexpr sampler ",
			          type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
			          "(", merge(args), ");");
	}

	// Emit dynamic buffers here.
	for (auto &dynamic_buffer : buffers_requiring_dynamic_offset)
	{
		if (!dynamic_buffer.second.second)
		{
			// Could happen if no buffer was used at requested binding point.
			continue;
		}

		const auto &var = get<SPIRVariable>(dynamic_buffer.second.second);
		uint32_t var_id = var.self;
		const auto &type = get_variable_data_type(var);
		string name = to_name(var.self);
		uint32_t desc_set = get_decoration(var.self, DecorationDescriptorSet);
		uint32_t arg_id = argument_buffer_ids[desc_set];
		uint32_t base_index = dynamic_buffer.second.first;

		if (is_array(type))
		{
			is_using_builtin_array = true;
			statement(get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, true), name,
			          type_to_array_glsl(type, var_id), " =");

			uint32_t array_size = get_resource_array_size(type, var_id);
			if (array_size == 0)
				SPIRV_CROSS_THROW("Size of runtime array with dynamic offset could not be determined from resource bindings.");

			begin_scope();

			for (uint32_t i = 0; i < array_size; i++)
			{
				statement("(", get_argument_address_space(var), " ", type_to_glsl(type), "* ",
				          to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ",
				          to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"),
				          "[", i, "]", " + ", to_name(dynamic_offsets_buffer_id), "[", base_index + i, "]),");
			}

			end_scope_decl();
			statement_no_indent("");
			is_using_builtin_array = false;
		}
		else
		{
			statement(get_argument_address_space(var), " auto& ", to_restrict(var_id, true), name, " = *(",
			          get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((",
			          get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".",
			          ensure_valid_name(name, "m"), " + ", to_name(dynamic_offsets_buffer_id), "[", base_index, "]);");
		}
	}

	bool has_runtime_array_declaration = false;
	for (SPIRVariable *arg : entry_point_bindings)
	{
		const auto &var = *arg;
		const auto &type = get_variable_data_type(var);
		const auto &buffer_type = get_variable_element_type(var);
		const string name = to_name(var.self);

		if (is_var_runtime_size_array(var))
		{
			if (msl_options.argument_buffers_tier < Options::ArgumentBuffersTier::Tier2)
			{
				SPIRV_CROSS_THROW("Unsized array of descriptors requires argument buffer tier 2");
			}

			string resource_name;
			if (descriptor_set_is_argument_buffer(get_decoration(var.self, DecorationDescriptorSet)))
				resource_name = ir.meta[var.self].decoration.qualified_alias;
			else
				resource_name = name + "_";

			switch (type.basetype)
			{
			case SPIRType::Image:
			case SPIRType::Sampler:
			case SPIRType::AccelerationStructure:
				statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};");
				break;
			case SPIRType::SampledImage:
				statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};");
				// Unsupported with argument buffer for now.
				statement("spvDescriptorArray<sampler> ", name, "Smplr {", name, "Smplr_};");
				break;
			case SPIRType::Struct:
				statement("spvDescriptorArray<", get_argument_address_space(var), " ", type_to_glsl(buffer_type), "*> ",
				          name, " {", resource_name, "};");
				break;
			default:
				break;
			}
			has_runtime_array_declaration = true;
		}
		else if (!type.array.empty() && type.basetype == SPIRType::Struct)
		{
			// Emit only buffer arrays here.
			statement(get_argument_address_space(var), " ", type_to_glsl(buffer_type), "* ",
			          to_restrict(var.self, true), name, "[] =");
			begin_scope();
			uint32_t array_size = get_resource_array_size(type, var.self);
			for (uint32_t i = 0; i < array_size; ++i)
				statement(name, "_", i, ",");
			end_scope_decl();
			statement_no_indent("");
		}
	}

	if (has_runtime_array_declaration)
		statement_no_indent("");

	// Emit buffer aliases here.
	for (auto &var_id : buffer_aliases_discrete)
	{
		const auto &var = get<SPIRVariable>(var_id);
		const auto &type = get_variable_data_type(var);
		auto addr_space = get_argument_address_space(var);
		auto name = to_name(var_id);

		uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
		uint32_t desc_binding = get_decoration(var_id, DecorationBinding);
		auto alias_name = join("spvBufferAliasSet", desc_set, "Binding", desc_binding);

		statement(addr_space, " auto& ", to_restrict(var_id, true),
		          name,
		          " = *(", addr_space, " ", type_to_glsl(type), "*)", alias_name, ";");
	}
	// Discrete descriptors are processed in entry point emission every compiler iteration.
	buffer_aliases_discrete.clear();

	for (auto &var_pair : buffer_aliases_argument)
	{
		uint32_t var_id = var_pair.first;
		uint32_t alias_id = var_pair.second;

		const auto &var = get<SPIRVariable>(var_id);
		const auto &type = get_variable_data_type(var);
		auto addr_space = get_argument_address_space(var);

		if (type.array.empty())
		{
			statement(addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
			          type_to_glsl(type), "&)", ir.meta[alias_id].decoration.qualified_alias, ";");
		}
		else
		{
			const char *desc_addr_space = descriptor_address_space(var_id, var.storage, "thread");

			// Esoteric type cast. Reference to array of pointers.
			// Auto here defers to UBO or SSBO. The address space of the reference needs to refer to the
			// address space of the argument buffer itself, which is usually constant, but can be const device for
			// large argument buffers.
			is_using_builtin_array = true;
			statement(desc_addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
			          type_to_glsl(type), "* ", desc_addr_space, " (&)",
			          type_to_array_glsl(type, var_id), ")", ir.meta[alias_id].decoration.qualified_alias, ";");
			is_using_builtin_array = false;
		}
	}

	// Emit disabled fragment outputs.
	std::sort(disabled_frag_outputs.begin(), disabled_frag_outputs.end());
	for (uint32_t var_id : disabled_frag_outputs)
	{
		auto &var = get<SPIRVariable>(var_id);
		add_local_variable_name(var_id);
		statement(CompilerGLSL::variable_decl(var), ";");
		var.deferred_declaration = false;
	}
}

string CompilerMSL::compile()
{
	replace_illegal_entry_point_names();
	ir.fixup_reserved_names();

	// Do not deal with GLES-isms like precision, older extensions and such.
	options.vulkan_semantics = true;
	options.es = false;
	options.version = 450;
	backend.null_pointer_literal = "nullptr";
	backend.float_literal_suffix = false;
	backend.uint32_t_literal_suffix = true;
	backend.int16_t_literal_suffix = "";
	backend.uint16_t_literal_suffix = "";
	backend.basic_int_type = "int";
	backend.basic_uint_type = "uint";
	backend.basic_int8_type = "char";
	backend.basic_uint8_type = "uchar";
	backend.basic_int16_type = "short";
	backend.basic_uint16_type = "ushort";
	backend.boolean_mix_function = "select";
	backend.swizzle_is_function = false;
	backend.shared_is_implied = false;
	backend.use_initializer_list = true;
	backend.use_typed_initializer_list = true;
	backend.native_row_major_matrix = false;
	backend.unsized_array_supported = false;
	backend.can_declare_arrays_inline = false;
	backend.allow_truncated_access_chain = true;
	backend.comparison_image_samples_scalar = true;
	backend.native_pointers = true;
	backend.nonuniform_qualifier = "";
	backend.support_small_type_sampling_result = true;
	backend.supports_empty_struct = true;
	backend.support_64bit_switch = true;
	backend.boolean_in_struct_remapped_type = SPIRType::Short;

	// Allow Metal to use the array<T> template unless we force it off.
	backend.can_return_array = !msl_options.force_native_arrays;
	backend.array_is_value_type = !msl_options.force_native_arrays;
	// Arrays which are part of buffer objects are never considered to be value types (just plain C-style).
	backend.array_is_value_type_in_buffer_blocks = false;
	backend.support_pointer_to_pointer = true;
	backend.implicit_c_integer_promotion_rules = true;

	capture_output_to_buffer = msl_options.capture_output_to_buffer;
	is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;

	// Initialize array here rather than constructor, MSVC 2013 workaround.
	for (auto &id : next_metal_resource_ids)
		id = 0;

	fixup_anonymous_struct_names();
	fixup_type_alias();
	replace_illegal_names();
	sync_entry_point_aliases_and_names();

	build_function_control_flow_graphs_and_analyze();
	update_active_builtins();
	analyze_image_and_sampler_usage();
	analyze_sampled_image_usage();
	analyze_interlocked_resource_usage();
	preprocess_op_codes();
	build_implicit_builtins();

	if (needs_manual_helper_invocation_updates() &&
	    (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
	{
		string builtin_helper_invocation = builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput);
		string discard_expr = join(builtin_helper_invocation, " = true, discard_fragment()");
		if (msl_options.force_fragment_with_side_effects_execution)
			discard_expr = join("!", builtin_helper_invocation, " ? (", discard_expr, ") : (void)0");
		backend.discard_literal = discard_expr;
		backend.demote_literal = discard_expr;
	}
	else
	{
		backend.discard_literal = "discard_fragment()";
		backend.demote_literal = "discard_fragment()";
	}

	fixup_image_load_store_access();

	set_enabled_interface_variables(get_active_interface_variables());
	if (msl_options.force_active_argument_buffer_resources)
		activate_argument_buffer_resources();

	if (swizzle_buffer_id)
		add_active_interface_variable(swizzle_buffer_id);
	if (buffer_size_buffer_id)
		add_active_interface_variable(buffer_size_buffer_id);
	if (view_mask_buffer_id)
		add_active_interface_variable(view_mask_buffer_id);
	if (dynamic_offsets_buffer_id)
		add_active_interface_variable(dynamic_offsets_buffer_id);
	if (builtin_layer_id)
		add_active_interface_variable(builtin_layer_id);
	if (builtin_dispatch_base_id && !msl_options.supports_msl_version(1, 2))
		add_active_interface_variable(builtin_dispatch_base_id);
	if (builtin_sample_mask_id)
		add_active_interface_variable(builtin_sample_mask_id);
	if (builtin_frag_depth_id)
		add_active_interface_variable(builtin_frag_depth_id);

	// Create structs to hold input, output and uniform variables.
	// Do output first to ensure out. is declared at top of entry function.
	qual_pos_var_name = "";
	stage_out_var_id = add_interface_block(StorageClassOutput);
	patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
	stage_in_var_id = add_interface_block(StorageClassInput);
	if (is_tese_shader())
		patch_stage_in_var_id = add_interface_block(StorageClassInput, true);

	if (is_tesc_shader())
		stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
	if (is_tessellation_shader())
		stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);

	// Metal vertex functions that define no output must disable rasterization and return void.
	if (!stage_out_var_id)
		is_rasterization_disabled = true;

	// Convert the use of global variables to recursively-passed function parameters
	localize_global_variables();
	extract_global_variables_from_functions();

	// Mark any non-stage-in structs to be tightly packed.
	mark_packable_structs();
	reorder_type_alias();

	// Add fixup hooks required by shader inputs and outputs. This needs to happen before
	// the loop, so the hooks aren't added multiple times.
	fix_up_shader_inputs_outputs();

	// If we are using argument buffers, we create argument buffer structures for them here.
	// These buffers will be used in the entry point, not the individual resources.
	if (msl_options.argument_buffers)
	{
		if (!msl_options.supports_msl_version(2, 0))
			SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
		analyze_argument_buffers();
	}

	uint32_t pass_count = 0;
	do
	{
		reset(pass_count);

		// Start bindings at zero.
		next_metal_resource_index_buffer = 0;
		next_metal_resource_index_texture = 0;
		next_metal_resource_index_sampler = 0;
		for (auto &id : next_metal_resource_ids)
			id = 0;

		// Move constructor for this type is broken on GCC 4.9 ...
		buffer.reset();

		emit_header();
		emit_custom_templates();
		emit_custom_functions();
		emit_specialization_constants_and_structs();
		emit_resources();
		emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());

		pass_count++;
	} while (is_forcing_recompilation());

	return buffer.str();
}

// Register the need to output any custom functions.
void CompilerMSL::preprocess_op_codes()
{
	OpCodePreprocessor preproc(*this);
	traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);

	suppress_missing_prototypes = preproc.suppress_missing_prototypes;

	if (preproc.uses_atomics)
	{
		add_header_line("#include <metal_atomic>");
		add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
	}

	// Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to
	// resources must disable rasterization and return void.
	if ((preproc.uses_buffer_write && !msl_options.supports_msl_version(2, 1)) ||
	    (preproc.uses_image_write && !msl_options.supports_msl_version(2, 2)))
		is_rasterization_disabled = true;

	// Tessellation control shaders are run as compute functions in Metal, and so
	// must capture their output to a buffer.
	if (is_tesc_shader() || (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
	{
		is_rasterization_disabled = true;
		capture_output_to_buffer = true;
	}

	if (preproc.needs_subgroup_invocation_id)
		needs_subgroup_invocation_id = true;
	if (preproc.needs_subgroup_size)
		needs_subgroup_size = true;
	// build_implicit_builtins() hasn't run yet, and in fact, this needs to execute
	// before then so that gl_SampleID will get added; so we also need to check if
	// that function would add gl_FragCoord.
	if (preproc.needs_sample_id || msl_options.force_sample_rate_shading ||
	    (is_sample_rate() && (active_input_builtins.get(BuiltInFragCoord) ||
	                          (need_subpass_input_ms && !msl_options.use_framebuffer_fetch_subpasses))))
		needs_sample_id = true;
	if (preproc.needs_helper_invocation)
		needs_helper_invocation = true;

	// OpKill is removed by the parser, so we need to identify those by inspecting
	// blocks.
	ir.for_each_typed_id<SPIRBlock>([&preproc](uint32_t, SPIRBlock &block) {
		if (block.terminator == SPIRBlock::Kill)
			preproc.uses_discard = true;
	});

	// Fragment shaders that both write to storage resources and discard fragments
	// need checks on the writes, to work around Metal allowing these writes despite
	// the fragment being dead. We also require to force Metal to execute fragment
	// shaders instead of being prematurely discarded.
	if (preproc.uses_discard && (preproc.uses_buffer_write || preproc.uses_image_write))
	{
		bool should_enable = (msl_options.check_discarded_frag_stores || msl_options.force_fragment_with_side_effects_execution);
		frag_shader_needs_discard_checks |= msl_options.check_discarded_frag_stores;
		needs_helper_invocation |= should_enable;
		// Fragment discard store checks imply manual HelperInvocation updates.
		msl_options.manual_helper_invocation_updates |= should_enable;
	}

	if (is_intersection_query())
	{
		add_header_line("#if __METAL_VERSION__ >= 230");
		add_header_line("#include <metal_raytracing>");
		add_header_line("using namespace metal::raytracing;");
		add_header_line("#endif");
	}
}

// Move the Private and Workgroup global variables to the entry function.
// Non-constant variables cannot have global scope in Metal.
void CompilerMSL::localize_global_variables()
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	auto iter = global_variables.begin();
	while (iter != global_variables.end())
	{
		uint32_t v_id = *iter;
		auto &var = get<SPIRVariable>(v_id);
		if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
		{
			if (!variable_is_lut(var))
				entry_func.add_local_variable(v_id);
			iter = global_variables.erase(iter);
		}
		else
			iter++;
	}
}

// For any global variable accessed directly by a function,
// extract that variable and add it as an argument to that function.
void CompilerMSL::extract_global_variables_from_functions()
{
	// Uniforms
	unordered_set<uint32_t> global_var_ids;
	ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
		// Some builtins resolve directly to a function call which does not need any declared variables.
		// Skip these.
		if (var.storage == StorageClassInput && has_decoration(var.self, DecorationBuiltIn))
		{
			auto bi_type = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
			if (bi_type == BuiltInHelperInvocation && !needs_manual_helper_invocation_updates())
				return;
			if (bi_type == BuiltInHelperInvocation && needs_manual_helper_invocation_updates())
			{
				if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
					SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
				else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
				// Make sure this is declared and initialized.
				// Force this to have the proper name.
				set_name(var.self, builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput));
				auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
				entry_func.add_local_variable(var.self);
				vars_needing_early_declaration.push_back(var.self);
				entry_func.fixup_hooks_in.push_back([this, &var]()
				                                    { statement(to_name(var.self), " = simd_is_helper_thread();"); });
			}
		}

		if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
		    var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
		    var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
		{
			global_var_ids.insert(var.self);
		}
	});

	// Local vars that are declared in the main function and accessed directly by a function
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	for (auto &var : entry_func.local_variables)
		if (get<SPIRVariable>(var).storage != StorageClassFunction)
			global_var_ids.insert(var);

	std::set<uint32_t> added_arg_ids;
	unordered_set<uint32_t> processed_func_ids;
	extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
}

// MSL does not support the use of global variables for shader input content.
// For any global variable accessed directly by the specified function, extract that variable,
// add it as an argument to that function, and the arg to the added_arg_ids collection.
void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
                                                         unordered_set<uint32_t> &global_var_ids,
                                                         unordered_set<uint32_t> &processed_func_ids)
{
	// Avoid processing a function more than once
	if (processed_func_ids.find(func_id) != processed_func_ids.end())
	{
		// Return function global variables
		added_arg_ids = function_global_vars[func_id];
		return;
	}

	processed_func_ids.insert(func_id);

	auto &func = get<SPIRFunction>(func_id);

	// Recursively establish global args added to functions on which we depend.
	for (auto block : func.blocks)
	{
		auto &b = get<SPIRBlock>(block);
		for (auto &i : b.ops)
		{
			auto ops = stream(i);
			auto op = static_cast<Op>(i.op);

			switch (op)
			{
			case OpLoad:
			case OpInBoundsAccessChain:
			case OpAccessChain:
			case OpPtrAccessChain:
			case OpArrayLength:
			{
				uint32_t base_id = ops[2];
				if (global_var_ids.find(base_id) != global_var_ids.end())
					added_arg_ids.insert(base_id);

				// Use Metal's native frame-buffer fetch API for subpass inputs.
				auto &type = get<SPIRType>(ops[0]);
				if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
				    (!msl_options.use_framebuffer_fetch_subpasses))
				{
					// Implicitly reads gl_FragCoord.
					assert(builtin_frag_coord_id != 0);
					added_arg_ids.insert(builtin_frag_coord_id);
					if (msl_options.multiview)
					{
						// Implicitly reads gl_ViewIndex.
						assert(builtin_view_idx_id != 0);
						added_arg_ids.insert(builtin_view_idx_id);
					}
					else if (msl_options.arrayed_subpass_input)
					{
						// Implicitly reads gl_Layer.
						assert(builtin_layer_id != 0);
						added_arg_ids.insert(builtin_layer_id);
					}
				}

				break;
			}

			case OpFunctionCall:
			{
				// First see if any of the function call args are globals
				for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
				{
					uint32_t arg_id = ops[arg_idx];
					if (global_var_ids.find(arg_id) != global_var_ids.end())
						added_arg_ids.insert(arg_id);
				}

				// Then recurse into the function itself to extract globals used internally in the function
				uint32_t inner_func_id = ops[2];
				std::set<uint32_t> inner_func_args;
				extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
				                                       processed_func_ids);
				added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
				break;
			}

			case OpStore:
			{
				uint32_t base_id = ops[0];
				if (global_var_ids.find(base_id) != global_var_ids.end())
				{
					added_arg_ids.insert(base_id);

					if (msl_options.input_attachment_is_ds_attachment && base_id == builtin_frag_depth_id)
						writes_to_depth = true;
				}

				uint32_t rvalue_id = ops[1];
				if (global_var_ids.find(rvalue_id) != global_var_ids.end())
					added_arg_ids.insert(rvalue_id);

				if (needs_frag_discard_checks())
					added_arg_ids.insert(builtin_helper_invocation_id);

				break;
			}

			case OpSelect:
			{
				uint32_t base_id = ops[3];
				if (global_var_ids.find(base_id) != global_var_ids.end())
					added_arg_ids.insert(base_id);
				base_id = ops[4];
				if (global_var_ids.find(base_id) != global_var_ids.end())
					added_arg_ids.insert(base_id);
				break;
			}

			case OpAtomicExchange:
			case OpAtomicCompareExchange:
			case OpAtomicStore:
			case OpAtomicIIncrement:
			case OpAtomicIDecrement:
			case OpAtomicIAdd:
			case OpAtomicFAddEXT:
			case OpAtomicISub:
			case OpAtomicSMin:
			case OpAtomicUMin:
			case OpAtomicSMax:
			case OpAtomicUMax:
			case OpAtomicAnd:
			case OpAtomicOr:
			case OpAtomicXor:
			case OpImageWrite:
			{
				if (needs_frag_discard_checks())
					added_arg_ids.insert(builtin_helper_invocation_id);
				uint32_t ptr = 0;
				if (op == OpAtomicStore || op == OpImageWrite)
					ptr = ops[0];
				else
					ptr = ops[2];
				if (global_var_ids.find(ptr) != global_var_ids.end())
					added_arg_ids.insert(ptr);
				break;
			}

			// Emulate texture2D atomic operations
			case OpImageTexelPointer:
			{
				// When using the pointer, we need to know which variable it is actually loaded from.
				uint32_t base_id = ops[2];
				auto *var = maybe_get_backing_variable(base_id);
				if (var)
				{
					if (atomic_image_vars_emulated.count(var->self) &&
					    !get<SPIRType>(var->basetype).array.empty())
					{
						SPIRV_CROSS_THROW(
								"Cannot emulate array of storage images with atomics. Use MSL 3.1 for native support.");
					}

					if (global_var_ids.find(base_id) != global_var_ids.end())
						added_arg_ids.insert(base_id);
				}
				break;
			}

			case OpExtInst:
			{
				uint32_t extension_set = ops[2];
				if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
				{
					auto op_450 = static_cast<GLSLstd450>(ops[3]);
					switch (op_450)
					{
					case GLSLstd450InterpolateAtCentroid:
					case GLSLstd450InterpolateAtSample:
					case GLSLstd450InterpolateAtOffset:
					{
						// For these, we really need the stage-in block. It is theoretically possible to pass the
						// interpolant object, but a) doing so would require us to create an entirely new variable
						// with Interpolant type, and b) if we have a struct or array, handling all the members and
						// elements could get unwieldy fast.
						added_arg_ids.insert(stage_in_var_id);
						break;
					}

					case GLSLstd450Modf:
					case GLSLstd450Frexp:
					{
						uint32_t base_id = ops[5];
						if (global_var_ids.find(base_id) != global_var_ids.end())
							added_arg_ids.insert(base_id);
						break;
					}

					default:
						break;
					}
				}
				break;
			}

			case OpGroupNonUniformInverseBallot:
			{
				added_arg_ids.insert(builtin_subgroup_invocation_id_id);
				break;
			}

			case OpGroupNonUniformBallotFindLSB:
			case OpGroupNonUniformBallotFindMSB:
			{
				added_arg_ids.insert(builtin_subgroup_size_id);
				break;
			}

			case OpGroupNonUniformBallotBitCount:
			{
				auto operation = static_cast<GroupOperation>(ops[3]);
				switch (operation)
				{
				case GroupOperationReduce:
					added_arg_ids.insert(builtin_subgroup_size_id);
					break;
				case GroupOperationInclusiveScan:
				case GroupOperationExclusiveScan:
					added_arg_ids.insert(builtin_subgroup_invocation_id_id);
					break;
				default:
					break;
				}
				break;
			}

			case OpDemoteToHelperInvocation:
				if (needs_manual_helper_invocation_updates() &&
				    (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
					added_arg_ids.insert(builtin_helper_invocation_id);
				break;

			case OpIsHelperInvocationEXT:
				if (needs_manual_helper_invocation_updates())
					added_arg_ids.insert(builtin_helper_invocation_id);
				break;

			case OpRayQueryInitializeKHR:
			case OpRayQueryProceedKHR:
			case OpRayQueryTerminateKHR:
			case OpRayQueryGenerateIntersectionKHR:
			case OpRayQueryConfirmIntersectionKHR:
			{
				// Ray query accesses memory directly, need check pass down object if using Private storage class.
				uint32_t base_id = ops[0];
				if (global_var_ids.find(base_id) != global_var_ids.end())
					added_arg_ids.insert(base_id);
				break;
			}

			case OpRayQueryGetRayTMinKHR:
			case OpRayQueryGetRayFlagsKHR:
			case OpRayQueryGetWorldRayOriginKHR:
			case OpRayQueryGetWorldRayDirectionKHR:
			case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
			case OpRayQueryGetIntersectionTypeKHR:
			case OpRayQueryGetIntersectionTKHR:
			case OpRayQueryGetIntersectionInstanceCustomIndexKHR:
			case OpRayQueryGetIntersectionInstanceIdKHR:
			case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
			case OpRayQueryGetIntersectionGeometryIndexKHR:
			case OpRayQueryGetIntersectionPrimitiveIndexKHR:
			case OpRayQueryGetIntersectionBarycentricsKHR:
			case OpRayQueryGetIntersectionFrontFaceKHR:
			case OpRayQueryGetIntersectionObjectRayDirectionKHR:
			case OpRayQueryGetIntersectionObjectRayOriginKHR:
			case OpRayQueryGetIntersectionObjectToWorldKHR:
			case OpRayQueryGetIntersectionWorldToObjectKHR:
			{
				// Ray query accesses memory directly, need check pass down object if using Private storage class.
				uint32_t base_id = ops[2];
				if (global_var_ids.find(base_id) != global_var_ids.end())
					added_arg_ids.insert(base_id);
				break;
			}

			default:
				break;
			}

			if (needs_manual_helper_invocation_updates() && b.terminator == SPIRBlock::Kill &&
			    (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
				added_arg_ids.insert(builtin_helper_invocation_id);

			// TODO: Add all other operations which can affect memory.
			// We should consider a more unified system here to reduce boiler-plate.
			// This kind of analysis is done in several places ...
		}
	}

	function_global_vars[func_id] = added_arg_ids;

	// Add the global variables as arguments to the function
	if (func_id != ir.default_entry_point)
	{
		bool control_point_added_in = false;
		bool control_point_added_out = false;
		bool patch_added_in = false;
		bool patch_added_out = false;

		for (uint32_t arg_id : added_arg_ids)
		{
			auto &var = get<SPIRVariable>(arg_id);
			uint32_t type_id = var.basetype;
			auto *p_type = &get<SPIRType>(type_id);
			BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));

			bool is_patch = has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type);
			bool is_block = has_decoration(p_type->self, DecorationBlock);
			bool is_control_point_storage =
			    !is_patch && ((is_tessellation_shader() && var.storage == StorageClassInput) ||
			                  (is_tesc_shader() && var.storage == StorageClassOutput));
			bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput;
			bool is_builtin = is_builtin_variable(var);
			bool variable_is_stage_io =
					!is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
					bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
					p_type->basetype == SPIRType::Struct;
			bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) &&
			                                        variable_is_stage_io;

			// If output is masked it is not considered part of the global stage IO interface.
			if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput)
				is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var);

			if (is_redirected_to_global_stage_io)
			{
				// Tessellation control shaders see inputs and per-point outputs as arrays.
				// Similarly, tessellation evaluation shaders see per-point inputs as arrays.
				// We collected them into a structure; we must pass the array of this
				// structure to the function.
				std::string name;
				if (is_patch)
					name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name;
				else
					name = var.storage == StorageClassInput ? "gl_in" : "gl_out";

				if (var.storage == StorageClassOutput && has_decoration(p_type->self, DecorationBlock))
				{
					// If we're redirecting a block, we might still need to access the original block
					// variable if we're masking some members.
					for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++)
					{
						if (is_stage_output_block_member_masked(var, mbr_idx, true))
						{
							func.add_parameter(var.basetype, var.self, true);
							break;
						}
					}
				}

				if (var.storage == StorageClassInput)
				{
					auto &added_in = is_patch ? patch_added_in : control_point_added_in;
					if (added_in)
						continue;
					arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id;
					added_in = true;
				}
				else if (var.storage == StorageClassOutput)
				{
					auto &added_out = is_patch ? patch_added_out : control_point_added_out;
					if (added_out)
						continue;
					arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id;
					added_out = true;
				}

				type_id = get<SPIRVariable>(arg_id).basetype;
				uint32_t next_id = ir.increase_bound_by(1);
				func.add_parameter(type_id, next_id, true);
				set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);

				set_name(next_id, name);
				if (is_tese_shader() && msl_options.raw_buffer_tese_input && var.storage == StorageClassInput)
					set_decoration(next_id, DecorationNonWritable);
			}
			else if (is_builtin && has_decoration(p_type->self, DecorationBlock))
			{
				// Get the pointee type
				type_id = get_pointee_type_id(type_id);
				p_type = &get<SPIRType>(type_id);

				uint32_t mbr_idx = 0;
				for (auto &mbr_type_id : p_type->member_types)
				{
					BuiltIn builtin = BuiltInMax;
					is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
					if (is_builtin && has_active_builtin(builtin, var.storage))
					{
						// Add a arg variable with the same type and decorations as the member
						uint32_t next_ids = ir.increase_bound_by(2);
						uint32_t ptr_type_id = next_ids + 0;
						uint32_t var_id = next_ids + 1;

						// Make sure we have an actual pointer type,
						// so that we will get the appropriate address space when declaring these builtins.
						auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
						ptr.self = mbr_type_id;
						ptr.storage = var.storage;
						ptr.pointer = true;
						ptr.pointer_depth++;
						ptr.parent_type = mbr_type_id;

						func.add_parameter(mbr_type_id, var_id, true);
						set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
						ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
					}
					mbr_idx++;
				}
			}
			else
			{
				uint32_t next_id = ir.increase_bound_by(1);
				func.add_parameter(type_id, next_id, true);
				set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);

				// Ensure the new variable has all the same meta info
				ir.meta[next_id] = ir.meta[arg_id];
			}
		}
	}
}

// For all variables that are some form of non-input-output interface block, mark that all the structs
// that are recursively contained within the type referenced by that variable should be packed tightly.
void CompilerMSL::mark_packable_structs()
{
	ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
		if (var.storage != StorageClassFunction && !is_hidden_variable(var))
		{
			auto &type = this->get<SPIRType>(var.basetype);
			if (type.pointer &&
			    (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
			     type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
			    (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
				mark_as_packable(type);
		}

		if (var.storage == StorageClassWorkgroup)
		{
			auto *type = &this->get<SPIRType>(var.basetype);
			if (type->basetype == SPIRType::Struct)
				mark_as_workgroup_struct(*type);
		}
	});

	// Physical storage buffer pointers can appear outside of the context of a variable, if the address
	// is calculated from a ulong or uvec2 and cast to a pointer, so check if they need to be packed too.
	ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
		if (type.basetype == SPIRType::Struct && type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
			mark_as_packable(type);
	});
}

// If the specified type is a struct, it and any nested structs
// are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration,
void CompilerMSL::mark_as_packable(SPIRType &type)
{
	// If this is not the base type (eg. it's a pointer or array), tunnel down
	if (type.parent_type)
	{
		mark_as_packable(get<SPIRType>(type.parent_type));
		return;
	}

	// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
	if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked))
	{
		set_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked);

		// Recurse
		uint32_t mbr_cnt = uint32_t(type.member_types.size());
		for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
		{
			uint32_t mbr_type_id = type.member_types[mbr_idx];
			auto &mbr_type = get<SPIRType>(mbr_type_id);
			mark_as_packable(mbr_type);
			if (mbr_type.type_alias)
			{
				auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
				mark_as_packable(mbr_type_alias);
			}
		}
	}
}

// If the specified type is a struct, it and any nested structs
// are marked as used with workgroup storage using the SPIRVCrossDecorationWorkgroupStruct decoration.
void CompilerMSL::mark_as_workgroup_struct(SPIRType &type)
{
	// If this is not the base type (eg. it's a pointer or array), tunnel down
	if (type.parent_type)
	{
		mark_as_workgroup_struct(get<SPIRType>(type.parent_type));
		return;
	}

	// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
	if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
	{
		set_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct);

		// Recurse
		uint32_t mbr_cnt = uint32_t(type.member_types.size());
		for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
		{
			uint32_t mbr_type_id = type.member_types[mbr_idx];
			auto &mbr_type = get<SPIRType>(mbr_type_id);
			mark_as_workgroup_struct(mbr_type);
			if (mbr_type.type_alias)
			{
				auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
				mark_as_workgroup_struct(mbr_type_alias);
			}
		}
	}
}

// If a shader input exists at the location, it is marked as being used by this shader
void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
                                                  StorageClass storage, bool fallback)
{
	uint32_t count = type_to_location_count(type);
	switch (storage)
	{
	case StorageClassInput:
		for (uint32_t i = 0; i < count; i++)
		{
			location_inputs_in_use.insert(location + i);
			if (fallback)
				location_inputs_in_use_fallback.insert(location + i);
		}
		break;
	case StorageClassOutput:
		for (uint32_t i = 0; i < count; i++)
		{
			location_outputs_in_use.insert(location + i);
			if (fallback)
				location_outputs_in_use_fallback.insert(location + i);
		}
		break;
	default:
		return;
	}
}

uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
{
	auto itr = fragment_output_components.find(location);
	if (itr == end(fragment_output_components))
		return 4;
	else
		return itr->second;
}

uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype)
{
	assert(components > 1);
	uint32_t new_type_id = ir.increase_bound_by(1);
	const auto *p_old_type = &get<SPIRType>(type_id);
	const SPIRType *old_ptr_t = nullptr;
	const SPIRType *old_array_t = nullptr;

	if (is_pointer(*p_old_type))
	{
		old_ptr_t = p_old_type;
		p_old_type = &get_pointee_type(*old_ptr_t);
	}

	if (is_array(*p_old_type))
	{
		old_array_t = p_old_type;
		p_old_type = &get_type(old_array_t->parent_type);
	}

	auto *type = &set<SPIRType>(new_type_id, *p_old_type);
	assert(is_scalar(*type) || is_vector(*type));
	type->op = OpTypeVector;
	type->vecsize = components;
	if (basetype != SPIRType::Unknown)
		type->basetype = basetype;
	type->self = new_type_id;
	// We want parent type to point to the scalar type.
	type->parent_type = is_scalar(*p_old_type) ? TypeID(p_old_type->self) : p_old_type->parent_type;
	assert(is_scalar(get<SPIRType>(type->parent_type)));
	type->array.clear();
	type->array_size_literal.clear();
	type->pointer = false;

	if (old_array_t)
	{
		uint32_t array_type_id = ir.increase_bound_by(1);
		type = &set<SPIRType>(array_type_id, *type);
		type->op = OpTypeArray;
		type->parent_type = new_type_id;
		type->array = old_array_t->array;
		type->array_size_literal = old_array_t->array_size_literal;
		new_type_id = array_type_id;
	}

	if (old_ptr_t)
	{
		uint32_t ptr_type_id = ir.increase_bound_by(1);
		type = &set<SPIRType>(ptr_type_id, *type);
		type->op = OpTypePointer;
		type->parent_type = new_type_id;
		type->storage = old_ptr_t->storage;
		type->pointer = true;
		type->pointer_depth++;
		new_type_id = ptr_type_id;
	}

	return new_type_id;
}

uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective)
{
	uint32_t new_type_id = ir.increase_bound_by(1);
	SPIRType &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
	type.basetype = SPIRType::Interpolant;
	type.parent_type = type_id;
	// In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself.
	// Add this decoration so we know which argument to pass to the template.
	if (is_noperspective)
		set_decoration(new_type_id, DecorationNoPerspective);
	return new_type_id;
}

bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
                                                            SPIRVariable &var,
                                                            const SPIRType &type,
                                                            InterfaceBlockMeta &meta)
{
	// Deal with Component decorations.
	const InterfaceBlockMeta::LocationMeta *location_meta = nullptr;
	uint32_t location = ~0u;
	if (has_decoration(var.self, DecorationLocation))
	{
		location = get_decoration(var.self, DecorationLocation);
		auto location_meta_itr = meta.location_meta.find(location);
		if (location_meta_itr != end(meta.location_meta))
			location_meta = &location_meta_itr->second;
	}

	// Check if we need to pad fragment output to match a certain number of components.
	if (location_meta)
	{
		bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
		                           msl_options.pad_fragment_output_components &&
		                           get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;

		auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
		uint32_t start_component = get_decoration(var.self, DecorationComponent);
		uint32_t type_components = type.vecsize;
		uint32_t num_components = location_meta->num_components;

		if (pad_fragment_output)
		{
			uint32_t locn = get_decoration(var.self, DecorationLocation);
			num_components = max<uint32_t>(num_components, get_target_components_for_fragment_location(locn));
		}

		// We have already declared an IO block member as m_location_N.
		// Just emit an early-declared variable and fixup as needed.
		// Arrays need to be unrolled here since each location might need a different number of components.
		entry_func.add_local_variable(var.self);
		vars_needing_early_declaration.push_back(var.self);

		if (var.storage == StorageClassInput)
		{
			entry_func.fixup_hooks_in.push_back([=, &type, &var]() {
				if (!type.array.empty())
				{
					uint32_t array_size = to_array_size_literal(type);
					for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
					{
						statement(to_name(var.self), "[", loc_off, "]", " = ", ib_var_ref,
						          ".m_location_", location + loc_off,
						          vector_swizzle(type_components, start_component), ";");
					}
				}
				else
				{
					statement(to_name(var.self), " = ", ib_var_ref, ".m_location_", location,
					          vector_swizzle(type_components, start_component), ";");
				}
			});
		}
		else
		{
			entry_func.fixup_hooks_out.push_back([=, &type, &var]() {
				if (!type.array.empty())
				{
					uint32_t array_size = to_array_size_literal(type);
					for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
					{
						statement(ib_var_ref, ".m_location_", location + loc_off,
						          vector_swizzle(type_components, start_component), " = ",
						          to_name(var.self), "[", loc_off, "];");
					}
				}
				else
				{
					statement(ib_var_ref, ".m_location_", location,
					          vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";");
				}
			});
		}
		return true;
	}
	else
		return false;
}

void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
                                                        SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta)
{
	bool is_builtin = is_builtin_variable(var);
	BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
	bool is_flat = has_decoration(var.self, DecorationFlat);
	bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
	bool is_centroid = has_decoration(var.self, DecorationCentroid);
	bool is_sample = has_decoration(var.self, DecorationSample);

	// Add a reference to the variable type to the interface struct.
	uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
	uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
	var.basetype = type_id;

	type_id = get_pointee_type_id(var.basetype);
	if (meta.strip_array && is_array(get<SPIRType>(type_id)))
		type_id = get<SPIRType>(type_id).parent_type;
	auto &type = get<SPIRType>(type_id);
	uint32_t target_components = 0;
	uint32_t type_components = type.vecsize;

	bool padded_output = false;
	bool padded_input = false;
	uint32_t start_component = 0;

	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);

	if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta))
		return;

	bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
	                           msl_options.pad_fragment_output_components &&
	                           get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;

	if (pad_fragment_output)
	{
		uint32_t locn = get_decoration(var.self, DecorationLocation);
		target_components = get_target_components_for_fragment_location(locn);
		if (type_components < target_components)
		{
			// Make a new type here.
			type_id = build_extended_vector_type(type_id, target_components);
			padded_output = true;
		}
	}

	if (storage == StorageClassInput && pull_model_inputs.count(var.self))
		ib_type.member_types.push_back(build_msl_interpolant_type(type_id, is_noperspective));
	else
		ib_type.member_types.push_back(type_id);

	// Give the member a name
	string mbr_name = ensure_valid_name(to_expression(var.self), "m");
	set_member_name(ib_type.self, ib_mbr_idx, mbr_name);

	// Update the original variable reference to include the structure reference
	string qual_var_name = ib_var_ref + "." + mbr_name;
	// If using pull-model interpolation, need to add a call to the correct interpolation method.
	if (storage == StorageClassInput && pull_model_inputs.count(var.self))
	{
		if (is_centroid)
			qual_var_name += ".interpolate_at_centroid()";
		else if (is_sample)
			qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
		else
			qual_var_name += ".interpolate_at_center()";
	}

	if (padded_output || padded_input)
	{
		entry_func.add_local_variable(var.self);
		vars_needing_early_declaration.push_back(var.self);

		if (padded_output)
		{
			entry_func.fixup_hooks_out.push_back([=, &var]() {
				statement(qual_var_name, vector_swizzle(type_components, start_component), " = ", to_name(var.self),
				          ";");
			});
		}
		else
		{
			entry_func.fixup_hooks_in.push_back([=, &var]() {
				statement(to_name(var.self), " = ", qual_var_name, vector_swizzle(type_components, start_component),
				          ";");
			});
		}
	}
	else if (!meta.strip_array)
		ir.meta[var.self].decoration.qualified_alias = qual_var_name;

	if (var.storage == StorageClassOutput && var.initializer != ID(0))
	{
		if (padded_output || padded_input)
		{
			entry_func.fixup_hooks_in.push_back(
			    [=, &var]() { statement(to_name(var.self), " = ", to_expression(var.initializer), ";"); });
		}
		else
		{
			if (meta.strip_array)
			{
				entry_func.fixup_hooks_in.push_back([=, &var]() {
					uint32_t index = get_extended_decoration(var.self, SPIRVCrossDecorationInterfaceMemberIndex);
					auto invocation = to_tesc_invocation_id();
					statement(to_expression(stage_out_ptr_var_id), "[",
					          invocation, "].",
					          to_member_name(ib_type, index), " = ", to_expression(var.initializer), "[",
					          invocation, "];");
				});
			}
			else
			{
				entry_func.fixup_hooks_in.push_back([=, &var]() {
					statement(qual_var_name, " = ", to_expression(var.initializer), ";");
				});
			}
		}
	}

	// Copy the variable location from the original variable to the member
	if (get_decoration_bitset(var.self).get(DecorationLocation))
	{
		uint32_t locn = get_decoration(var.self, DecorationLocation);
		uint32_t comp = get_decoration(var.self, DecorationComponent);
		if (storage == StorageClassInput)
		{
			type_id = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
			var.basetype = type_id;

			type_id = get_pointee_type_id(type_id);
			if (meta.strip_array && is_array(get<SPIRType>(type_id)))
				type_id = get<SPIRType>(type_id).parent_type;
			if (pull_model_inputs.count(var.self))
				ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective);
			else
				ib_type.member_types[ib_mbr_idx] = type_id;
		}
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
		if (comp)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
		mark_location_as_used_by_shader(locn, get<SPIRType>(type_id), storage);
	}
	else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
	{
		uint32_t locn = inputs_by_builtin[builtin].location;
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
		mark_location_as_used_by_shader(locn, type, storage);
	}
	else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
	{
		uint32_t locn = outputs_by_builtin[builtin].location;
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
		mark_location_as_used_by_shader(locn, type, storage);
	}

	if (get_decoration_bitset(var.self).get(DecorationComponent))
	{
		uint32_t component = get_decoration(var.self, DecorationComponent);
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, component);
	}

	if (get_decoration_bitset(var.self).get(DecorationIndex))
	{
		uint32_t index = get_decoration(var.self, DecorationIndex);
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
	}

	// Mark the member as builtin if needed
	if (is_builtin)
	{
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
		if (builtin == BuiltInPosition && storage == StorageClassOutput)
			qual_pos_var_name = qual_var_name;
	}

	// Copy interpolation decorations if needed
	if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
	{
		if (is_flat)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
		if (is_noperspective)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
		if (is_centroid)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
		if (is_sample)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
	}

	set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
}

void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
                                                            SPIRType &ib_type, SPIRVariable &var,
                                                            InterfaceBlockMeta &meta)
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
	uint32_t elem_cnt = 0;

	if (add_component_variable_to_interface_block(storage, ib_var_ref, var, var_type, meta))
		return;

	if (is_matrix(var_type))
	{
		if (is_array(var_type))
			SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");

		elem_cnt = var_type.columns;
	}
	else if (is_array(var_type))
	{
		if (var_type.array.size() != 1)
			SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");

		elem_cnt = to_array_size_literal(var_type);
	}

	bool is_builtin = is_builtin_variable(var);
	BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
	bool is_flat = has_decoration(var.self, DecorationFlat);
	bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
	bool is_centroid = has_decoration(var.self, DecorationCentroid);
	bool is_sample = has_decoration(var.self, DecorationSample);

	auto *usable_type = &var_type;
	if (usable_type->pointer)
		usable_type = &get<SPIRType>(usable_type->parent_type);
	while (is_array(*usable_type) || is_matrix(*usable_type))
		usable_type = &get<SPIRType>(usable_type->parent_type);

	// If a builtin, force it to have the proper name.
	if (is_builtin)
		set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));

	bool flatten_from_ib_var = false;
	string flatten_from_ib_mbr_name;

	if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
	{
		// Also declare [[clip_distance]] attribute here.
		uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
		ib_type.member_types.push_back(get_variable_data_type_id(var));
		set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);

		flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
		set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);

		// When we flatten, we flatten directly from the "out" struct,
		// not from a function variable.
		flatten_from_ib_var = true;

		if (!msl_options.enable_clip_distance_user_varying)
			return;
	}
	else if (!meta.strip_array)
	{
		// Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
		entry_func.add_local_variable(var.self);
		// We need to declare the variable early and at entry-point scope.
		vars_needing_early_declaration.push_back(var.self);
	}

	for (uint32_t i = 0; i < elem_cnt; i++)
	{
		// Add a reference to the variable type to the interface struct.
		uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());

		uint32_t target_components = 0;
		bool padded_output = false;
		uint32_t type_id = usable_type->self;

		// Check if we need to pad fragment output to match a certain number of components.
		if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
		    get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
		{
			uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
			target_components = get_target_components_for_fragment_location(locn);
			if (usable_type->vecsize < target_components)
			{
				// Make a new type here.
				type_id = build_extended_vector_type(usable_type->self, target_components);
				padded_output = true;
			}
		}

		if (storage == StorageClassInput && pull_model_inputs.count(var.self))
			ib_type.member_types.push_back(build_msl_interpolant_type(get_pointee_type_id(type_id), is_noperspective));
		else
			ib_type.member_types.push_back(get_pointee_type_id(type_id));

		// Give the member a name
		string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
		set_member_name(ib_type.self, ib_mbr_idx, mbr_name);

		// There is no qualified alias since we need to flatten the internal array on return.
		if (get_decoration_bitset(var.self).get(DecorationLocation))
		{
			uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
			uint32_t comp = get_decoration(var.self, DecorationComponent);
			if (storage == StorageClassInput)
			{
				var.basetype = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
				uint32_t mbr_type_id = ensure_correct_input_type(usable_type->self, locn, comp, 0, meta.strip_array);
				if (storage == StorageClassInput && pull_model_inputs.count(var.self))
					ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
				else
					ib_type.member_types[ib_mbr_idx] = mbr_type_id;
			}
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
			if (comp)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
			mark_location_as_used_by_shader(locn, *usable_type, storage);
		}
		else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
		{
			uint32_t locn = inputs_by_builtin[builtin].location + i;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
			mark_location_as_used_by_shader(locn, *usable_type, storage);
		}
		else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
		{
			uint32_t locn = outputs_by_builtin[builtin].location + i;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
			mark_location_as_used_by_shader(locn, *usable_type, storage);
		}
		else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
		{
			// Declare the Clip/CullDistance as [[user(clip/cullN)]].
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
		}

		if (get_decoration_bitset(var.self).get(DecorationIndex))
		{
			uint32_t index = get_decoration(var.self, DecorationIndex);
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
		}

		if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
		{
			// Copy interpolation decorations if needed
			if (is_flat)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
			if (is_noperspective)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
			if (is_centroid)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
			if (is_sample)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
		}

		set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);

		// Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
		if (!meta.strip_array)
		{
			switch (storage)
			{
			case StorageClassInput:
				entry_func.fixup_hooks_in.push_back([=, &var]() {
					if (pull_model_inputs.count(var.self))
					{
						string lerp_call;
						if (is_centroid)
							lerp_call = ".interpolate_at_centroid()";
						else if (is_sample)
							lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
						else
							lerp_call = ".interpolate_at_center()";
						statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
					}
					else
					{
						statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";");
					}
				});
				break;

			case StorageClassOutput:
				entry_func.fixup_hooks_out.push_back([=, &var]() {
					if (padded_output)
					{
						auto &padded_type = this->get<SPIRType>(type_id);
						statement(
						    ib_var_ref, ".", mbr_name, " = ",
						    remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
						    ";");
					}
					else if (flatten_from_ib_var)
						statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i,
						          "];");
					else
						statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
				});
				break;

			default:
				break;
			}
		}
	}
}

void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage,
                                                                   const string &ib_var_ref, SPIRType &ib_type,
                                                                   SPIRVariable &var, SPIRType &var_type,
                                                                   uint32_t mbr_idx, InterfaceBlockMeta &meta,
                                                                   const string &mbr_name_qual,
                                                                   const string &var_chain_qual,
                                                                   uint32_t &location, uint32_t &var_mbr_idx,
                                                                   const Bitset &interpolation_qual)
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);

	BuiltIn builtin = BuiltInMax;
	bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
	bool is_flat = interpolation_qual.get(DecorationFlat) ||
	               has_member_decoration(var_type.self, mbr_idx, DecorationFlat) ||
	               has_decoration(var.self, DecorationFlat);
	bool is_noperspective = interpolation_qual.get(DecorationNoPerspective) ||
	                        has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
	                        has_decoration(var.self, DecorationNoPerspective);
	bool is_centroid = interpolation_qual.get(DecorationCentroid) ||
	                   has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
	                   has_decoration(var.self, DecorationCentroid);
	bool is_sample = interpolation_qual.get(DecorationSample) ||
	                 has_member_decoration(var_type.self, mbr_idx, DecorationSample) ||
	                 has_decoration(var.self, DecorationSample);

	Bitset inherited_qual;
	if (is_flat)
		inherited_qual.set(DecorationFlat);
	if (is_noperspective)
		inherited_qual.set(DecorationNoPerspective);
	if (is_centroid)
		inherited_qual.set(DecorationCentroid);
	if (is_sample)
		inherited_qual.set(DecorationSample);

	uint32_t mbr_type_id = var_type.member_types[mbr_idx];
	auto &mbr_type = get<SPIRType>(mbr_type_id);

	bool mbr_is_indexable = false;
	uint32_t elem_cnt = 1;
	if (is_matrix(mbr_type))
	{
		if (is_array(mbr_type))
			SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");

		mbr_is_indexable = true;
		elem_cnt = mbr_type.columns;
	}
	else if (is_array(mbr_type))
	{
		if (mbr_type.array.size() != 1)
			SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");

		mbr_is_indexable = true;
		elem_cnt = to_array_size_literal(mbr_type);
	}

	auto *usable_type = &mbr_type;
	if (usable_type->pointer)
		usable_type = &get<SPIRType>(usable_type->parent_type);
	while (is_array(*usable_type) || is_matrix(*usable_type))
		usable_type = &get<SPIRType>(usable_type->parent_type);

	bool flatten_from_ib_var = false;
	string flatten_from_ib_mbr_name;

	if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
	{
		// Also declare [[clip_distance]] attribute here.
		uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
		ib_type.member_types.push_back(mbr_type_id);
		set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);

		flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
		set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);

		// When we flatten, we flatten directly from the "out" struct,
		// not from a function variable.
		flatten_from_ib_var = true;

		if (!msl_options.enable_clip_distance_user_varying)
			return;
	}

	// Recursively handle nested structures.
	if (mbr_type.basetype == SPIRType::Struct)
	{
		for (uint32_t i = 0; i < elem_cnt; i++)
		{
			string mbr_name = append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : "");
			string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
			uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size());
			for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++)
			{
				add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
																 var, mbr_type, sub_mbr_idx,
																 meta, mbr_name, var_chain,
																 location, var_mbr_idx, inherited_qual);
				// FIXME: Recursive structs and tessellation breaks here.
				var_mbr_idx++;
			}
		}
		return;
	}

	for (uint32_t i = 0; i < elem_cnt; i++)
	{
		// Add a reference to the variable type to the interface struct.
		uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
		if (storage == StorageClassInput && pull_model_inputs.count(var.self))
			ib_type.member_types.push_back(build_msl_interpolant_type(usable_type->self, is_noperspective));
		else
			ib_type.member_types.push_back(usable_type->self);

		// Give the member a name
		string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : ""), "m");
		set_member_name(ib_type.self, ib_mbr_idx, mbr_name);

		// Once we determine the location of the first member within nested structures,
		// from a var of the topmost structure, the remaining flattened members of
		// the nested structures will have consecutive location values. At this point,
		// we've recursively tunnelled into structs, arrays, and matrices, and are
		// down to a single location for each member now.
		if (!is_builtin && location != UINT32_MAX)
		{
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
			mark_location_as_used_by_shader(location, *usable_type, storage);
			location++;
		}
		else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
		{
			location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
			mark_location_as_used_by_shader(location, *usable_type, storage);
			location++;
		}
		else if (has_decoration(var.self, DecorationLocation))
		{
			location = get_accumulated_member_location(var, mbr_idx, meta.strip_array) + i;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
			mark_location_as_used_by_shader(location, *usable_type, storage);
			location++;
		}
		else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
		{
			location = inputs_by_builtin[builtin].location + i;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
			mark_location_as_used_by_shader(location, *usable_type, storage);
			location++;
		}
		else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
		{
			location = outputs_by_builtin[builtin].location + i;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
			mark_location_as_used_by_shader(location, *usable_type, storage);
			location++;
		}
		else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
		{
			// Declare the Clip/CullDistance as [[user(clip/cullN)]].
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
		}

		if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
			SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported.");

		if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
		{
			// Copy interpolation decorations if needed
			if (is_flat)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
			if (is_noperspective)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
			if (is_centroid)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
			if (is_sample)
				set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
		}

		set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
		set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);

		// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
		if (!meta.strip_array && meta.allow_local_declaration)
		{
			string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
			switch (storage)
			{
			case StorageClassInput:
				entry_func.fixup_hooks_in.push_back([=, &var]() {
					string lerp_call;
					if (pull_model_inputs.count(var.self))
					{
						if (is_centroid)
							lerp_call = ".interpolate_at_centroid()";
						else if (is_sample)
							lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
						else
							lerp_call = ".interpolate_at_center()";
					}
					statement(var_chain, " = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
				});
				break;

			case StorageClassOutput:
				entry_func.fixup_hooks_out.push_back([=]() {
					if (flatten_from_ib_var)
						statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];");
					else
						statement(ib_var_ref, ".", mbr_name, " = ", var_chain, ";");
				});
				break;

			default:
				break;
			}
		}
	}
}

void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage,
                                                               const string &ib_var_ref, SPIRType &ib_type,
                                                               SPIRVariable &var, SPIRType &var_type,
                                                               uint32_t mbr_idx, InterfaceBlockMeta &meta,
                                                               const string &mbr_name_qual,
                                                               const string &var_chain_qual,
                                                               uint32_t &location, uint32_t &var_mbr_idx)
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);

	BuiltIn builtin = BuiltInMax;
	bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
	bool is_flat =
	    has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
	bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
	                        has_decoration(var.self, DecorationNoPerspective);
	bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
	                   has_decoration(var.self, DecorationCentroid);
	bool is_sample =
	    has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);

	// Add a reference to the member to the interface struct.
	uint32_t mbr_type_id = var_type.member_types[mbr_idx];
	uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
	mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
	var_type.member_types[mbr_idx] = mbr_type_id;
	if (storage == StorageClassInput && pull_model_inputs.count(var.self))
		ib_type.member_types.push_back(build_msl_interpolant_type(mbr_type_id, is_noperspective));
	else
		ib_type.member_types.push_back(mbr_type_id);

	// Give the member a name
	string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx), "m");
	set_member_name(ib_type.self, ib_mbr_idx, mbr_name);

	// Update the original variable reference to include the structure reference
	string qual_var_name = ib_var_ref + "." + mbr_name;
	// If using pull-model interpolation, need to add a call to the correct interpolation method.
	if (storage == StorageClassInput && pull_model_inputs.count(var.self))
	{
		if (is_centroid)
			qual_var_name += ".interpolate_at_centroid()";
		else if (is_sample)
			qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
		else
			qual_var_name += ".interpolate_at_center()";
	}

	bool flatten_stage_out = false;
	string var_chain = var_chain_qual + "." + to_member_name(var_type, mbr_idx);
	if (is_builtin && !meta.strip_array)
	{
		// For the builtin gl_PerVertex, we cannot treat it as a block anyways,
		// so redirect to qualified name.
		set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
	}
	else if (!meta.strip_array && meta.allow_local_declaration)
	{
		// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
		switch (storage)
		{
		case StorageClassInput:
			entry_func.fixup_hooks_in.push_back([=]() {
				statement(var_chain, " = ", qual_var_name, ";");
			});
			break;

		case StorageClassOutput:
			flatten_stage_out = true;
			entry_func.fixup_hooks_out.push_back([=]() {
				statement(qual_var_name, " = ", var_chain, ";");
			});
			break;

		default:
			break;
		}
	}

	// Once we determine the location of the first member within nested structures,
	// from a var of the topmost structure, the remaining flattened members of
	// the nested structures will have consecutive location values. At this point,
	// we've recursively tunnelled into structs, arrays, and matrices, and are
	// down to a single location for each member now.
	if (!is_builtin && location != UINT32_MAX)
	{
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
		mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
		location += type_to_location_count(get<SPIRType>(mbr_type_id));
	}
	else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
	{
		location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
		uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
		if (storage == StorageClassInput)
		{
			mbr_type_id = ensure_correct_input_type(mbr_type_id, location, comp, 0, meta.strip_array);
			var_type.member_types[mbr_idx] = mbr_type_id;
			if (storage == StorageClassInput && pull_model_inputs.count(var.self))
				ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
			else
				ib_type.member_types[ib_mbr_idx] = mbr_type_id;
		}
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
		mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
		location += type_to_location_count(get<SPIRType>(mbr_type_id));
	}
	else if (has_decoration(var.self, DecorationLocation))
	{
		location = get_accumulated_member_location(var, mbr_idx, meta.strip_array);
		if (storage == StorageClassInput)
		{
			mbr_type_id = ensure_correct_input_type(mbr_type_id, location, 0, 0, meta.strip_array);
			var_type.member_types[mbr_idx] = mbr_type_id;
			if (storage == StorageClassInput && pull_model_inputs.count(var.self))
				ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
			else
				ib_type.member_types[ib_mbr_idx] = mbr_type_id;
		}
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
		mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
		location += type_to_location_count(get<SPIRType>(mbr_type_id));
	}
	else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
	{
		location = inputs_by_builtin[builtin].location;
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
		mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
		location += type_to_location_count(get<SPIRType>(mbr_type_id));
	}
	else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
	{
		location = outputs_by_builtin[builtin].location;
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
		mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
		location += type_to_location_count(get<SPIRType>(mbr_type_id));
	}

	// Copy the component location, if present.
	if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
	{
		uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
	}

	// Mark the member as builtin if needed
	if (is_builtin)
	{
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
		if (builtin == BuiltInPosition && storage == StorageClassOutput)
			qual_pos_var_name = qual_var_name;
	}

	const SPIRConstant *c = nullptr;
	if (!flatten_stage_out && var.storage == StorageClassOutput &&
	    var.initializer != ID(0) && (c = maybe_get<SPIRConstant>(var.initializer)))
	{
		if (meta.strip_array)
		{
			entry_func.fixup_hooks_in.push_back([=, &var]() {
				auto &type = this->get<SPIRType>(var.basetype);
				uint32_t index = get_extended_member_decoration(var.self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex);

				auto invocation = to_tesc_invocation_id();
				auto constant_chain = join(to_expression(var.initializer), "[", invocation, "]");
				statement(to_expression(stage_out_ptr_var_id), "[",
				          invocation, "].",
				          to_member_name(ib_type, index), " = ",
				          constant_chain, ".", to_member_name(type, mbr_idx), ";");
			});
		}
		else
		{
			entry_func.fixup_hooks_in.push_back([=]() {
				statement(qual_var_name, " = ", constant_expression(
						this->get<SPIRConstant>(c->subconstants[mbr_idx])), ";");
			});
		}
	}

	if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
	{
		// Copy interpolation decorations if needed
		if (is_flat)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
		if (is_noperspective)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
		if (is_centroid)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
		if (is_sample)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
	}

	set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
	set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
}

// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
// float2 containing the inner levels.
void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
                                                          SPIRVariable &var)
{
	auto &var_type = get_variable_element_type(var);

	BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
	bool triangles = is_tessellating_triangles();
	string mbr_name;

	// Add a reference to the variable type to the interface struct.
	uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());

	const auto mark_locations = [&](const SPIRType &new_var_type) {
		if (get_decoration_bitset(var.self).get(DecorationLocation))
		{
			uint32_t locn = get_decoration(var.self, DecorationLocation);
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
			mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
		}
		else if (inputs_by_builtin.count(builtin))
		{
			uint32_t locn = inputs_by_builtin[builtin].location;
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
			mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
		}
	};

	if (triangles)
	{
		// Triangles are tricky, because we want only one member in the struct.
		mbr_name = "gl_TessLevel";

		// If we already added the other one, we can skip this step.
		if (!added_builtin_tess_level)
		{
			uint32_t type_id = build_extended_vector_type(var_type.self, 4);

			ib_type.member_types.push_back(type_id);

			// Give the member a name
			set_member_name(ib_type.self, ib_mbr_idx, mbr_name);

			// We cannot decorate both, but the important part is that
			// it's marked as builtin so we can get automatic attribute assignment if needed.
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);

			mark_locations(var_type);
			added_builtin_tess_level = true;
		}
	}
	else
	{
		mbr_name = builtin_to_glsl(builtin, StorageClassFunction);

		uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);

		uint32_t ptr_type_id = ir.increase_bound_by(1);
		auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
		new_var_type.pointer = true;
		new_var_type.pointer_depth++;
		new_var_type.storage = StorageClassInput;
		new_var_type.parent_type = type_id;

		ib_type.member_types.push_back(type_id);

		// Give the member a name
		set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);

		mark_locations(new_var_type);
	}

	add_tess_level_input(ib_var_ref, mbr_name, var);
}

void CompilerMSL::add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var)
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));

	// Force the variable to have the proper name.
	string var_name = builtin_to_glsl(builtin, StorageClassFunction);
	set_name(var.self, var_name);

	// We need to declare the variable early and at entry-point scope.
	entry_func.add_local_variable(var.self);
	vars_needing_early_declaration.push_back(var.self);
	bool triangles = is_tessellating_triangles();

	if (builtin == BuiltInTessLevelOuter)
	{
		entry_func.fixup_hooks_in.push_back(
		    [=]()
		    {
			    statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
			    statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
			    statement(var_name, "[2] = ", base_ref, ".", mbr_name, "[2];");
			    if (!triangles)
				    statement(var_name, "[3] = ", base_ref, ".", mbr_name, "[3];");
		    });
	}
	else
	{
		entry_func.fixup_hooks_in.push_back([=]() {
			if (triangles)
			{
				if (msl_options.raw_buffer_tese_input)
					statement(var_name, "[0] = ", base_ref, ".", mbr_name, ";");
				else
					statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[3];");
			}
			else
			{
				statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
				statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
			}
		});
	}
}

bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const
{
	if (storage == StorageClassOutput)
		return !capture_output_to_buffer;
	else if (storage == StorageClassInput)
		return !(is_tesc_shader() && msl_options.multi_patch_workgroup) &&
		       !(is_tese_shader() && msl_options.raw_buffer_tese_input);
	else
		return false;
}

string CompilerMSL::to_tesc_invocation_id()
{
	if (msl_options.multi_patch_workgroup)
	{
		// n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
		// not the TC invocation ID.
		return join(to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices);
	}
	else
		return builtin_to_glsl(BuiltInInvocationId, StorageClassInput);
}

void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array)
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	bool threadgroup_storage = variable_decl_is_remapped_storage(masked_var, StorageClassWorkgroup);

	if (threadgroup_storage && msl_options.multi_patch_workgroup)
	{
		// We need one threadgroup block per patch, so fake this.
		entry_func.fixup_hooks_in.push_back([this, &masked_var]() {
			auto &type = get_variable_data_type(masked_var);
			add_local_variable_name(masked_var.self);

			const uint32_t max_control_points_per_patch = 32u;
			uint32_t max_num_instances =
					(max_control_points_per_patch + get_entry_point().output_vertices - 1u) /
					get_entry_point().output_vertices;
			statement("threadgroup ", type_to_glsl(type), " ",
			          "spvStorage", to_name(masked_var.self), "[", max_num_instances, "]",
			          type_to_array_glsl(type, 0), ";");

			// Assign a threadgroup slice to each PrimitiveID.
			// We assume here that workgroup size is rounded to 32,
			// since that's the maximum number of control points per patch.
			// We cannot size the array based on fixed dispatch parameters,
			// since Metal does not allow that. :(
			// FIXME: We will likely need an option to support passing down target workgroup size,
			// so we can emit appropriate size here.
			statement("threadgroup auto ",
			          "&", to_name(masked_var.self),
			          " = spvStorage", to_name(masked_var.self), "[",
			          "(", to_expression(builtin_invocation_id_id), ".x / ",
			          get_entry_point().output_vertices, ") % ",
			          max_num_instances, "];");
		});
	}
	else
	{
		entry_func.add_local_variable(masked_var.self);
	}

	if (!threadgroup_storage)
	{
		vars_needing_early_declaration.push_back(masked_var.self);
	}
	else if (masked_var.initializer)
	{
		// Cannot directly initialize threadgroup variables. Need fixup hooks.
		ID initializer = masked_var.initializer;
		if (strip_array)
		{
			entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
				auto invocation = to_tesc_invocation_id();
				statement(to_expression(masked_var.self), "[",
				          invocation, "] = ",
				          to_expression(initializer), "[",
				          invocation, "];");
			});
		}
		else
		{
			entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
				statement(to_expression(masked_var.self), " = ", to_expression(initializer), ";");
			});
		}
	}
}

void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
                                                  SPIRVariable &var, InterfaceBlockMeta &meta)
{
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	// Tessellation control I/O variables and tessellation evaluation per-point inputs are
	// usually declared as arrays. In these cases, we want to add the element type to the
	// interface block, since in Metal it's the interface block itself which is arrayed.
	auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
	bool is_builtin = is_builtin_variable(var);
	auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
	bool is_block = has_decoration(var_type.self, DecorationBlock);

	// If stage variables are masked out, emit them as plain variables instead.
	// For builtins, we query them one by one later.
	// IO blocks are not masked here, we need to mask them per-member instead.
	if (storage == StorageClassOutput && is_stage_output_variable_masked(var))
	{
		// If we ignore an output, we must still emit it, since it might be used by app.
		// Instead, just emit it as early declaration.
		emit_local_masked_variable(var, meta.strip_array);
		return;
	}

	if (storage == StorageClassInput && has_decoration(var.self, DecorationPerVertexKHR))
		SPIRV_CROSS_THROW("PerVertexKHR decoration is not supported in MSL.");

	// If variable names alias, they will end up with wrong names in the interface struct, because
	// there might be aliases in the member name cache and there would be a mismatch in fixup_in code.
	// Make sure to register the variables as unique resource names ahead of time.
	// This would normally conflict with the name cache when emitting local variables,
	// but this happens in the setup stage, before we hit compilation loops.
	// The name cache is cleared before we actually emit code, so this is safe.
	add_resource_name(var.self);

	if (var_type.basetype == SPIRType::Struct)
	{
		bool block_requires_flattening =
		    variable_storage_requires_stage_io(storage) || (is_block && var_type.array.empty());
		bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration;

		if (needs_local_declaration)
		{
			// For I/O blocks or structs, we will need to pass the block itself around
			// to functions if they are used globally in leaf functions.
			// Rather than passing down member by member,
			// we unflatten I/O blocks while running the shader,
			// and pass the actual struct type down to leaf functions.
			// We then unflatten inputs, and flatten outputs in the "fixup" stages.
			emit_local_masked_variable(var, meta.strip_array);
		}

		if (!block_requires_flattening)
		{
			// In Metal tessellation shaders, the interface block itself is arrayed. This makes things
			// very complicated, since stage-in structures in MSL don't support nested structures.
			// Luckily, for stage-out when capturing output, we can avoid this and just add
			// composite members directly, because the stage-out structure is stored to a buffer,
			// not returned.
			add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
		}
		else
		{
			bool masked_block = false;
			uint32_t location = UINT32_MAX;
			uint32_t var_mbr_idx = 0;
			uint32_t elem_cnt = 1;
			if (is_matrix(var_type))
			{
				if (is_array(var_type))
					SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");

				elem_cnt = var_type.columns;
			}
			else if (is_array(var_type))
			{
				if (var_type.array.size() != 1)
					SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");

				elem_cnt = to_array_size_literal(var_type);
			}

			for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++)
			{
				// Flatten the struct members into the interface struct
				for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
				{
					builtin = BuiltInMax;
					is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
					auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);

					if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, mbr_idx, meta.strip_array))
					{
						location = UINT32_MAX; // Skip this member and resolve location again on next var member

						if (is_block)
							masked_block = true;

						// Non-builtin block output variables are just ignored, since they will still access
						// the block variable as-is. They're just not flattened.
						if (is_builtin && !meta.strip_array)
						{
							// Emit a fake variable instead.
							uint32_t ids = ir.increase_bound_by(2);
							uint32_t ptr_type_id = ids + 0;
							uint32_t var_id = ids + 1;

							auto ptr_type = mbr_type;
							ptr_type.pointer = true;
							ptr_type.pointer_depth++;
							ptr_type.parent_type = var_type.member_types[mbr_idx];
							ptr_type.storage = StorageClassOutput;

							uint32_t initializer = 0;
							if (var.initializer)
								if (auto *c = maybe_get<SPIRConstant>(var.initializer))
									initializer = c->subconstants[mbr_idx];

							set<SPIRType>(ptr_type_id, ptr_type);
							set<SPIRVariable>(var_id, ptr_type_id, StorageClassOutput, initializer);
							entry_func.add_local_variable(var_id);
							vars_needing_early_declaration.push_back(var_id);
							set_name(var_id, builtin_to_glsl(builtin, StorageClassOutput));
							set_decoration(var_id, DecorationBuiltIn, builtin);
						}
					}
					else if (!is_builtin || has_active_builtin(builtin, storage))
					{
						bool is_composite_type = is_matrix(mbr_type) || is_array(mbr_type) || mbr_type.basetype == SPIRType::Struct;
						bool attribute_load_store =
								storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
						bool storage_is_stage_io = variable_storage_requires_stage_io(storage);

						// Clip/CullDistance always need to be declared as user attributes.
						if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
							is_builtin = false;

						const string var_name = to_name(var.self);
						string mbr_name_qual = var_name;
						string var_chain_qual = var_name;
						if (elem_cnt > 1)
						{
							mbr_name_qual += join("_", elem_idx);
							var_chain_qual += join("[", elem_idx, "]");
						}

						if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
						{
							add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
							                                                 var, var_type, mbr_idx, meta,
							                                                 mbr_name_qual, var_chain_qual,
							                                                 location, var_mbr_idx, {});
						}
						else
						{
							add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
							                                             var, var_type, mbr_idx, meta,
							                                             mbr_name_qual, var_chain_qual,
							                                             location, var_mbr_idx);
						}
					}
					var_mbr_idx++;
				}
			}

			// If we're redirecting a block, we might still need to access the original block
			// variable if we're masking some members.
			if (masked_block && !needs_local_declaration && (!is_builtin_variable(var) || is_tesc_shader()))
			{
				if (is_builtin_variable(var))
				{
					// Ensure correct names for the block members if we're actually going to
					// declare gl_PerVertex.
					for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
					{
						set_member_name(var_type.self, mbr_idx, builtin_to_glsl(
								BuiltIn(get_member_decoration(var_type.self, mbr_idx, DecorationBuiltIn)),
								StorageClassOutput));
					}

					set_name(var_type.self, "gl_PerVertex");
					set_name(var.self, "gl_out_masked");
					stage_out_masked_builtin_type_id = var_type.self;
				}
				emit_local_masked_variable(var, meta.strip_array);
			}
		}
	}
	else if (is_tese_shader() && storage == StorageClassInput && !meta.strip_array && is_builtin &&
	         (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
	{
		add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
	}
	else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
	         type_is_integral(var_type) || type_is_floating_point(var_type))
	{
		if (!is_builtin || has_active_builtin(builtin, storage))
		{
			bool is_composite_type = is_matrix(var_type) || is_array(var_type);
			bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
			bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;

			// Clip/CullDistance always needs to be declared as user attributes.
			if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
				is_builtin = false;

			// MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
			if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
			{
				add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
			}
			else
			{
				add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
			}
		}
	}
}

// Fix up the mapping of variables to interface member indices, which is used to compile access chains
// for per-vertex variables in a tessellation control shader.
void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
{
	// Only needed for tessellation shaders and pull-model interpolants.
	// Need to redirect interface indices back to variables themselves.
	// For structs, each member of the struct need a separate instance.
	if (!is_tesc_shader() && !(is_tese_shader() && storage == StorageClassInput) &&
	    !(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput &&
	      !pull_model_inputs.empty()))
		return;

	auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size());
	for (uint32_t i = 0; i < mbr_cnt; i++)
	{
		uint32_t var_id = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceOrigID);
		if (!var_id)
			continue;
		auto &var = get<SPIRVariable>(var_id);

		auto &type = get_variable_element_type(var);

		bool flatten_composites = variable_storage_requires_stage_io(var.storage);
		bool is_block = has_decoration(type.self, DecorationBlock);

		uint32_t mbr_idx = uint32_t(-1);
		if (type.basetype == SPIRType::Struct && (flatten_composites || is_block))
			mbr_idx = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);

		if (mbr_idx != uint32_t(-1))
		{
			// Only set the lowest InterfaceMemberIndex for each variable member.
			// IB struct members will be emitted in-order w.r.t. interface member index.
			if (!has_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex))
				set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
		}
		else
		{
			// Only set the lowest InterfaceMemberIndex for each variable.
			// IB struct members will be emitted in-order w.r.t. interface member index.
			if (!has_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex))
				set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
		}
	}
}

// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
// Returns the ID of the newly added variable, or zero if no variable was added.
uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
{
	// Accumulate the variables that should appear in the interface struct.
	SmallVector<SPIRVariable *> vars;
	bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader();
	bool has_seen_barycentric = false;

	InterfaceBlockMeta meta;

	// Varying interfaces between stages which use "user()" attribute can be dealt with
	// without explicit packing and unpacking of components. For any variables which link against the runtime
	// in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow.
	bool pack_components =
	    (storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) ||
	    (storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) ||
	    (storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer);

	ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
		if (var.storage != storage)
			return;

		auto &type = this->get<SPIRType>(var.basetype);

		bool is_builtin = is_builtin_variable(var);
		bool is_block = has_decoration(type.self, DecorationBlock);

		auto bi_type = BuiltInMax;
		bool builtin_is_gl_in_out = false;
		if (is_builtin && !is_block)
		{
			bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
			builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
			                       bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
		}

		if (is_builtin && is_block)
			builtin_is_gl_in_out = true;

		uint32_t location = get_decoration(var_id, DecorationLocation);

		bool builtin_is_stage_in_out = builtin_is_gl_in_out ||
		                               bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex ||
		                               bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR ||
		                               bi_type == BuiltInFragDepth ||
		                               bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask;

		// These builtins are part of the stage in/out structs.
		bool is_interface_block_builtin =
		    builtin_is_stage_in_out || (is_tese_shader() && !msl_options.raw_buffer_tese_input &&
		                                (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner));

		bool is_active = interface_variable_exists_in_entry_point(var.self);
		if (is_builtin && is_active)
		{
			// Only emit the builtin if it's active in this entry point. Interface variable list might lie.
			if (is_block)
			{
				// If any builtin is active, the block is active.
				uint32_t mbr_cnt = uint32_t(type.member_types.size());
				for (uint32_t i = 0; !is_active && i < mbr_cnt; i++)
					is_active = has_active_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)), storage);
			}
			else
			{
				is_active = has_active_builtin(bi_type, storage);
			}
		}

		bool filter_patch_decoration = (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch;

		bool hidden = is_hidden_variable(var, incl_builtins);

		// ClipDistance is never hidden, we need to emulate it when used as an input.
		if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance)
			hidden = false;

		// It's not enough to simply avoid marking fragment outputs if the pipeline won't
		// accept them. We can't put them in the struct at all, or otherwise the compiler
		// complains that the outputs weren't explicitly marked.
		// Frag depth and stencil outputs are incompatible with explicit early fragment tests.
		// In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required.
		// In Metal, it's a compilation error, so we need to exclude them from the output struct.
		if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch &&
		    ((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) ||
		                     (bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) ||
		     (!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location)))))
		{
			hidden = true;
			disabled_frag_outputs.push_back(var_id);
			// If a builtin, force it to have the proper name, and mark it as not part of the output struct.
			if (is_builtin)
			{
				set_name(var_id, builtin_to_glsl(bi_type, StorageClassFunction));
				mask_stage_output_by_builtin(bi_type);
			}
		}

		// Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments.
		if (is_active && (bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR))
		{
			if (has_seen_barycentric)
				SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL.");
			has_seen_barycentric = true;
			hidden = false;
		}

		if (is_active && !hidden && type.pointer && filter_patch_decoration &&
		    (!is_builtin || is_interface_block_builtin))
		{
			vars.push_back(&var);

			if (!is_builtin)
			{
				// Need to deal specially with DecorationComponent.
				// Multiple variables can alias the same Location, and try to make sure each location is declared only once.
				// We will swizzle data in and out to make this work.
				// This is only relevant for vertex inputs and fragment outputs.
				// Technically tessellation as well, but it is too complicated to support.
				uint32_t component = get_decoration(var_id, DecorationComponent);
				if (component != 0)
				{
					if (is_tessellation_shader())
						SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders.");
					else if (pack_components)
					{
						uint32_t array_size = 1;
						if (!type.array.empty())
							array_size = to_array_size_literal(type);

						for (uint32_t location_offset = 0; location_offset < array_size; location_offset++)
						{
							auto &location_meta = meta.location_meta[location + location_offset];
							location_meta.num_components = max<uint32_t>(location_meta.num_components, component + type.vecsize);

							// For variables sharing location, decorations and base type must match.
							location_meta.base_type_id = type.self;
							location_meta.flat = has_decoration(var.self, DecorationFlat);
							location_meta.noperspective = has_decoration(var.self, DecorationNoPerspective);
							location_meta.centroid = has_decoration(var.self, DecorationCentroid);
							location_meta.sample = has_decoration(var.self, DecorationSample);
						}
					}
				}
			}
		}

		if (is_tese_shader() && msl_options.raw_buffer_tese_input && patch && storage == StorageClassInput &&
		    (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))
		{
			// In this case, we won't add the builtin to the interface struct,
			// but we still need the hook to run to populate the arrays.
			string base_ref = join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "]");
			const char *mbr_name =
			    bi_type == BuiltInTessLevelOuter ? "edgeTessellationFactor" : "insideTessellationFactor";
			add_tess_level_input(base_ref, mbr_name, var);
			if (inputs_by_builtin.count(bi_type))
			{
				uint32_t locn = inputs_by_builtin[bi_type].location;
				mark_location_as_used_by_shader(locn, type, StorageClassInput);
			}
		}
	});

	// If no variables qualify, leave.
	// For patch input in a tessellation evaluation shader, the per-vertex stage inputs
	// are included in a special patch control point array.
	if (vars.empty() &&
	    !(!msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch && stage_in_var_id))
		return 0;

	// Add a new typed variable for this interface structure.
	// The initializer expression is allocated here, but populated when the function
	// declaraion is emitted, because it is cleared after each compilation pass.
	uint32_t next_id = ir.increase_bound_by(3);
	uint32_t ib_type_id = next_id++;
	auto &ib_type = set<SPIRType>(ib_type_id, OpTypeStruct);
	ib_type.basetype = SPIRType::Struct;
	ib_type.storage = storage;
	set_decoration(ib_type_id, DecorationBlock);

	uint32_t ib_var_id = next_id++;
	auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
	var.initializer = next_id++;

	string ib_var_ref;
	auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
	switch (storage)
	{
	case StorageClassInput:
		ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
		switch (get_execution_model())
		{
		case ExecutionModelTessellationControl:
			// Add a hook to populate the shared workgroup memory containing the gl_in array.
			entry_func.fixup_hooks_in.push_back([=]() {
				// Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet.
				if (msl_options.multi_patch_workgroup)
				{
					// n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
					// not the TC invocation ID.
					statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
					          input_buffer_var_name, "[min(", to_expression(builtin_invocation_id_id), ".x / ",
					          get_entry_point().output_vertices,
					          ", spvIndirectParams[1] - 1) * spvIndirectParams[0]];");
				}
				else
				{
					// It's safe to use InvocationId here because it's directly mapped to a
					// Metal builtin, and therefore doesn't need a hook.
					statement("if (", to_expression(builtin_invocation_id_id), " < spvIndirectParams[0])");
					statement("    ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id),
					          "] = ", ib_var_ref, ";");
					statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
					statement("if (", to_expression(builtin_invocation_id_id),
					          " >= ", get_entry_point().output_vertices, ")");
					statement("    return;");
				}
			});
			break;
		case ExecutionModelTessellationEvaluation:
			if (!msl_options.raw_buffer_tese_input)
				break;
			if (patch)
			{
				entry_func.fixup_hooks_in.push_back(
				    [=]()
				    {
					    statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
					              " = ", patch_input_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
					              "];");
				    });
			}
			else
			{
				entry_func.fixup_hooks_in.push_back(
				    [=]()
				    {
					    statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
					              input_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
					              get_entry_point().output_vertices, "];");
				    });
			}
			break;
		default:
			break;
		}
		break;

	case StorageClassOutput:
	{
		ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;

		// Add the output interface struct as a local variable to the entry function.
		// If the entry point should return the output struct, set the entry function
		// to return the output interface struct, otherwise to return nothing.
		// Watch out for the rare case where the terminator of the last entry point block is a
		// Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that
		// any block that has a Kill will also have a terminating Return, except the last block.
		// Indicate the output var requires early initialization.
		bool ep_should_return_output = !get_is_rasterization_disabled();
		uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
		if (!capture_output_to_buffer)
		{
			entry_func.add_local_variable(ib_var_id);
			for (auto &blk_id : entry_func.blocks)
			{
				auto &blk = get<SPIRBlock>(blk_id);
				if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back()))
					blk.return_value = rtn_id;
			}
			vars_needing_early_declaration.push_back(ib_var_id);
		}
		else
		{
			switch (get_execution_model())
			{
			case ExecutionModelVertex:
			case ExecutionModelTessellationEvaluation:
				// Instead of declaring a struct variable to hold the output and then
				// copying that to the output buffer, we'll declare the output variable
				// as a reference to the final output element in the buffer. Then we can
				// avoid the extra copy.
				entry_func.fixup_hooks_in.push_back([=]() {
					if (stage_out_var_id)
					{
						// The first member of the indirect buffer is always the number of vertices
						// to draw.
						// We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice
						if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
						{
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
							          " = ", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
							          ".y * ", to_expression(builtin_stage_input_size_id), ".x + ",
							          to_expression(builtin_invocation_id_id), ".x];");
						}
						else if (msl_options.enable_base_index_zero)
						{
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
							          " = ", output_buffer_var_name, "[", to_expression(builtin_instance_idx_id),
							          " * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), "];");
						}
						else
						{
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
							          " = ", output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id),
							          " - ", to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
							          to_expression(builtin_vertex_idx_id), " - ",
							          to_expression(builtin_base_vertex_id), "];");
						}
					}
				});
				break;
			case ExecutionModelTessellationControl:
				if (msl_options.multi_patch_workgroup)
				{
					// We cannot use PrimitiveId here, because the hook may not have run yet.
					if (patch)
					{
						entry_func.fixup_hooks_in.push_back([=]() {
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
							          " = ", patch_output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
							          ".x / ", get_entry_point().output_vertices, "];");
						});
					}
					else
					{
						entry_func.fixup_hooks_in.push_back([=]() {
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
							          output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x - ",
							          to_expression(builtin_invocation_id_id), ".x % ",
							          get_entry_point().output_vertices, "];");
						});
					}
				}
				else
				{
					if (patch)
					{
						entry_func.fixup_hooks_in.push_back([=]() {
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
							          " = ", patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
							          "];");
						});
					}
					else
					{
						entry_func.fixup_hooks_in.push_back([=]() {
							statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
							          output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
							          get_entry_point().output_vertices, "];");
						});
					}
				}
				break;
			default:
				break;
			}
		}
		break;
	}

	default:
		break;
	}

	set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
	set_name(ib_var_id, ib_var_ref);

	for (auto *p_var : vars)
	{
		bool strip_array = (is_tesc_shader() || (is_tese_shader() && storage == StorageClassInput)) && !patch;

		// Fixing up flattened stores in TESC is impossible since the memory is group shared either via
		// device (not masked) or threadgroup (masked) storage classes and it's race condition city.
		meta.strip_array = strip_array;
		meta.allow_local_declaration = !strip_array && !(is_tesc_shader() && storage == StorageClassOutput);
		add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, meta);
	}

	if (((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
	     (is_tese_shader() && msl_options.raw_buffer_tese_input)) &&
	    storage == StorageClassInput)
	{
		// For tessellation inputs, add all outputs from the previous stage to ensure
		// the struct containing them is the correct size and layout.
		for (auto &input : inputs_by_location)
		{
			if (location_inputs_in_use.count(input.first.location) != 0)
				continue;

			if (patch != (input.second.rate == MSL_SHADER_VARIABLE_RATE_PER_PATCH))
				continue;

			// Tessellation levels have their own struct, so there's no need to add them here.
			if (input.second.builtin == BuiltInTessLevelOuter || input.second.builtin == BuiltInTessLevelInner)
				continue;

			// Create a fake variable to put at the location.
			uint32_t offset = ir.increase_bound_by(5);
			uint32_t type_id = offset;
			uint32_t vec_type_id = offset + 1;
			uint32_t array_type_id = offset + 2;
			uint32_t ptr_type_id = offset + 3;
			uint32_t var_id = offset + 4;

			SPIRType type { OpTypeInt };
			switch (input.second.format)
			{
			case MSL_SHADER_VARIABLE_FORMAT_UINT16:
			case MSL_SHADER_VARIABLE_FORMAT_ANY16:
				type.basetype = SPIRType::UShort;
				type.width = 16;
				break;
			case MSL_SHADER_VARIABLE_FORMAT_ANY32:
			default:
				type.basetype = SPIRType::UInt;
				type.width = 32;
				break;
			}
			set<SPIRType>(type_id, type);
			if (input.second.vecsize > 1)
			{
				type.op = OpTypeVector;
				type.vecsize = input.second.vecsize;
				set<SPIRType>(vec_type_id, type);
				type_id = vec_type_id;
			}

			type.op = OpTypeArray;
			type.array.push_back(0);
			type.array_size_literal.push_back(true);
			type.parent_type = type_id;
			set<SPIRType>(array_type_id, type);
			type.self = type_id;

			type.op = OpTypePointer;
			type.pointer = true;
			type.pointer_depth++;
			type.parent_type = array_type_id;
			type.storage = storage;
			auto &ptr_type = set<SPIRType>(ptr_type_id, type);
			ptr_type.self = array_type_id;

			auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
			set_decoration(var_id, DecorationLocation, input.first.location);
			if (input.first.component)
				set_decoration(var_id, DecorationComponent, input.first.component);

			meta.strip_array = true;
			meta.allow_local_declaration = false;
			add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
		}
	}

	if (capture_output_to_buffer && storage == StorageClassOutput)
	{
		// For captured output, add all inputs from the next stage to ensure
		// the struct containing them is the correct size and layout. This is
		// necessary for certain implicit builtins that may nonetheless be read,
		// even when they aren't written.
		for (auto &output : outputs_by_location)
		{
			if (location_outputs_in_use.count(output.first.location) != 0)
				continue;

			// Create a fake variable to put at the location.
			uint32_t offset = ir.increase_bound_by(5);
			uint32_t type_id = offset;
			uint32_t vec_type_id = offset + 1;
			uint32_t array_type_id = offset + 2;
			uint32_t ptr_type_id = offset + 3;
			uint32_t var_id = offset + 4;

			SPIRType type { OpTypeInt };
			switch (output.second.format)
			{
			case MSL_SHADER_VARIABLE_FORMAT_UINT16:
			case MSL_SHADER_VARIABLE_FORMAT_ANY16:
				type.basetype = SPIRType::UShort;
				type.width = 16;
				break;
			case MSL_SHADER_VARIABLE_FORMAT_ANY32:
			default:
				type.basetype = SPIRType::UInt;
				type.width = 32;
				break;
			}
			set<SPIRType>(type_id, type);
			if (output.second.vecsize > 1)
			{
				type.op = OpTypeVector;
				type.vecsize = output.second.vecsize;
				set<SPIRType>(vec_type_id, type);
				type_id = vec_type_id;
			}

			if (is_tesc_shader())
			{
				type.op = OpTypeArray;
				type.array.push_back(0);
				type.array_size_literal.push_back(true);
				type.parent_type = type_id;
				set<SPIRType>(array_type_id, type);
			}

			type.op = OpTypePointer;
			type.pointer = true;
			type.pointer_depth++;
			type.parent_type = is_tesc_shader() ? array_type_id : type_id;
			type.storage = storage;
			auto &ptr_type = set<SPIRType>(ptr_type_id, type);
			ptr_type.self = type.parent_type;

			auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
			set_decoration(var_id, DecorationLocation, output.first.location);
			if (output.first.component)
				set_decoration(var_id, DecorationComponent, output.first.component);

			meta.strip_array = true;
			meta.allow_local_declaration = false;
			add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
		}
	}

	// When multiple variables need to access same location,
	// unroll locations one by one and we will flatten output or input as necessary.
	for (auto &loc : meta.location_meta)
	{
		uint32_t location = loc.first;
		auto &location_meta = loc.second;

		uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
		uint32_t type_id = build_extended_vector_type(location_meta.base_type_id, location_meta.num_components);
		ib_type.member_types.push_back(type_id);

		set_member_name(ib_type.self, ib_mbr_idx, join("m_location_", location));
		set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
		mark_location_as_used_by_shader(location, get<SPIRType>(type_id), storage);

		if (location_meta.flat)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
		if (location_meta.noperspective)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
		if (location_meta.centroid)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
		if (location_meta.sample)
			set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
	}

	// Sort the members of the structure by their locations.
	MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType);
	member_sorter.sort();

	// The member indices were saved to the original variables, but after the members
	// were sorted, those indices are now likely incorrect. Fix those up now.
	fix_up_interface_member_indices(storage, ib_type_id);

	// For patch inputs, add one more member, holding the array of control point data.
	if (is_tese_shader() && !msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch &&
	    stage_in_var_id)
	{
		uint32_t pcp_type_id = ir.increase_bound_by(1);
		auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
		pcp_type.basetype = SPIRType::ControlPointArray;
		pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
		pcp_type.storage = storage;
		ir.meta[pcp_type_id] = ir.meta[ib_type.self];
		uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
		ib_type.member_types.push_back(pcp_type_id);
		set_member_name(ib_type.self, mbr_idx, "gl_in");
	}

	if (storage == StorageClassInput)
		set_decoration(ib_var_id, DecorationNonWritable);

	return ib_var_id;
}

uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
{
	if (!ib_var_id)
		return 0;

	uint32_t ib_ptr_var_id;
	uint32_t next_id = ir.increase_bound_by(3);
	auto &ib_type = expression_type(ib_var_id);
	if (is_tesc_shader() || (is_tese_shader() && msl_options.raw_buffer_tese_input))
	{
		// Tessellation control per-vertex I/O is presented as an array, so we must
		// do the same with our struct here.
		uint32_t ib_ptr_type_id = next_id++;
		auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
		ib_ptr_type.op = OpTypePointer;
		ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
		ib_ptr_type.pointer = true;
		ib_ptr_type.pointer_depth++;
		ib_ptr_type.storage = storage == StorageClassInput ?
		                          ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
		                                   (is_tese_shader() && msl_options.raw_buffer_tese_input) ?
		                               StorageClassStorageBuffer :
		                               StorageClassWorkgroup) :
		                          StorageClassStorageBuffer;
		ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
		// To ensure that get_variable_data_type() doesn't strip off the pointer,
		// which we need, use another pointer.
		uint32_t ib_ptr_ptr_type_id = next_id++;
		auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
		ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
		ib_ptr_ptr_type.type_alias = ib_type.self;
		ib_ptr_ptr_type.storage = StorageClassFunction;
		ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];

		ib_ptr_var_id = next_id;
		set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
		set_name(ib_ptr_var_id, storage == StorageClassInput ? "gl_in" : "gl_out");
		if (storage == StorageClassInput)
			set_decoration(ib_ptr_var_id, DecorationNonWritable);
	}
	else
	{
		// Tessellation evaluation per-vertex inputs are also presented as arrays.
		// But, in Metal, this array uses a very special type, 'patch_control_point<T>',
		// which is a container that can be used to access the control point data.
		// To represent this, a special 'ControlPointArray' type has been added to the
		// SPIRV-Cross type system. It should only be generated by and seen in the MSL
		// backend (i.e. this one).
		uint32_t pcp_type_id = next_id++;
		auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
		pcp_type.basetype = SPIRType::ControlPointArray;
		pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
		pcp_type.storage = storage;
		ir.meta[pcp_type_id] = ir.meta[ib_type.self];

		ib_ptr_var_id = next_id;
		set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
		set_name(ib_ptr_var_id, "gl_in");
		ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
	}
	return ib_ptr_var_id;
}

// Ensure that the type is compatible with the builtin.
// If it is, simply return the given type ID.
// Otherwise, create a new type, and return it's ID.
uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
{
	auto &type = get<SPIRType>(type_id);
	auto &pointee_type = get_pointee_type(type);

	if ((builtin == BuiltInSampleMask && is_array(pointee_type)) ||
	    ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) &&
	     pointee_type.basetype != SPIRType::UInt))
	{
		uint32_t next_id = ir.increase_bound_by(is_pointer(type) ? 2 : 1);
		uint32_t base_type_id = next_id++;
		auto &base_type = set<SPIRType>(base_type_id, OpTypeInt);
		base_type.basetype = SPIRType::UInt;
		base_type.width = 32;

		if (!is_pointer(type))
			return base_type_id;

		uint32_t ptr_type_id = next_id++;
		auto &ptr_type = set<SPIRType>(ptr_type_id, base_type);
		ptr_type.op = spv::OpTypePointer;
		ptr_type.pointer = true;
		ptr_type.pointer_depth++;
		ptr_type.storage = type.storage;
		ptr_type.parent_type = base_type_id;
		return ptr_type_id;
	}

	return type_id;
}

// Ensure that the type is compatible with the shader input.
// If it is, simply return the given type ID.
// Otherwise, create a new type, and return its ID.
uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array)
{
	auto &type = get<SPIRType>(type_id);

	uint32_t max_array_dimensions = strip_array ? 1 : 0;

	// Struct and array types must match exactly.
	if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions)
		return type_id;

	auto p_va = inputs_by_location.find({location, component});
	if (p_va == end(inputs_by_location))
	{
		if (num_components > type.vecsize)
			return build_extended_vector_type(type_id, num_components);
		else
			return type_id;
	}

	if (num_components == 0)
		num_components = p_va->second.vecsize;

	switch (p_va->second.format)
	{
	case MSL_SHADER_VARIABLE_FORMAT_UINT8:
	{
		switch (type.basetype)
		{
		case SPIRType::UByte:
		case SPIRType::UShort:
		case SPIRType::UInt:
			if (num_components > type.vecsize)
				return build_extended_vector_type(type_id, num_components);
			else
				return type_id;

		case SPIRType::Short:
			return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
			                                  SPIRType::UShort);
		case SPIRType::Int:
			return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
			                                  SPIRType::UInt);

		default:
			SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
		}
	}

	case MSL_SHADER_VARIABLE_FORMAT_UINT16:
	{
		switch (type.basetype)
		{
		case SPIRType::UShort:
		case SPIRType::UInt:
			if (num_components > type.vecsize)
				return build_extended_vector_type(type_id, num_components);
			else
				return type_id;

		case SPIRType::Int:
			return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
			                                  SPIRType::UInt);

		default:
			SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
		}
	}

	default:
		if (num_components > type.vecsize)
			type_id = build_extended_vector_type(type_id, num_components);
		break;
	}

	return type_id;
}

void CompilerMSL::mark_struct_members_packed(const SPIRType &type)
{
	// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
	if (has_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked))
		return;

	set_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked);

	// Problem case! Struct needs to be placed at an awkward alignment.
	// Mark every member of the child struct as packed.
	uint32_t mbr_cnt = uint32_t(type.member_types.size());
	for (uint32_t i = 0; i < mbr_cnt; i++)
	{
		auto &mbr_type = get<SPIRType>(type.member_types[i]);
		if (mbr_type.basetype == SPIRType::Struct)
		{
			// Recursively mark structs as packed.
			auto *struct_type = &mbr_type;
			while (!struct_type->array.empty())
				struct_type = &get<SPIRType>(struct_type->parent_type);
			mark_struct_members_packed(*struct_type);
		}
		else if (!is_scalar(mbr_type))
			set_extended_member_decoration(type.self, i, SPIRVCrossDecorationPhysicalTypePacked);
	}
}

void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type)
{
	uint32_t mbr_cnt = uint32_t(type.member_types.size());
	for (uint32_t i = 0; i < mbr_cnt; i++)
	{
		// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
		auto &mbr_type = get<SPIRType>(type.member_types[i]);
		if (mbr_type.basetype == SPIRType::Struct && !(mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer))
		{
			auto *struct_type = &mbr_type;
			while (!struct_type->array.empty())
				struct_type = &get<SPIRType>(struct_type->parent_type);

			if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPhysicalTypePacked))
				continue;

			uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, i);
			uint32_t msl_size = get_declared_struct_member_size_msl(type, i);
			uint32_t spirv_offset = type_struct_member_offset(type, i);
			uint32_t spirv_offset_next;
			if (i + 1 < mbr_cnt)
				spirv_offset_next = type_struct_member_offset(type, i + 1);
			else
				spirv_offset_next = spirv_offset + msl_size;

			// Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes,
			// and the next member will be placed at offset 12.
			bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0;
			bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next;
			uint32_t array_stride = 0;
			bool struct_needs_explicit_padding = false;

			// Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct.
			if (!mbr_type.array.empty())
			{
				array_stride = type_struct_member_array_stride(type, i);
				uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
				for (uint32_t dim = 0; dim < dimensions; dim++)
				{
					uint32_t array_size = to_array_size_literal(mbr_type, dim);
					array_stride /= max<uint32_t>(array_size, 1u);
				}

				// Set expected struct size based on ArrayStride.
				struct_needs_explicit_padding = true;

				// If struct size is larger than array stride, we might be able to fit, if we tightly pack.
				if (get_declared_struct_size_msl(*struct_type) > array_stride)
					struct_is_too_large = true;
			}

			if (struct_is_misaligned || struct_is_too_large)
				mark_struct_members_packed(*struct_type);
			mark_scalar_layout_structs(*struct_type);

			if (struct_needs_explicit_padding)
			{
				msl_size = get_declared_struct_size_msl(*struct_type, true, true);
				if (array_stride < msl_size)
				{
					SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type.");
				}
				else
				{
					if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
					{
						if (array_stride !=
						    get_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
							SPIRV_CROSS_THROW(
							    "A struct is used with different array strides. Cannot express this in MSL.");
					}
					else
						set_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget, array_stride);
				}
			}
		}
	}
}

// Sort the members of the struct type by offset, and pack and then pad members where needed
// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
// occurs first, followed by padding, because packing a member reduces both its size and its
// natural alignment, possibly requiring a padding member to be added ahead of it.
void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set<uint32_t> &aligned_structs)
{
	// We align structs recursively, so stop any redundant work.
	ID &ib_type_id = ib_type.self;
	if (aligned_structs.count(ib_type_id))
		return;
	aligned_structs.insert(ib_type_id);

	// Sort the members of the interface structure by their offset.
	// They should already be sorted per SPIR-V spec anyway.
	MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
	member_sorter.sort();

	auto mbr_cnt = uint32_t(ib_type.member_types.size());

	for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
	{
		// Pack any dependent struct types before we pack a parent struct.
		auto &mbr_type = get<SPIRType>(ib_type.member_types[mbr_idx]);
		if (mbr_type.basetype == SPIRType::Struct)
			align_struct(mbr_type, aligned_structs);
	}

	// Test the alignment of each member, and if a member should be closer to the previous
	// member than the default spacing expects, it is likely that the previous member is in
	// a packed format. If so, and the previous member is packable, pack it.
	// For example ... this applies to any 3-element vector that is followed by a scalar.
	uint32_t msl_offset = 0;
	for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
	{
		// This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V
		// offsets, array strides and matrix strides.
		ensure_member_packing_rules_msl(ib_type, mbr_idx);

		// Align current offset to the current member's default alignment. If the member was packed, it will observe
		// the updated alignment here.
		uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(ib_type, mbr_idx) - 1;
		uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;

		// Fetch the member offset as declared in the SPIRV.
		uint32_t spirv_mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
		if (spirv_mbr_offset > aligned_msl_offset)
		{
			// Since MSL and SPIR-V have slightly different struct member alignment and
			// size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther
			// away than C-packing, expects, add an inert padding member before the the member.
			uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset;
			set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPaddingTarget, padding_bytes);

			// Re-align as a sanity check that aligning post-padding matches up.
			msl_offset += padding_bytes;
			aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
		}
		else if (spirv_mbr_offset < aligned_msl_offset)
		{
			// This should not happen, but deal with unexpected scenarios.
			// It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V.
			SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL.");
		}

		assert(aligned_msl_offset == spirv_mbr_offset);

		// Increment the current offset to be positioned immediately after the current member.
		// Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
		if (mbr_idx + 1 < mbr_cnt)
			msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(ib_type, mbr_idx);
	}
}

bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const
{
	auto &mbr_type = get<SPIRType>(type.member_types[index]);
	uint32_t spirv_offset = get_member_decoration(type.self, index, DecorationOffset);

	if (index + 1 < type.member_types.size())
	{
		// First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member,
		// we *must* perform some kind of remapping, no way getting around it.
		// We can always pad after this member if necessary, so that case is fine.
		uint32_t spirv_offset_next = get_member_decoration(type.self, index + 1, DecorationOffset);
		assert(spirv_offset_next >= spirv_offset);
		uint32_t maximum_size = spirv_offset_next - spirv_offset;
		uint32_t msl_mbr_size = get_declared_struct_member_size_msl(type, index);
		if (msl_mbr_size > maximum_size)
			return false;
	}

	if (is_array(mbr_type))
	{
		// If we have an array type, array stride must match exactly with SPIR-V.

		// An exception to this requirement is if we have one array element.
		// This comes from DX scalar layout workaround.
		// If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do.
		// In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification.
		bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back();

		if (!relax_array_stride)
		{
			uint32_t spirv_array_stride = type_struct_member_array_stride(type, index);
			uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(type, index);
			if (spirv_array_stride != msl_array_stride)
				return false;
		}
	}

	if (is_matrix(mbr_type))
	{
		// Need to check MatrixStride as well.
		uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index);
		uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(type, index);
		if (spirv_matrix_stride != msl_matrix_stride)
			return false;
	}

	// Now, we check alignment.
	uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, index);
	if ((spirv_offset % msl_alignment) != 0)
		return false;

	// We're in the clear.
	return true;
}

// Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions.
// If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types.
// In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides.
void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index)
{
	if (validate_member_packing_rules_msl(ib_type, index))
		return;

	// We failed validation.
	// This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite
	// match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule
	// that struct alignment == max alignment of all members and struct size depends on this alignment.
	// Can't repack structs, but can repack pointers to structs.
	auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
	bool is_buff_ptr = mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer;
	if (mbr_type.basetype == SPIRType::Struct && !is_buff_ptr)
		SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct.");

	// Perform remapping here.
	// There is nothing to be gained by using packed scalars, so don't attempt it.
	if (!is_scalar(ib_type))
		set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);

	// Try validating again, now with packed.
	if (validate_member_packing_rules_msl(ib_type, index))
		return;

	// We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect.
	// A lot of work goes here ...
	// We will need remapping on Load and Store to translate the types between Logical and Physical.

	// First, we check if we have small vector std140 array.
	// We detect this if we have an array of vectors, and array stride is greater than number of elements.
	if (!mbr_type.array.empty() && !is_matrix(mbr_type))
	{
		uint32_t array_stride = type_struct_member_array_stride(ib_type, index);

		// Hack off array-of-arrays until we find the array stride per element we must have to make it work.
		uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
		for (uint32_t dim = 0; dim < dimensions; dim++)
			array_stride /= max<uint32_t>(to_array_size_literal(mbr_type, dim), 1u);

		// Pointers are 8 bytes
		uint32_t mbr_width_in_bytes = is_buff_ptr ? 8 : (mbr_type.width / 8);
		uint32_t elems_per_stride = array_stride / mbr_width_in_bytes;

		if (elems_per_stride == 3)
			SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
		else if (elems_per_stride > 4 && elems_per_stride != 8)
			SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");

		if (elems_per_stride == 8)
		{
			if (mbr_type.width == 16)
				add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
			else
				SPIRV_CROSS_THROW("Unexpected type in std140 wide array resolve.");
		}

		auto physical_type = mbr_type;
		physical_type.vecsize = elems_per_stride;
		physical_type.parent_type = 0;

		// If this is a physical buffer pointer, replace type with a ulongn vector.
		if (is_buff_ptr)
		{
			physical_type.width = 64;
			physical_type.basetype = to_unsigned_basetype(physical_type.width);
			physical_type.pointer = false;
			physical_type.pointer_depth = false;
			physical_type.forward_pointer = false;
		}

		uint32_t type_id = ir.increase_bound_by(1);
		set<SPIRType>(type_id, physical_type);
		set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
		set_decoration(type_id, DecorationArrayStride, array_stride);

		// Remove packed_ for vectors of size 1, 2 and 4.
		unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
	}
	else if (is_matrix(mbr_type))
	{
		// MatrixStride might be std140-esque.
		uint32_t matrix_stride = type_struct_member_matrix_stride(ib_type, index);

		uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8);

		if (elems_per_stride == 3)
			SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
		else if (elems_per_stride > 4 && elems_per_stride != 8)
			SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");

		if (elems_per_stride == 8)
		{
			if (mbr_type.basetype != SPIRType::Half)
				SPIRV_CROSS_THROW("Unexpected type in std140 wide matrix stride resolve.");
			add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
		}

		bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
		auto physical_type = mbr_type;
		physical_type.parent_type = 0;

		if (row_major)
			physical_type.columns = elems_per_stride;
		else
			physical_type.vecsize = elems_per_stride;
		uint32_t type_id = ir.increase_bound_by(1);
		set<SPIRType>(type_id, physical_type);
		set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);

		// Remove packed_ for vectors of size 1, 2 and 4.
		unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
	}
	else
		SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");

	// Try validating again, now with physical type remapping.
	if (validate_member_packing_rules_msl(ib_type, index))
		return;

	// We might have a particular odd scalar layout case where the last element of an array
	// does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers.
	// The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[],
	// so we hack around it by declaring the offending array or matrix with one less array size/col/row,
	// and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region,
	// but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways.

	// E.g. we might observe a physical layout of:
	// { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ...
	uint32_t type_id = get_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
	auto &type = get<SPIRType>(type_id);

	// Modify the physical type in-place. This is safe since each physical type workaround is a copy.
	if (is_array(type))
	{
		if (type.array.back() > 1)
		{
			if (!type.array_size_literal.back())
				SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size.");
			type.array.back() -= 1;
		}
		else
		{
			// We have an array of size 1, so we cannot decrement that. Our only option now is to
			// force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now.
			unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
			set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
		}
	}
	else if (is_matrix(type))
	{
		bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
		if (!row_major)
		{
			// Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead.
			if (type.columns > 2)
			{
				type.columns--;
			}
			else if (type.columns == 2)
			{
				type.columns = 1;
				assert(type.array.empty());
				type.op = OpTypeArray;
				type.array.push_back(1);
				type.array_size_literal.push_back(true);
			}
		}
		else
		{
			// Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead.
			if (type.vecsize > 2)
			{
				type.vecsize--;
			}
			else if (type.vecsize == 2)
			{
				type.vecsize = type.columns;
				type.columns = 1;
				assert(type.array.empty());
				type.op = OpTypeArray;
				type.array.push_back(1);
				type.array_size_literal.push_back(true);
			}
		}
	}

	// This better validate now, or we must fail gracefully.
	if (!validate_member_packing_rules_msl(ib_type, index))
		SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
}

void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
{
	auto &type = expression_type(rhs_expression);

	bool lhs_remapped_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID);
	bool lhs_packed_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypePacked);
	auto *lhs_e = maybe_get<SPIRExpression>(lhs_expression);
	auto *rhs_e = maybe_get<SPIRExpression>(rhs_expression);

	bool transpose = lhs_e && lhs_e->need_transpose;

	if (has_decoration(lhs_expression, DecorationBuiltIn) &&
	    BuiltIn(get_decoration(lhs_expression, DecorationBuiltIn)) == BuiltInSampleMask &&
	    is_array(type))
	{
		// Storing an array to SampleMask, have to remove the array-ness before storing.
		statement(to_expression(lhs_expression), " = ", to_enclosed_unpacked_expression(rhs_expression), "[0];");
		register_write(lhs_expression);
	}
	else if (!lhs_remapped_type && !lhs_packed_type)
	{
		// No physical type remapping, and no packed type, so can just emit a store directly.

		// We might not be dealing with remapped physical types or packed types,
		// but we might be doing a clean store to a row-major matrix.
		// In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any.
		if (is_matrix(type) && lhs_e && lhs_e->need_transpose)
		{
			lhs_e->need_transpose = false;

			if (rhs_e && rhs_e->need_transpose)
			{
				// Direct copy, but might need to unpack RHS.
				// Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T.
				rhs_e->need_transpose = false;
				statement(to_expression(lhs_expression), " = ", to_unpacked_row_major_matrix_expression(rhs_expression),
				          ";");
				rhs_e->need_transpose = true;
			}
			else
				statement(to_expression(lhs_expression), " = transpose(", to_unpacked_expression(rhs_expression), ");");

			lhs_e->need_transpose = true;
			register_write(lhs_expression);
		}
		else if (lhs_e && lhs_e->need_transpose)
		{
			lhs_e->need_transpose = false;

			// Storing a column to a row-major matrix. Unroll the write.
			for (uint32_t c = 0; c < type.vecsize; c++)
			{
				auto lhs_expr = to_dereferenced_expression(lhs_expression);
				auto column_index = lhs_expr.find_last_of('[');
				if (column_index != string::npos)
				{
					statement(lhs_expr.insert(column_index, join('[', c, ']')), " = ",
					          to_extract_component_expression(rhs_expression, c), ";");
				}
			}
			lhs_e->need_transpose = true;
			register_write(lhs_expression);
		}
		else
			CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
	}
	else if (!lhs_remapped_type && !is_matrix(type) && !transpose)
	{
		// Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly,
		// since they are declared as array of vectors instead, and we need the fallback path below.
		CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
	}
	else
	{
		// Special handling when storing to a remapped physical type.
		// This is mostly to deal with std140 padded matrices or vectors.

		TypeID physical_type_id = lhs_remapped_type ?
		                              ID(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID)) :
		                              type.self;

		auto &physical_type = get<SPIRType>(physical_type_id);

		string cast_addr_space = "thread";
		auto *p_var_lhs = maybe_get_backing_variable(lhs_expression);
		if (p_var_lhs)
			cast_addr_space = get_type_address_space(get<SPIRType>(p_var_lhs->basetype), lhs_expression);

		if (is_matrix(type))
		{
			const char *packed_pfx = lhs_packed_type ? "packed_" : "";

			// Packed matrices are stored as arrays of packed vectors, so we need
			// to assign the vectors one at a time.
			// For row-major matrices, we need to transpose the *right-hand* side,
			// not the left-hand side.

			// Lots of cases to cover here ...

			bool rhs_transpose = rhs_e && rhs_e->need_transpose;
			SPIRType write_type = type;
			string cast_expr;

			// We're dealing with transpose manually.
			if (rhs_transpose)
				rhs_e->need_transpose = false;

			if (transpose)
			{
				// We're dealing with transpose manually.
				lhs_e->need_transpose = false;
				write_type.vecsize = type.columns;
				write_type.columns = 1;

				if (physical_type.columns != type.columns)
					cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");

				if (rhs_transpose)
				{
					// If RHS is also transposed, we can just copy row by row.
					for (uint32_t i = 0; i < type.vecsize; i++)
					{
						statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
						          to_unpacked_row_major_matrix_expression(rhs_expression), "[", i, "];");
					}
				}
				else
				{
					auto vector_type = expression_type(rhs_expression);
					vector_type.vecsize = vector_type.columns;
					vector_type.columns = 1;

					// Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
					// so pick out individual components instead.
					for (uint32_t i = 0; i < type.vecsize; i++)
					{
						string rhs_row = type_to_glsl_constructor(vector_type) + "(";
						for (uint32_t j = 0; j < vector_type.vecsize; j++)
						{
							rhs_row += join(to_enclosed_unpacked_expression(rhs_expression), "[", j, "][", i, "]");
							if (j + 1 < vector_type.vecsize)
								rhs_row += ", ";
						}
						rhs_row += ")";

						statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
					}
				}

				// We're dealing with transpose manually.
				lhs_e->need_transpose = true;
			}
			else
			{
				write_type.columns = 1;

				if (physical_type.vecsize != type.vecsize)
					cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");

				if (rhs_transpose)
				{
					auto vector_type = expression_type(rhs_expression);
					vector_type.columns = 1;

					// Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
					// so pick out individual components instead.
					for (uint32_t i = 0; i < type.columns; i++)
					{
						string rhs_row = type_to_glsl_constructor(vector_type) + "(";
						for (uint32_t j = 0; j < vector_type.vecsize; j++)
						{
							// Need to explicitly unpack expression since we've mucked with transpose state.
							auto unpacked_expr = to_unpacked_row_major_matrix_expression(rhs_expression);
							rhs_row += join(unpacked_expr, "[", j, "][", i, "]");
							if (j + 1 < vector_type.vecsize)
								rhs_row += ", ";
						}
						rhs_row += ")";

						statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
					}
				}
				else
				{
					// Copy column-by-column.
					for (uint32_t i = 0; i < type.columns; i++)
					{
						statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
						          to_enclosed_unpacked_expression(rhs_expression), "[", i, "];");
					}
				}
			}

			// We're dealing with transpose manually.
			if (rhs_transpose)
				rhs_e->need_transpose = true;
		}
		else if (transpose)
		{
			lhs_e->need_transpose = false;

			SPIRType write_type = type;
			write_type.vecsize = 1;
			write_type.columns = 1;

			// Storing a column to a row-major matrix. Unroll the write.
			for (uint32_t c = 0; c < type.vecsize; c++)
			{
				auto lhs_expr = to_enclosed_expression(lhs_expression);
				auto column_index = lhs_expr.find_last_of('[');

				// Get rid of any ".data" half8 handling here, we're casting to scalar anyway.
				auto end_column_index = lhs_expr.find_last_of(']');
				auto end_dot_index = lhs_expr.find_last_of('.');
				if (end_dot_index != string::npos && end_dot_index > end_column_index)
					lhs_expr.resize(end_dot_index);

				if (column_index != string::npos)
				{
					statement("((", cast_addr_space, " ", type_to_glsl(write_type), "*)&",
					          lhs_expr.insert(column_index, join('[', c, ']', ")")), " = ",
					          to_extract_component_expression(rhs_expression, c), ";");
				}
			}

			lhs_e->need_transpose = true;
		}
		else if ((is_matrix(physical_type) || is_array(physical_type)) &&
		         physical_type.vecsize <= 4 &&
		         physical_type.vecsize > type.vecsize)
		{
			assert(type.vecsize >= 1 && type.vecsize <= 3);

			// If we have packed types, we cannot use swizzled stores.
			// We could technically unroll the store for each element if needed.
			// When remapping to a std140 physical type, we always get float4,
			// and the packed decoration should always be removed.
			assert(!lhs_packed_type);

			string lhs = to_dereferenced_expression(lhs_expression);
			string rhs = to_pointer_expression(rhs_expression);

			// Unpack the expression so we can store to it with a float or float2.
			// It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
			lhs = join("(", cast_addr_space, " ", type_to_glsl(type), "&)", enclose_expression(lhs));
			if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
				statement(lhs, " = ", rhs, ";");
		}
		else if (!is_matrix(type))
		{
			string lhs = to_dereferenced_expression(lhs_expression);
			string rhs = to_pointer_expression(rhs_expression);
			if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
				statement(lhs, " = ", rhs, ";");
		}

		register_write(lhs_expression);
	}
}

static bool expression_ends_with(const string &expr_str, const std::string &ending)
{
	if (expr_str.length() >= ending.length())
		return (expr_str.compare(expr_str.length() - ending.length(), ending.length(), ending) == 0);
	else
		return false;
}

// Converts the format of the current expression from packed to unpacked,
// by wrapping the expression in a constructor of the appropriate type.
// Also, handle special physical ID remapping scenarios, similar to emit_store_statement().
string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id,
                                           bool packed, bool row_major)
{
	// Trivial case, nothing to do.
	if (physical_type_id == 0 && !packed)
		return expr_str;

	const SPIRType *physical_type = nullptr;
	if (physical_type_id)
		physical_type = &get<SPIRType>(physical_type_id);

	static const char *swizzle_lut[] = {
		".x",
		".xy",
		".xyz",
		"",
	};

	// TODO: Move everything to the template wrapper?
	bool uses_std140_wrapper = physical_type && physical_type->vecsize > 4;

	if (physical_type && is_vector(*physical_type) && is_array(*physical_type) &&
	    !uses_std140_wrapper &&
	    physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, swizzle_lut[type.vecsize - 1]))
	{
		// std140 array cases for vectors.
		assert(type.vecsize >= 1 && type.vecsize <= 3);
		return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
	}
	else if (physical_type && is_matrix(*physical_type) && is_vector(type) &&
	         !uses_std140_wrapper &&
	         physical_type->vecsize > type.vecsize)
	{
		// Extract column from padded matrix.
		assert(type.vecsize >= 1 && type.vecsize <= 4);
		return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
	}
	else if (is_matrix(type))
	{
		// Packed matrices are stored as arrays of packed vectors. Unfortunately,
		// we can't just pass the array straight to the matrix constructor. We have to
		// pass each vector individually, so that they can be unpacked to normal vectors.
		if (!physical_type)
			physical_type = &type;

		uint32_t vecsize = type.vecsize;
		uint32_t columns = type.columns;
		if (row_major)
			swap(vecsize, columns);

		uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize;

		const char *base_type = type.width == 16 ? "half" : "float";
		string unpack_expr = join(base_type, columns, "x", vecsize, "(");

		const char *load_swiz = "";
		const char *data_swiz = physical_vecsize > 4 ? ".data" : "";

		if (physical_vecsize != vecsize)
			load_swiz = swizzle_lut[vecsize - 1];

		for (uint32_t i = 0; i < columns; i++)
		{
			if (i > 0)
				unpack_expr += ", ";

			if (packed)
				unpack_expr += join(base_type, physical_vecsize, "(", expr_str, "[", i, "]", ")", load_swiz);
			else
				unpack_expr += join(expr_str, "[", i, "]", data_swiz, load_swiz);
		}

		unpack_expr += ")";
		return unpack_expr;
	}
	else
	{
		return join(type_to_glsl(type), "(", expr_str, ")");
	}
}

// Emits the file header info
void CompilerMSL::emit_header()
{
	// This particular line can be overridden during compilation, so make it a flag and not a pragma line.
	if (suppress_missing_prototypes)
		statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
	if (suppress_incompatible_pointer_types_discard_qualifiers)
		statement("#pragma clang diagnostic ignored \"-Wincompatible-pointer-types-discards-qualifiers\"");

	// Disable warning about missing braces for array<T> template to make arrays a value type
	if (spv_function_implementations.count(SPVFuncImplUnsafeArray) != 0)
		statement("#pragma clang diagnostic ignored \"-Wmissing-braces\"");

	for (auto &pragma : pragma_lines)
		statement(pragma);

	if (!pragma_lines.empty() || suppress_missing_prototypes)
		statement("");

	statement("#include <metal_stdlib>");
	statement("#include <simd/simd.h>");

	for (auto &header : header_lines)
		statement(header);

	statement("");
	statement("using namespace metal;");
	statement("");

	for (auto &td : typedef_lines)
		statement(td);

	if (!typedef_lines.empty())
		statement("");
}

void CompilerMSL::add_pragma_line(const string &line)
{
	auto rslt = pragma_lines.insert(line);
	if (rslt.second)
		force_recompile();
}

void CompilerMSL::add_typedef_line(const string &line)
{
	auto rslt = typedef_lines.insert(line);
	if (rslt.second)
		force_recompile();
}

// Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared
void CompilerMSL::emit_custom_templates()
{
	static const char * const address_spaces[] = {
		"thread", "constant", "device", "threadgroup", "threadgroup_imageblock", "ray_data", "object_data"
	};

	for (const auto &spv_func : spv_function_implementations)
	{
		switch (spv_func)
		{
		case SPVFuncImplUnsafeArray:
			statement("template<typename T, size_t Num>");
			statement("struct spvUnsafeArray");
			begin_scope();
			statement("T elements[Num ? Num : 1];");
			statement("");
			statement("thread T& operator [] (size_t pos) thread");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			statement("constexpr const thread T& operator [] (size_t pos) const thread");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			statement("");
			statement("device T& operator [] (size_t pos) device");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			statement("constexpr const device T& operator [] (size_t pos) const device");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			statement("");
			statement("constexpr const constant T& operator [] (size_t pos) const constant");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			statement("");
			statement("threadgroup T& operator [] (size_t pos) threadgroup");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			statement("constexpr const threadgroup T& operator [] (size_t pos) const threadgroup");
			begin_scope();
			statement("return elements[pos];");
			end_scope();
			end_scope_decl();
			statement("");
			break;

		case SPVFuncImplStorageMatrix:
			statement("template<typename T, int Cols, int Rows=Cols>");
			statement("struct spvStorageMatrix");
			begin_scope();
			statement("vec<T, Rows> columns[Cols];");
			statement("");
			for (size_t method_idx = 0; method_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++method_idx)
			{
				// Some address spaces require particular features.
				if (method_idx == 4) // threadgroup_imageblock
					statement("#ifdef __HAVE_IMAGEBLOCKS__");
				else if (method_idx == 5) // ray_data
					statement("#ifdef __HAVE_RAYTRACING__");
				else if (method_idx == 6) // object_data
					statement("#ifdef __HAVE_MESH__");
				const string &method_as = address_spaces[method_idx];
				statement("spvStorageMatrix() ", method_as, " = default;");
				if (method_idx != 1) // constant
				{
					statement(method_as, " spvStorageMatrix& operator=(initializer_list<vec<T, Rows>> cols) ",
					          method_as);
					begin_scope();
					statement("size_t i;");
					statement("thread vec<T, Rows>* col;");
					statement("for (i = 0, col = cols.begin(); i < Cols; ++i, ++col)");
					statement("    columns[i] = *col;");
					statement("return *this;");
					end_scope();
				}
				statement("");
				for (size_t param_idx = 0; param_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++param_idx)
				{
					if (param_idx != method_idx)
					{
						if (param_idx == 4) // threadgroup_imageblock
							statement("#ifdef __HAVE_IMAGEBLOCKS__");
						else if (param_idx == 5) // ray_data
							statement("#ifdef __HAVE_RAYTRACING__");
						else if (param_idx == 6) // object_data
							statement("#ifdef __HAVE_MESH__");
					}
					const string &param_as = address_spaces[param_idx];
					statement("spvStorageMatrix(const ", param_as, " matrix<T, Cols, Rows>& m) ", method_as);
					begin_scope();
					statement("for (size_t i = 0; i < Cols; ++i)");
					statement("    columns[i] = m.columns[i];");
					end_scope();
					statement("spvStorageMatrix(const ", param_as, " spvStorageMatrix& m) ", method_as, " = default;");
					if (method_idx != 1) // constant
					{
						statement(method_as, " spvStorageMatrix& operator=(const ", param_as,
						          " matrix<T, Cols, Rows>& m) ", method_as);
						begin_scope();
						statement("for (size_t i = 0; i < Cols; ++i)");
						statement("    columns[i] = m.columns[i];");
						statement("return *this;");
						end_scope();
						statement(method_as, " spvStorageMatrix& operator=(const ", param_as, " spvStorageMatrix& m) ",
						          method_as, " = default;");
					}
					if (param_idx != method_idx && param_idx >= 4)
						statement("#endif");
					statement("");
				}
				statement("operator matrix<T, Cols, Rows>() const ", method_as);
				begin_scope();
				statement("matrix<T, Cols, Rows> m;");
				statement("for (int i = 0; i < Cols; ++i)");
				statement("    m.columns[i] = columns[i];");
				statement("return m;");
				end_scope();
				statement("");
				statement("vec<T, Rows> operator[](size_t idx) const ", method_as);
				begin_scope();
				statement("return columns[idx];");
				end_scope();
				if (method_idx != 1) // constant
				{
					statement(method_as, " vec<T, Rows>& operator[](size_t idx) ", method_as);
					begin_scope();
					statement("return columns[idx];");
					end_scope();
				}
				if (method_idx >= 4)
					statement("#endif");
				statement("");
			}
			end_scope_decl();
			statement("");
			statement("template<typename T, int Cols, int Rows>");
			statement("matrix<T, Rows, Cols> transpose(spvStorageMatrix<T, Cols, Rows> m)");
			begin_scope();
			statement("return transpose(matrix<T, Cols, Rows>(m));");
			end_scope();
			statement("");
			statement("typedef spvStorageMatrix<half, 2, 2> spvStorage_half2x2;");
			statement("typedef spvStorageMatrix<half, 2, 3> spvStorage_half2x3;");
			statement("typedef spvStorageMatrix<half, 2, 4> spvStorage_half2x4;");
			statement("typedef spvStorageMatrix<half, 3, 2> spvStorage_half3x2;");
			statement("typedef spvStorageMatrix<half, 3, 3> spvStorage_half3x3;");
			statement("typedef spvStorageMatrix<half, 3, 4> spvStorage_half3x4;");
			statement("typedef spvStorageMatrix<half, 4, 2> spvStorage_half4x2;");
			statement("typedef spvStorageMatrix<half, 4, 3> spvStorage_half4x3;");
			statement("typedef spvStorageMatrix<half, 4, 4> spvStorage_half4x4;");
			statement("typedef spvStorageMatrix<float, 2, 2> spvStorage_float2x2;");
			statement("typedef spvStorageMatrix<float, 2, 3> spvStorage_float2x3;");
			statement("typedef spvStorageMatrix<float, 2, 4> spvStorage_float2x4;");
			statement("typedef spvStorageMatrix<float, 3, 2> spvStorage_float3x2;");
			statement("typedef spvStorageMatrix<float, 3, 3> spvStorage_float3x3;");
			statement("typedef spvStorageMatrix<float, 3, 4> spvStorage_float3x4;");
			statement("typedef spvStorageMatrix<float, 4, 2> spvStorage_float4x2;");
			statement("typedef spvStorageMatrix<float, 4, 3> spvStorage_float4x3;");
			statement("typedef spvStorageMatrix<float, 4, 4> spvStorage_float4x4;");
			statement("");
			break;

		default:
			break;
		}
	}
}

// Emits any needed custom function bodies.
// Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline))
// otherwise they will cause problems when linked together in a single Metallib.
void CompilerMSL::emit_custom_functions()
{
	// Use when outputting overloaded functions to cover different address spaces.
	static const char *texture_addr_spaces[] = { "device", "constant", "thread" };
	static uint32_t texture_addr_space_count = sizeof(texture_addr_spaces) / sizeof(char*);

	if (spv_function_implementations.count(SPVFuncImplArrayCopyMultidim))
		spv_function_implementations.insert(SPVFuncImplArrayCopy);

	if (spv_function_implementations.count(SPVFuncImplDynamicImageSampler))
	{
		// Unfortunately, this one needs a lot of the other functions to compile OK.
		if (!msl_options.supports_msl_version(2))
			SPIRV_CROSS_THROW(
			    "spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0.");
		spv_function_implementations.insert(SPVFuncImplForwardArgs);
		spv_function_implementations.insert(SPVFuncImplTextureSwizzle);
		if (msl_options.swizzle_texture_samples)
			spv_function_implementations.insert(SPVFuncImplGatherSwizzle);
		for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
		     i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
			spv_function_implementations.insert(static_cast<SPVFuncImpl>(i));
		spv_function_implementations.insert(SPVFuncImplExpandITUFullRange);
		spv_function_implementations.insert(SPVFuncImplExpandITUNarrowRange);
		spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT709);
		spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT601);
		spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT2020);
	}

	for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
	     i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
		if (spv_function_implementations.count(static_cast<SPVFuncImpl>(i)))
			spv_function_implementations.insert(SPVFuncImplForwardArgs);

	if (spv_function_implementations.count(SPVFuncImplTextureSwizzle) ||
	    spv_function_implementations.count(SPVFuncImplGatherSwizzle) ||
	    spv_function_implementations.count(SPVFuncImplGatherCompareSwizzle))
	{
		spv_function_implementations.insert(SPVFuncImplForwardArgs);
		spv_function_implementations.insert(SPVFuncImplGetSwizzle);
	}

	for (const auto &spv_func : spv_function_implementations)
	{
		switch (spv_func)
		{
		case SPVFuncImplMod:
			statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
			statement("template<typename Tx, typename Ty>");
			statement("inline Tx mod(Tx x, Ty y)");
			begin_scope();
			statement("return x - y * floor(x / y);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplRadians:
			statement("// Implementation of the GLSL radians() function");
			statement("template<typename T>");
			statement("inline T radians(T d)");
			begin_scope();
			statement("return d * T(0.01745329251);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplDegrees:
			statement("// Implementation of the GLSL degrees() function");
			statement("template<typename T>");
			statement("inline T degrees(T r)");
			begin_scope();
			statement("return r * T(57.2957795131);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplFindILsb:
			statement("// Implementation of the GLSL findLSB() function");
			statement("template<typename T>");
			statement("inline T spvFindLSB(T x)");
			begin_scope();
			statement("return select(ctz(x), T(-1), x == T(0));");
			end_scope();
			statement("");
			break;

		case SPVFuncImplFindUMsb:
			statement("// Implementation of the unsigned GLSL findMSB() function");
			statement("template<typename T>");
			statement("inline T spvFindUMSB(T x)");
			begin_scope();
			statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
			end_scope();
			statement("");
			break;

		case SPVFuncImplFindSMsb:
			statement("// Implementation of the signed GLSL findMSB() function");
			statement("template<typename T>");
			statement("inline T spvFindSMSB(T x)");
			begin_scope();
			statement("T v = select(x, T(-1) - x, x < T(0));");
			statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSSign:
			statement("// Implementation of the GLSL sign() function for integer types");
			statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
			statement("inline T sign(T x)");
			begin_scope();
			statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
			end_scope();
			statement("");
			break;

		case SPVFuncImplArrayCopy:
		case SPVFuncImplArrayCopyMultidim:
		{
			// Unfortunately we cannot template on the address space, so combinatorial explosion it is.
			static const char *function_name_tags[] = {
				"FromConstantToStack",     "FromConstantToThreadGroup", "FromStackToStack",
				"FromStackToThreadGroup",  "FromThreadGroupToStack",    "FromThreadGroupToThreadGroup",
				"FromDeviceToDevice",      "FromConstantToDevice",      "FromStackToDevice",
				"FromThreadGroupToDevice", "FromDeviceToStack",         "FromDeviceToThreadGroup",
			};

			static const char *src_address_space[] = {
				"constant",          "constant",          "thread const", "thread const",
				"threadgroup const", "threadgroup const", "device const", "constant",
				"thread const",      "threadgroup const", "device const", "device const",
			};

			static const char *dst_address_space[] = {
				"thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup",
				"device", "device",      "device", "device",      "thread", "threadgroup",
			};

			for (uint32_t variant = 0; variant < 12; variant++)
			{
				bool is_multidim = spv_func == SPVFuncImplArrayCopyMultidim;
				const char* dim = is_multidim ? "[N][M]" : "[N]";
				statement("template<typename T, uint N", is_multidim ? ", uint M>" : ">");
				statement("inline void spvArrayCopy", function_name_tags[variant], "(",
				          dst_address_space[variant], " T (&dst)", dim, ", ",
				          src_address_space[variant], " T (&src)", dim, ")");
				begin_scope();
				statement("for (uint i = 0; i < N; i++)");
				begin_scope();
				if (is_multidim)
					statement("spvArrayCopy", function_name_tags[variant], "(dst[i], src[i]);");
				else
					statement("dst[i] = src[i];");
				end_scope();
				end_scope();
				statement("");
			}
			break;
		}

		// Support for Metal 2.1's new texture_buffer type.
		case SPVFuncImplTexelBufferCoords:
		{
			if (msl_options.texel_buffer_texture_width > 0)
			{
				string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
				statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
				statement(force_inline);
				statement("uint2 spvTexelBufferCoord(uint tc)");
				begin_scope();
				statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
				end_scope();
				statement("");
			}
			else
			{
				statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
				statement(
				    "#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())");
				statement("");
			}
			break;
		}

		// Emulate texture2D atomic operations
		case SPVFuncImplImage2DAtomicCoords:
		{
			if (msl_options.supports_msl_version(1, 2))
			{
				statement("// The required alignment of a linear texture of R32Uint format.");
				statement("constant uint spvLinearTextureAlignmentOverride [[function_constant(",
				          msl_options.r32ui_alignment_constant_id, ")]];");
				statement("constant uint spvLinearTextureAlignment = ",
				          "is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ",
				          "spvLinearTextureAlignmentOverride : ", msl_options.r32ui_linear_texture_alignment, ";");
			}
			else
			{
				statement("// The required alignment of a linear texture of R32Uint format.");
				statement("constant uint spvLinearTextureAlignment = ", msl_options.r32ui_linear_texture_alignment,
				          ";");
			}
			statement("// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics");
			statement("#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ",
			          " spvLinearTextureAlignment / 4 - 1) & ~(",
			          " spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)");
			statement("");
			break;
		}

		// Fix up gradient vectors when sampling a cube texture for Apple Silicon.
		// h/t Alexey Knyazev (https://github.com/KhronosGroup/MoltenVK/issues/2068#issuecomment-1817799067) for the code.
		case SPVFuncImplGradientCube:
			statement("static inline gradientcube spvGradientCube(float3 P, float3 dPdx, float3 dPdy)");
			begin_scope();
			statement("// Major axis selection");
			statement("float3 absP = abs(P);");
			statement("bool xMajor = absP.x >= max(absP.y, absP.z);");
			statement("bool yMajor = absP.y >= absP.z;");
			statement("float3 Q = xMajor ? P.yzx : (yMajor ? P.xzy : P);");
			statement("float3 dQdx = xMajor ? dPdx.yzx : (yMajor ? dPdx.xzy : dPdx);");
			statement("float3 dQdy = xMajor ? dPdy.yzx : (yMajor ? dPdy.xzy : dPdy);");
			statement_no_indent("");
			statement("// Skip a couple of operations compared to usual projection");
			statement("float4 d = float4(dQdx.xy, dQdy.xy) - (Q.xy / Q.z).xyxy * float4(dQdx.zz, dQdy.zz);");
			statement_no_indent("");
			statement("// Final swizzle to put the intermediate values into non-ignored components");
			statement("// X major: X and Z");
			statement("// Y major: X and Y");
			statement("// Z major: Y and Z");
			statement("return gradientcube(xMajor ? d.xxy : d.xyx, xMajor ? d.zzw : d.zwz);");
			end_scope();
			statement("");
			break;

		// "fadd" intrinsic support
		case SPVFuncImplFAdd:
			statement("template<typename T>");
			statement("[[clang::optnone]] T spvFAdd(T l, T r)");
			begin_scope();
			statement("return fma(T(1), l, r);");
			end_scope();
			statement("");
			break;

		// "fsub" intrinsic support
		case SPVFuncImplFSub:
			statement("template<typename T>");
			statement("[[clang::optnone]] T spvFSub(T l, T r)");
			begin_scope();
			statement("return fma(T(-1), r, l);");
			end_scope();
			statement("");
			break;

		// "fmul' intrinsic support
		case SPVFuncImplFMul:
			statement("template<typename T>");
			statement("[[clang::optnone]] T spvFMul(T l, T r)");
			begin_scope();
			statement("return fma(l, r, T(0));");
			end_scope();
			statement("");

			statement("template<typename T, int Cols, int Rows>");
			statement("[[clang::optnone]] vec<T, Cols> spvFMulVectorMatrix(vec<T, Rows> v, matrix<T, Cols, Rows> m)");
			begin_scope();
			statement("vec<T, Cols> res = vec<T, Cols>(0);");
			statement("for (uint i = Rows; i > 0; --i)");
			begin_scope();
			statement("vec<T, Cols> tmp(0);");
			statement("for (uint j = 0; j < Cols; ++j)");
			begin_scope();
			statement("tmp[j] = m[j][i - 1];");
			end_scope();
			statement("res = fma(tmp, vec<T, Cols>(v[i - 1]), res);");
			end_scope();
			statement("return res;");
			end_scope();
			statement("");

			statement("template<typename T, int Cols, int Rows>");
			statement("[[clang::optnone]] vec<T, Rows> spvFMulMatrixVector(matrix<T, Cols, Rows> m, vec<T, Cols> v)");
			begin_scope();
			statement("vec<T, Rows> res = vec<T, Rows>(0);");
			statement("for (uint i = Cols; i > 0; --i)");
			begin_scope();
			statement("res = fma(m[i - 1], vec<T, Rows>(v[i - 1]), res);");
			end_scope();
			statement("return res;");
			end_scope();
			statement("");

			statement("template<typename T, int LCols, int LRows, int RCols, int RRows>");
			statement("[[clang::optnone]] matrix<T, RCols, LRows> spvFMulMatrixMatrix(matrix<T, LCols, LRows> l, matrix<T, RCols, RRows> r)");
			begin_scope();
			statement("matrix<T, RCols, LRows> res;");
			statement("for (uint i = 0; i < RCols; i++)");
			begin_scope();
			statement("vec<T, RCols> tmp(0);");
			statement("for (uint j = 0; j < LCols; j++)");
			begin_scope();
			statement("tmp = fma(vec<T, RCols>(r[i][j]), l[j], tmp);");
			end_scope();
			statement("res[i] = tmp;");
			end_scope();
			statement("return res;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplQuantizeToF16:
			// Ensure fast-math is disabled to match Vulkan results.
			// SpvHalfTypeSelector is used to match the half* template type to the float* template type.
			// Depending on GPU, MSL does not always flush converted subnormal halfs to zero,
			// as required by OpQuantizeToF16, so check for subnormals and flush them to zero.
			statement("template <typename F> struct SpvHalfTypeSelector;");
			statement("template <> struct SpvHalfTypeSelector<float> { public: using H = half; };");
			statement("template<uint N> struct SpvHalfTypeSelector<vec<float, N>> { using H = vec<half, N>; };");
			statement("template<typename F, typename H = typename SpvHalfTypeSelector<F>::H>");
			statement("[[clang::optnone]] F spvQuantizeToF16(F fval)");
			begin_scope();
			statement("H hval = H(fval);");
			statement("hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));");
			statement("return F(hval);");
			end_scope();
			statement("");
			break;

		// Emulate texturecube_array with texture2d_array for iOS where this type is not available
		case SPVFuncImplCubemapTo2DArrayFace:
			statement(force_inline);
			statement("float3 spvCubemapTo2DArrayFace(float3 P)");
			begin_scope();
			statement("float3 Coords = abs(P.xyz);");
			statement("float CubeFace = 0;");
			statement("float ProjectionAxis = 0;");
			statement("float u = 0;");
			statement("float v = 0;");
			statement("if (Coords.x >= Coords.y && Coords.x >= Coords.z)");
			begin_scope();
			statement("CubeFace = P.x >= 0 ? 0 : 1;");
			statement("ProjectionAxis = Coords.x;");
			statement("u = P.x >= 0 ? -P.z : P.z;");
			statement("v = -P.y;");
			end_scope();
			statement("else if (Coords.y >= Coords.x && Coords.y >= Coords.z)");
			begin_scope();
			statement("CubeFace = P.y >= 0 ? 2 : 3;");
			statement("ProjectionAxis = Coords.y;");
			statement("u = P.x;");
			statement("v = P.y >= 0 ? P.z : -P.z;");
			end_scope();
			statement("else");
			begin_scope();
			statement("CubeFace = P.z >= 0 ? 4 : 5;");
			statement("ProjectionAxis = Coords.z;");
			statement("u = P.z >= 0 ? P.x : -P.x;");
			statement("v = -P.y;");
			end_scope();
			statement("u = 0.5 * (u/ProjectionAxis + 1);");
			statement("v = 0.5 * (v/ProjectionAxis + 1);");
			statement("return float3(u, v, CubeFace);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplInverse4x4:
			statement("// Returns the determinant of a 2x2 matrix.");
			statement(force_inline);
			statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
			begin_scope();
			statement("return a1 * b2 - b1 * a2;");
			end_scope();
			statement("");

			statement("// Returns the determinant of a 3x3 matrix.");
			statement(force_inline);
			statement("float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
			          "float c2, float c3)");
			begin_scope();
			statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
			          "b2, b3);");
			end_scope();
			statement("");
			statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
			statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
			statement(force_inline);
			statement("float4x4 spvInverse4x4(float4x4 m)");
			begin_scope();
			statement("float4x4 adj;	// The adjoint matrix (inverse after dividing by determinant)");
			statement_no_indent("");
			statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
			statement("adj[0][0] =  spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
			          "m[3][3]);");
			statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
			          "m[3][3]);");
			statement("adj[0][2] =  spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
			          "m[3][3]);");
			statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
			          "m[2][3]);");
			statement_no_indent("");
			statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
			          "m[3][3]);");
			statement("adj[1][1] =  spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
			          "m[3][3]);");
			statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
			          "m[3][3]);");
			statement("adj[1][3] =  spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
			          "m[2][3]);");
			statement_no_indent("");
			statement("adj[2][0] =  spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
			          "m[3][3]);");
			statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
			          "m[3][3]);");
			statement("adj[2][2] =  spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
			          "m[3][3]);");
			statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
			          "m[2][3]);");
			statement_no_indent("");
			statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
			          "m[3][2]);");
			statement("adj[3][1] =  spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
			          "m[3][2]);");
			statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
			          "m[3][2]);");
			statement("adj[3][3] =  spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
			          "m[2][2]);");
			statement_no_indent("");
			statement("// Calculate the determinant as a combination of the cofactors of the first row.");
			statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
			          "* m[3][0]);");
			statement_no_indent("");
			statement("// Divide the classical adjoint matrix by the determinant.");
			statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
			statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplInverse3x3:
			if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
			{
				statement("// Returns the determinant of a 2x2 matrix.");
				statement(force_inline);
				statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
				begin_scope();
				statement("return a1 * b2 - b1 * a2;");
				end_scope();
				statement("");
			}

			statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
			statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
			statement(force_inline);
			statement("float3x3 spvInverse3x3(float3x3 m)");
			begin_scope();
			statement("float3x3 adj;	// The adjoint matrix (inverse after dividing by determinant)");
			statement_no_indent("");
			statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
			statement("adj[0][0] =  spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
			statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
			statement("adj[0][2] =  spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
			statement_no_indent("");
			statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
			statement("adj[1][1] =  spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
			statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
			statement_no_indent("");
			statement("adj[2][0] =  spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
			statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
			statement("adj[2][2] =  spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
			statement_no_indent("");
			statement("// Calculate the determinant as a combination of the cofactors of the first row.");
			statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
			statement_no_indent("");
			statement("// Divide the classical adjoint matrix by the determinant.");
			statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
			statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplInverse2x2:
			statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
			statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
			statement(force_inline);
			statement("float2x2 spvInverse2x2(float2x2 m)");
			begin_scope();
			statement("float2x2 adj;	// The adjoint matrix (inverse after dividing by determinant)");
			statement_no_indent("");
			statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
			statement("adj[0][0] =  m[1][1];");
			statement("adj[0][1] = -m[0][1];");
			statement_no_indent("");
			statement("adj[1][0] = -m[1][0];");
			statement("adj[1][1] =  m[0][0];");
			statement_no_indent("");
			statement("// Calculate the determinant as a combination of the cofactors of the first row.");
			statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
			statement_no_indent("");
			statement("// Divide the classical adjoint matrix by the determinant.");
			statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
			statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplForwardArgs:
			statement("template<typename T> struct spvRemoveReference { typedef T type; };");
			statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
			statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
			statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
			          "spvRemoveReference<T>::type& x)");
			begin_scope();
			statement("return static_cast<thread T&&>(x);");
			end_scope();
			statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
			          "spvRemoveReference<T>::type&& x)");
			begin_scope();
			statement("return static_cast<thread T&&>(x);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplGetSwizzle:
			statement("enum class spvSwizzle : uint");
			begin_scope();
			statement("none = 0,");
			statement("zero,");
			statement("one,");
			statement("red,");
			statement("green,");
			statement("blue,");
			statement("alpha");
			end_scope_decl();
			statement("");
			statement("template<typename T>");
			statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
			begin_scope();
			statement("switch (s)");
			begin_scope();
			statement("case spvSwizzle::none:");
			statement("    return c;");
			statement("case spvSwizzle::zero:");
			statement("    return 0;");
			statement("case spvSwizzle::one:");
			statement("    return 1;");
			statement("case spvSwizzle::red:");
			statement("    return x.r;");
			statement("case spvSwizzle::green:");
			statement("    return x.g;");
			statement("case spvSwizzle::blue:");
			statement("    return x.b;");
			statement("case spvSwizzle::alpha:");
			statement("    return x.a;");
			end_scope();
			end_scope();
			statement("");
			break;

		case SPVFuncImplTextureSwizzle:
			statement("// Wrapper function that swizzles texture samples and fetches.");
			statement("template<typename T>");
			statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
			begin_scope();
			statement("if (!s)");
			statement("    return x;");
			statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
			          "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
			          "& 0xFF)), "
			          "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
			end_scope();
			statement("");
			statement("template<typename T>");
			statement("inline T spvTextureSwizzle(T x, uint s)");
			begin_scope();
			statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplGatherSwizzle:
			statement("// Wrapper function that swizzles texture gathers.");
			statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
			          "typename... Ts>");
			statement("inline vec<T, 4> spvGatherSwizzle(const thread Tex<T>& t, sampler s, "
			          "uint sw, component c, Ts... params) METAL_CONST_ARG(c)");
			begin_scope();
			statement("if (sw)");
			begin_scope();
			statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
			begin_scope();
			statement("case spvSwizzle::none:");
			statement("    break;");
			statement("case spvSwizzle::zero:");
			statement("    return vec<T, 4>(0, 0, 0, 0);");
			statement("case spvSwizzle::one:");
			statement("    return vec<T, 4>(1, 1, 1, 1);");
			statement("case spvSwizzle::red:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::x);");
			statement("case spvSwizzle::green:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::y);");
			statement("case spvSwizzle::blue:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::z);");
			statement("case spvSwizzle::alpha:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::w);");
			end_scope();
			end_scope();
			// texture::gather insists on its component parameter being a constant
			// expression, so we need this silly workaround just to compile the shader.
			statement("switch (c)");
			begin_scope();
			statement("case component::x:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::x);");
			statement("case component::y:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::y);");
			statement("case component::z:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::z);");
			statement("case component::w:");
			statement("    return t.gather(s, spvForward<Ts>(params)..., component::w);");
			end_scope();
			end_scope();
			statement("");
			break;

		case SPVFuncImplGatherCompareSwizzle:
			statement("// Wrapper function that swizzles depth texture gathers.");
			statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
			          "typename... Ts>");
			statement("inline vec<T, 4> spvGatherCompareSwizzle(const thread Tex<T>& t, sampler "
			          "s, uint sw, Ts... params) ");
			begin_scope();
			statement("if (sw)");
			begin_scope();
			statement("switch (spvSwizzle(sw & 0xFF))");
			begin_scope();
			statement("case spvSwizzle::none:");
			statement("case spvSwizzle::red:");
			statement("    break;");
			statement("case spvSwizzle::zero:");
			statement("case spvSwizzle::green:");
			statement("case spvSwizzle::blue:");
			statement("case spvSwizzle::alpha:");
			statement("    return vec<T, 4>(0, 0, 0, 0);");
			statement("case spvSwizzle::one:");
			statement("    return vec<T, 4>(1, 1, 1, 1);");
			end_scope();
			end_scope();
			statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplGatherConstOffsets:
			// Because we are passing a texture reference, we have to output an overloaded version of this function for each address space.
			for (uint32_t i = 0; i < texture_addr_space_count; i++)
			{
				statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array.");
				statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
						  "typename Toff, typename... Tp>");
				statement("inline vec<T, 4> spvGatherConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, "
						  "Toff coffsets, component c, Tp... params) METAL_CONST_ARG(c)");
				begin_scope();
				statement("vec<T, 4> rslts[4];");
				statement("for (uint i = 0; i < 4; i++)");
				begin_scope();
				statement("switch (c)");
				begin_scope();
				// Work around texture::gather() requiring its component parameter to be a constant expression
				statement("case component::x:");
				statement("    rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::x);");
				statement("    break;");
				statement("case component::y:");
				statement("    rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::y);");
				statement("    break;");
				statement("case component::z:");
				statement("    rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::z);");
				statement("    break;");
				statement("case component::w:");
				statement("    rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::w);");
				statement("    break;");
				end_scope();
				end_scope();
				// Pull all values from the i0j0 component of each gather footprint
				statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);");
				end_scope();
				statement("");
			}
			break;

		case SPVFuncImplGatherCompareConstOffsets:
			// Because we are passing a texture reference, we have to output an overloaded version of this function for each address space.
			for (uint32_t i = 0; i < texture_addr_space_count; i++)
			{
				statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array.");
				statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
						  "typename Toff, typename... Tp>");
				statement("inline vec<T, 4> spvGatherCompareConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, "
						  "Toff coffsets, Tp... params)");
				begin_scope();
				statement("vec<T, 4> rslts[4];");
				statement("for (uint i = 0; i < 4; i++)");
				begin_scope();
				statement("    rslts[i] = t.gather_compare(s, spvForward<Tp>(params)..., coffsets[i]);");
				end_scope();
				// Pull all values from the i0j0 component of each gather footprint
				statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);");
				end_scope();
				statement("");
			}
			break;

		case SPVFuncImplSubgroupBroadcast:
			// Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting
			// them as integers.
			statement("template<typename T>");
			statement("inline T spvSubgroupBroadcast(T value, ushort lane)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_broadcast(value, lane);");
			else
				statement("return simd_broadcast(value, lane);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupBroadcast(bool value, ushort lane)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return !!quad_broadcast((ushort)value, lane);");
			else
				statement("return !!simd_broadcast((ushort)value, lane);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvSubgroupBroadcast(vec<bool, N> value, ushort lane)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
			else
				statement("return (vec<bool, N>)simd_broadcast((vec<ushort, N>)value, lane);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupBroadcastFirst:
			statement("template<typename T>");
			statement("inline T spvSubgroupBroadcastFirst(T value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_broadcast_first(value);");
			else
				statement("return simd_broadcast_first(value);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupBroadcastFirst(bool value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return !!quad_broadcast_first((ushort)value);");
			else
				statement("return !!simd_broadcast_first((ushort)value);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvSubgroupBroadcastFirst(vec<bool, N> value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value);");
			else
				statement("return (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupBallot:
			statement("inline uint4 spvSubgroupBallot(bool value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
			{
				statement("return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);");
			}
			else if (msl_options.is_ios())
			{
				// The current simd_vote on iOS uses a 32-bit integer-like object.
				statement("return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);");
			}
			else
			{
				statement("simd_vote vote = simd_ballot(value);");
				statement("// simd_ballot() returns a 64-bit integer-like object, but");
				statement("// SPIR-V callers expect a uint4. We must convert.");
				statement("// FIXME: This won't include higher bits if Apple ever supports");
				statement("// 128 lanes in an SIMD-group.");
				statement("return uint4(as_type<uint2>((simd_vote::vote_t)vote), 0, 0);");
			}
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupBallotBitExtract:
			statement("inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)");
			begin_scope();
			statement("return !!extract_bits(ballot[bit / 32], bit % 32, 1);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupBallotFindLSB:
			statement("inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)");
			begin_scope();
			if (msl_options.is_ios())
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
			}
			else
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
				          "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
			}
			statement("ballot &= mask;");
			statement("return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + "
			          "ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupBallotFindMSB:
			statement("inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)");
			begin_scope();
			if (msl_options.is_ios())
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
			}
			else
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
				          "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
			}
			statement("ballot &= mask;");
			statement("return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - "
			          "(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), "
			          "ballot.z == 0), ballot.w == 0);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupBallotBitCount:
			statement("inline uint spvPopCount4(uint4 ballot)");
			begin_scope();
			statement("return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);");
			end_scope();
			statement("");
			statement("inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)");
			begin_scope();
			if (msl_options.is_ios())
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
			}
			else
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
				          "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
			}
			statement("return spvPopCount4(ballot & mask);");
			end_scope();
			statement("");
			statement("inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
			begin_scope();
			if (msl_options.is_ios())
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));");
			}
			else
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), "
				          "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), "
				          "uint2(0));");
			}
			statement("return spvPopCount4(ballot & mask);");
			end_scope();
			statement("");
			statement("inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
			begin_scope();
			if (msl_options.is_ios())
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));");
			}
			else
			{
				statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), "
				          "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));");
			}
			statement("return spvPopCount4(ballot & mask);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupAllEqual:
			// Metal doesn't provide a function to evaluate this directly. But, we can
			// implement this by comparing every thread's value to one thread's value
			// (in this case, the value of the first active thread). Then, by the transitive
			// property of equality, if all comparisons return true, then they are all equal.
			statement("template<typename T>");
			statement("inline bool spvSubgroupAllEqual(T value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_all(all(value == quad_broadcast_first(value)));");
			else
				statement("return simd_all(all(value == simd_broadcast_first(value)));");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupAllEqual(bool value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_all(value) || !quad_any(value);");
			else
				statement("return simd_all(value) || !simd_any(value);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline bool spvSubgroupAllEqual(vec<bool, N> value)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_all(all(value == (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value)));");
			else
				statement("return simd_all(all(value == (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value)));");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupShuffle:
			statement("template<typename T>");
			statement("inline T spvSubgroupShuffle(T value, ushort lane)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_shuffle(value, lane);");
			else
				statement("return simd_shuffle(value, lane);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupShuffle(bool value, ushort lane)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return !!quad_shuffle((ushort)value, lane);");
			else
				statement("return !!simd_shuffle((ushort)value, lane);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvSubgroupShuffle(vec<bool, N> value, ushort lane)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return (vec<bool, N>)quad_shuffle((vec<ushort, N>)value, lane);");
			else
				statement("return (vec<bool, N>)simd_shuffle((vec<ushort, N>)value, lane);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupShuffleXor:
			statement("template<typename T>");
			statement("inline T spvSubgroupShuffleXor(T value, ushort mask)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_shuffle_xor(value, mask);");
			else
				statement("return simd_shuffle_xor(value, mask);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupShuffleXor(bool value, ushort mask)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return !!quad_shuffle_xor((ushort)value, mask);");
			else
				statement("return !!simd_shuffle_xor((ushort)value, mask);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvSubgroupShuffleXor(vec<bool, N> value, ushort mask)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, mask);");
			else
				statement("return (vec<bool, N>)simd_shuffle_xor((vec<ushort, N>)value, mask);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupShuffleUp:
			statement("template<typename T>");
			statement("inline T spvSubgroupShuffleUp(T value, ushort delta)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_shuffle_up(value, delta);");
			else
				statement("return simd_shuffle_up(value, delta);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupShuffleUp(bool value, ushort delta)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return !!quad_shuffle_up((ushort)value, delta);");
			else
				statement("return !!simd_shuffle_up((ushort)value, delta);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvSubgroupShuffleUp(vec<bool, N> value, ushort delta)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return (vec<bool, N>)quad_shuffle_up((vec<ushort, N>)value, delta);");
			else
				statement("return (vec<bool, N>)simd_shuffle_up((vec<ushort, N>)value, delta);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplSubgroupShuffleDown:
			statement("template<typename T>");
			statement("inline T spvSubgroupShuffleDown(T value, ushort delta)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return quad_shuffle_down(value, delta);");
			else
				statement("return simd_shuffle_down(value, delta);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvSubgroupShuffleDown(bool value, ushort delta)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return !!quad_shuffle_down((ushort)value, delta);");
			else
				statement("return !!simd_shuffle_down((ushort)value, delta);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvSubgroupShuffleDown(vec<bool, N> value, ushort delta)");
			begin_scope();
			if (msl_options.use_quadgroup_operation())
				statement("return (vec<bool, N>)quad_shuffle_down((vec<ushort, N>)value, delta);");
			else
				statement("return (vec<bool, N>)simd_shuffle_down((vec<ushort, N>)value, delta);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplQuadBroadcast:
			statement("template<typename T>");
			statement("inline T spvQuadBroadcast(T value, uint lane)");
			begin_scope();
			statement("return quad_broadcast(value, lane);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvQuadBroadcast(bool value, uint lane)");
			begin_scope();
			statement("return !!quad_broadcast((ushort)value, lane);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvQuadBroadcast(vec<bool, N> value, uint lane)");
			begin_scope();
			statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplQuadSwap:
			// We can implement this easily based on the following table giving
			// the target lane ID from the direction and current lane ID:
			//        Direction
			//      | 0 | 1 | 2 |
			//   ---+---+---+---+
			// L 0  | 1   2   3
			// a 1  | 0   3   2
			// n 2  | 3   0   1
			// e 3  | 2   1   0
			// Notice that target = source ^ (direction + 1).
			statement("template<typename T>");
			statement("inline T spvQuadSwap(T value, uint dir)");
			begin_scope();
			statement("return quad_shuffle_xor(value, dir + 1);");
			end_scope();
			statement("");
			statement("template<>");
			statement("inline bool spvQuadSwap(bool value, uint dir)");
			begin_scope();
			statement("return !!quad_shuffle_xor((ushort)value, dir + 1);");
			end_scope();
			statement("");
			statement("template<uint N>");
			statement("inline vec<bool, N> spvQuadSwap(vec<bool, N> value, uint dir)");
			begin_scope();
			statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, dir + 1);");
			end_scope();
			statement("");
			break;

		case SPVFuncImplReflectScalar:
			// Metal does not support scalar versions of these functions.
			// Ensure fast-math is disabled to match Vulkan results.
			statement("template<typename T>");
			statement("[[clang::optnone]] T spvReflect(T i, T n)");
			begin_scope();
			statement("return i - T(2) * i * n * n;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplRefractScalar:
			// Metal does not support scalar versions of these functions.
			statement("template<typename T>");
			statement("inline T spvRefract(T i, T n, T eta)");
			begin_scope();
			statement("T NoI = n * i;");
			statement("T NoI2 = NoI * NoI;");
			statement("T k = T(1) - eta * eta * (T(1) - NoI2);");
			statement("if (k < T(0))");
			begin_scope();
			statement("return T(0);");
			end_scope();
			statement("else");
			begin_scope();
			statement("return eta * i - (eta * NoI + sqrt(k)) * n;");
			end_scope();
			end_scope();
			statement("");
			break;

		case SPVFuncImplFaceForwardScalar:
			// Metal does not support scalar versions of these functions.
			statement("template<typename T>");
			statement("inline T spvFaceForward(T n, T i, T nref)");
			begin_scope();
			statement("return i * nref < T(0) ? n : -n;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructNearest2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, sampler "
			          "samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructNearest3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, "
			          "texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear422CositedEven2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
			          "plane1, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
			begin_scope();
			statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).rg);");
			end_scope();
			statement("else");
			begin_scope();
			statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
			end_scope();
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear422CositedEven3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
			          "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
			begin_scope();
			statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
			statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
			end_scope();
			statement("else");
			begin_scope();
			statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			end_scope();
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear422Midpoint2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
			          "plane1, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
			statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).rg);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear422Midpoint3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
			          "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
			statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
			statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
			          "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
			statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
			          "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
			statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
			          "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
			          "0)) * 0.5);");
			statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
			          "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
			          "0)) * 0.5);");
			statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
			          "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
			          "0.5)) * 0.5);");
			statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
			          "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
			          "0.5)) * 0.5);");
			statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
			          "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
			          "0.5)) * 0.5);");
			statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane:
			statement("template<typename T, typename... LodOptions>");
			statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
			          "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
			begin_scope();
			statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
			statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
			statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
			          "0.5)) * 0.5);");
			statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
			          "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
			          "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplExpandITUFullRange:
			statement("template<typename T>");
			statement("inline vec<T, 4> spvExpandITUFullRange(vec<T, 4> ycbcr, int n)");
			begin_scope();
			statement("ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplExpandITUNarrowRange:
			statement("template<typename T>");
			statement("inline vec<T, 4> spvExpandITUNarrowRange(vec<T, 4> ycbcr, int n)");
			begin_scope();
			statement("ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);");
			statement("ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);");
			statement("return ycbcr;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplConvertYCbCrBT709:
			statement("// cf. Khronos Data Format Specification, section 15.1.1");
			statement("constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, "
			          "-0.33480248/0.7152, 0}};");
			statement("");
			statement("template<typename T>");
			statement("inline vec<T, 4> spvConvertYCbCrBT709(vec<T, 4> ycbcr)");
			begin_scope();
			statement("vec<T, 4> rgba;");
			statement("rgba.rgb = vec<T, 3>(spvBT709Factors * ycbcr.gbr);");
			statement("rgba.a = ycbcr.a;");
			statement("return rgba;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplConvertYCbCrBT601:
			statement("// cf. Khronos Data Format Specification, section 15.1.2");
			statement("constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, "
			          "-0.419198/0.587, 0}};");
			statement("");
			statement("template<typename T>");
			statement("inline vec<T, 4> spvConvertYCbCrBT601(vec<T, 4> ycbcr)");
			begin_scope();
			statement("vec<T, 4> rgba;");
			statement("rgba.rgb = vec<T, 3>(spvBT601Factors * ycbcr.gbr);");
			statement("rgba.a = ycbcr.a;");
			statement("return rgba;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplConvertYCbCrBT2020:
			statement("// cf. Khronos Data Format Specification, section 15.1.3");
			statement("constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, "
			          "-0.38737742/0.6780, 0}};");
			statement("");
			statement("template<typename T>");
			statement("inline vec<T, 4> spvConvertYCbCrBT2020(vec<T, 4> ycbcr)");
			begin_scope();
			statement("vec<T, 4> rgba;");
			statement("rgba.rgb = vec<T, 3>(spvBT2020Factors * ycbcr.gbr);");
			statement("rgba.a = ycbcr.a;");
			statement("return rgba;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplDynamicImageSampler:
			statement("enum class spvFormatResolution");
			begin_scope();
			statement("_444 = 0,");
			statement("_422,");
			statement("_420");
			end_scope_decl();
			statement("");
			statement("enum class spvChromaFilter");
			begin_scope();
			statement("nearest = 0,");
			statement("linear");
			end_scope_decl();
			statement("");
			statement("enum class spvXChromaLocation");
			begin_scope();
			statement("cosited_even = 0,");
			statement("midpoint");
			end_scope_decl();
			statement("");
			statement("enum class spvYChromaLocation");
			begin_scope();
			statement("cosited_even = 0,");
			statement("midpoint");
			end_scope_decl();
			statement("");
			statement("enum class spvYCbCrModelConversion");
			begin_scope();
			statement("rgb_identity = 0,");
			statement("ycbcr_identity,");
			statement("ycbcr_bt_709,");
			statement("ycbcr_bt_601,");
			statement("ycbcr_bt_2020");
			end_scope_decl();
			statement("");
			statement("enum class spvYCbCrRange");
			begin_scope();
			statement("itu_full = 0,");
			statement("itu_narrow");
			end_scope_decl();
			statement("");
			statement("struct spvComponentBits");
			begin_scope();
			statement("constexpr explicit spvComponentBits(int v) thread : value(v) {}");
			statement("uchar value : 6;");
			end_scope_decl();
			statement("// A class corresponding to metal::sampler which holds sampler");
			statement("// Y'CbCr conversion info.");
			statement("struct spvYCbCrSampler");
			begin_scope();
			statement("constexpr spvYCbCrSampler() thread : val(build()) {}");
			statement("template<typename... Ts>");
			statement("constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}");
			statement("constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;");
			statement("");
			statement("spvFormatResolution get_resolution() const thread");
			begin_scope();
			statement("return spvFormatResolution((val & resolution_mask) >> resolution_base);");
			end_scope();
			statement("spvChromaFilter get_chroma_filter() const thread");
			begin_scope();
			statement("return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);");
			end_scope();
			statement("spvXChromaLocation get_x_chroma_offset() const thread");
			begin_scope();
			statement("return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);");
			end_scope();
			statement("spvYChromaLocation get_y_chroma_offset() const thread");
			begin_scope();
			statement("return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);");
			end_scope();
			statement("spvYCbCrModelConversion get_ycbcr_model() const thread");
			begin_scope();
			statement("return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);");
			end_scope();
			statement("spvYCbCrRange get_ycbcr_range() const thread");
			begin_scope();
			statement("return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);");
			end_scope();
			statement("int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }");
			statement("");
			statement("private:");
			statement("ushort val;");
			statement("");
			statement("constexpr static constant ushort resolution_bits = 2;");
			statement("constexpr static constant ushort chroma_filter_bits = 2;");
			statement("constexpr static constant ushort x_chroma_off_bit = 1;");
			statement("constexpr static constant ushort y_chroma_off_bit = 1;");
			statement("constexpr static constant ushort ycbcr_model_bits = 3;");
			statement("constexpr static constant ushort ycbcr_range_bit = 1;");
			statement("constexpr static constant ushort bpc_bits = 6;");
			statement("");
			statement("constexpr static constant ushort resolution_base = 0;");
			statement("constexpr static constant ushort chroma_filter_base = 2;");
			statement("constexpr static constant ushort x_chroma_off_base = 4;");
			statement("constexpr static constant ushort y_chroma_off_base = 5;");
			statement("constexpr static constant ushort ycbcr_model_base = 6;");
			statement("constexpr static constant ushort ycbcr_range_base = 9;");
			statement("constexpr static constant ushort bpc_base = 10;");
			statement("");
			statement(
			    "constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;");
			statement("constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << "
			          "chroma_filter_base;");
			statement("constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << "
			          "x_chroma_off_base;");
			statement("constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << "
			          "y_chroma_off_base;");
			statement("constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << "
			          "ycbcr_model_base;");
			statement("constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << "
			          "ycbcr_range_base;");
			statement("constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;");
			statement("");
			statement("static constexpr ushort build()");
			begin_scope();
			statement("return 0;");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvFormatResolution res, Ts... t)");
			begin_scope();
			statement("return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvChromaFilter filt, Ts... t)");
			begin_scope();
			statement("return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvXChromaLocation loc, Ts... t)");
			begin_scope();
			statement("return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvYChromaLocation loc, Ts... t)");
			begin_scope();
			statement("return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)");
			begin_scope();
			statement("return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvYCbCrRange range, Ts... t)");
			begin_scope();
			statement("return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);");
			end_scope();
			statement("");
			statement("template<typename... Ts>");
			statement("static constexpr ushort build(spvComponentBits bpc, Ts... t)");
			begin_scope();
			statement("return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);");
			end_scope();
			end_scope_decl();
			statement("");
			statement("// A class which can hold up to three textures and a sampler, including");
			statement("// Y'CbCr conversion info, used to pass combined image-samplers");
			statement("// dynamically to functions.");
			statement("template<typename T>");
			statement("struct spvDynamicImageSampler");
			begin_scope();
			statement("texture2d<T> plane0;");
			statement("texture2d<T> plane1;");
			statement("texture2d<T> plane2;");
			statement("sampler samp;");
			statement("spvYCbCrSampler ycbcr_samp;");
			statement("uint swizzle = 0;");
			statement("");
			if (msl_options.swizzle_texture_samples)
			{
				statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, uint sw) thread :");
				statement("    plane0(tex), samp(samp), swizzle(sw) {}");
			}
			else
			{
				statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp) thread :");
				statement("    plane0(tex), samp(samp) {}");
			}
			statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, spvYCbCrSampler ycbcr_samp, "
			          "uint sw) thread :");
			statement("    plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
			statement("constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1,");
			statement("                                 sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
			statement("    plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
			statement(
			    "constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1, texture2d<T> plane2,");
			statement("                                 sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
			statement("    plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), "
			          "swizzle(sw) {}");
			statement("");
			// XXX This is really hard to follow... I've left comments to make it a bit easier.
			statement("template<typename... LodOptions>");
			statement("vec<T, 4> do_sample(float2 coord, LodOptions... options) const thread");
			begin_scope();
			statement("if (!is_null_texture(plane1))");
			begin_scope();
			statement("if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||");
			statement("    ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)");
			begin_scope();
			statement("if (!is_null_texture(plane2))");
			statement("    return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,");
			statement("                                       spvForward<LodOptions>(options)...);");
			statement(
			    "return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward<LodOptions>(options)...);");
			end_scope(); // if (resolution == 422 || chroma_filter == nearest)
			statement("switch (ycbcr_samp.get_resolution())");
			begin_scope();
			statement("case spvFormatResolution::_444: break;");
			statement("case spvFormatResolution::_422:");
			begin_scope();
			statement("switch (ycbcr_samp.get_x_chroma_offset())");
			begin_scope();
			statement("case spvXChromaLocation::cosited_even:");
			statement("    if (!is_null_texture(plane2))");
			statement("        return spvChromaReconstructLinear422CositedEven(");
			statement("            plane0, plane1, plane2, samp,");
			statement("            coord, spvForward<LodOptions>(options)...);");
			statement("    return spvChromaReconstructLinear422CositedEven(");
			statement("        plane0, plane1, samp, coord,");
			statement("        spvForward<LodOptions>(options)...);");
			statement("case spvXChromaLocation::midpoint:");
			statement("    if (!is_null_texture(plane2))");
			statement("        return spvChromaReconstructLinear422Midpoint(");
			statement("            plane0, plane1, plane2, samp,");
			statement("            coord, spvForward<LodOptions>(options)...);");
			statement("    return spvChromaReconstructLinear422Midpoint(");
			statement("        plane0, plane1, samp, coord,");
			statement("        spvForward<LodOptions>(options)...);");
			end_scope(); // switch (x_chroma_offset)
			end_scope(); // case 422:
			statement("case spvFormatResolution::_420:");
			begin_scope();
			statement("switch (ycbcr_samp.get_x_chroma_offset())");
			begin_scope();
			statement("case spvXChromaLocation::cosited_even:");
			begin_scope();
			statement("switch (ycbcr_samp.get_y_chroma_offset())");
			begin_scope();
			statement("case spvYChromaLocation::cosited_even:");
			statement("    if (!is_null_texture(plane2))");
			statement("        return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
			statement("            plane0, plane1, plane2, samp,");
			statement("            coord, spvForward<LodOptions>(options)...);");
			statement("    return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
			statement("        plane0, plane1, samp, coord,");
			statement("        spvForward<LodOptions>(options)...);");
			statement("case spvYChromaLocation::midpoint:");
			statement("    if (!is_null_texture(plane2))");
			statement("        return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
			statement("            plane0, plane1, plane2, samp,");
			statement("            coord, spvForward<LodOptions>(options)...);");
			statement("    return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
			statement("        plane0, plane1, samp, coord,");
			statement("        spvForward<LodOptions>(options)...);");
			end_scope(); // switch (y_chroma_offset)
			end_scope(); // case x::cosited_even:
			statement("case spvXChromaLocation::midpoint:");
			begin_scope();
			statement("switch (ycbcr_samp.get_y_chroma_offset())");
			begin_scope();
			statement("case spvYChromaLocation::cosited_even:");
			statement("    if (!is_null_texture(plane2))");
			statement("        return spvChromaReconstructLinear420XMidpointYCositedEven(");
			statement("            plane0, plane1, plane2, samp,");
			statement("            coord, spvForward<LodOptions>(options)...);");
			statement("    return spvChromaReconstructLinear420XMidpointYCositedEven(");
			statement("        plane0, plane1, samp, coord,");
			statement("        spvForward<LodOptions>(options)...);");
			statement("case spvYChromaLocation::midpoint:");
			statement("    if (!is_null_texture(plane2))");
			statement("        return spvChromaReconstructLinear420XMidpointYMidpoint(");
			statement("            plane0, plane1, plane2, samp,");
			statement("            coord, spvForward<LodOptions>(options)...);");
			statement("    return spvChromaReconstructLinear420XMidpointYMidpoint(");
			statement("        plane0, plane1, samp, coord,");
			statement("        spvForward<LodOptions>(options)...);");
			end_scope(); // switch (y_chroma_offset)
			end_scope(); // case x::midpoint
			end_scope(); // switch (x_chroma_offset)
			end_scope(); // case 420:
			end_scope(); // switch (resolution)
			end_scope(); // if (multiplanar)
			statement("return plane0.sample(samp, coord, spvForward<LodOptions>(options)...);");
			end_scope(); // do_sample()
			statement("template <typename... LodOptions>");
			statement("vec<T, 4> sample(float2 coord, LodOptions... options) const thread");
			begin_scope();
			statement(
			    "vec<T, 4> s = spvTextureSwizzle(do_sample(coord, spvForward<LodOptions>(options)...), swizzle);");
			statement("if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)");
			statement("    return s;");
			statement("");
			statement("switch (ycbcr_samp.get_ycbcr_range())");
			begin_scope();
			statement("case spvYCbCrRange::itu_full:");
			statement("    s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());");
			statement("    break;");
			statement("case spvYCbCrRange::itu_narrow:");
			statement("    s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());");
			statement("    break;");
			end_scope();
			statement("");
			statement("switch (ycbcr_samp.get_ycbcr_model())");
			begin_scope();
			statement("case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning
			statement("case spvYCbCrModelConversion::ycbcr_identity:");
			statement("    return s;");
			statement("case spvYCbCrModelConversion::ycbcr_bt_709:");
			statement("    return spvConvertYCbCrBT709(s);");
			statement("case spvYCbCrModelConversion::ycbcr_bt_601:");
			statement("    return spvConvertYCbCrBT601(s);");
			statement("case spvYCbCrModelConversion::ycbcr_bt_2020:");
			statement("    return spvConvertYCbCrBT2020(s);");
			end_scope();
			end_scope();
			statement("");
			// Sampler Y'CbCr conversion forbids offsets.
			statement("vec<T, 4> sample(float2 coord, int2 offset) const thread");
			begin_scope();
			if (msl_options.swizzle_texture_samples)
				statement("return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);");
			else
				statement("return plane0.sample(samp, coord, offset);");
			end_scope();
			statement("template<typename lod_options>");
			statement("vec<T, 4> sample(float2 coord, lod_options options, int2 offset) const thread");
			begin_scope();
			if (msl_options.swizzle_texture_samples)
				statement("return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);");
			else
				statement("return plane0.sample(samp, coord, options, offset);");
			end_scope();
			statement("#if __HAVE_MIN_LOD_CLAMP__");
			statement("vec<T, 4> sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread");
			begin_scope();
			statement("return plane0.sample(samp, coord, b, min_lod, offset);");
			end_scope();
			statement(
			    "vec<T, 4> sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread");
			begin_scope();
			statement("return plane0.sample(samp, coord, grad, min_lod, offset);");
			end_scope();
			statement("#endif");
			statement("");
			// Y'CbCr conversion forbids all operations but sampling.
			statement("vec<T, 4> read(uint2 coord, uint lod = 0) const thread");
			begin_scope();
			statement("return plane0.read(coord, lod);");
			end_scope();
			statement("");
			statement("vec<T, 4> gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread");
			begin_scope();
			if (msl_options.swizzle_texture_samples)
				statement("return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);");
			else
				statement("return plane0.gather(samp, coord, offset, c);");
			end_scope();
			end_scope_decl();
			statement("");
			break;

		case SPVFuncImplRayQueryIntersectionParams:
			statement("intersection_params spvMakeIntersectionParams(uint flags)");
			begin_scope();
			statement("intersection_params ip;");
			statement("if ((flags & ", RayFlagsOpaqueKHRMask, ") != 0)");
			statement("    ip.force_opacity(forced_opacity::opaque);");
			statement("if ((flags & ", RayFlagsNoOpaqueKHRMask, ") != 0)");
			statement("    ip.force_opacity(forced_opacity::non_opaque);");
			statement("if ((flags & ", RayFlagsTerminateOnFirstHitKHRMask, ") != 0)");
			statement("    ip.accept_any_intersection(true);");
			// RayFlagsSkipClosestHitShaderKHRMask is not available in MSL
			statement("if ((flags & ", RayFlagsCullBackFacingTrianglesKHRMask, ") != 0)");
			statement("    ip.set_triangle_cull_mode(triangle_cull_mode::back);");
			statement("if ((flags & ", RayFlagsCullFrontFacingTrianglesKHRMask, ") != 0)");
			statement("    ip.set_triangle_cull_mode(triangle_cull_mode::front);");
			statement("if ((flags & ", RayFlagsCullOpaqueKHRMask, ") != 0)");
			statement("    ip.set_opacity_cull_mode(opacity_cull_mode::opaque);");
			statement("if ((flags & ", RayFlagsCullNoOpaqueKHRMask, ") != 0)");
			statement("    ip.set_opacity_cull_mode(opacity_cull_mode::non_opaque);");
			statement("if ((flags & ", RayFlagsSkipTrianglesKHRMask, ") != 0)");
			statement("    ip.set_geometry_cull_mode(geometry_cull_mode::triangle);");
			statement("if ((flags & ", RayFlagsSkipAABBsKHRMask, ") != 0)");
			statement("    ip.set_geometry_cull_mode(geometry_cull_mode::bounding_box);");
			statement("return ip;");
			end_scope();
			statement("");
			break;

		case SPVFuncImplVariableDescriptor:
			statement("template<typename T>");
			statement("struct spvDescriptor");
			begin_scope();
			statement("T value;");
			end_scope_decl();
			statement("");
			break;

		case SPVFuncImplVariableSizedDescriptor:
			statement("template<typename T>");
			statement("struct spvBufferDescriptor");
			begin_scope();
			statement("T value;");
			statement("int length;");
			statement("const device T& operator -> () const device");
			begin_scope();
			statement("return value;");
			end_scope();
			statement("const device T& operator * () const device");
			begin_scope();
			statement("return value;");
			end_scope();
			end_scope_decl();
			statement("");
			break;

		case SPVFuncImplVariableDescriptorArray:
			if (spv_function_implementations.count(SPVFuncImplVariableDescriptor) != 0)
			{
				statement("template<typename T>");
				statement("struct spvDescriptorArray");
				begin_scope();
				statement("spvDescriptorArray(const device spvDescriptor<T>* ptr) : ptr(&ptr->value)");
				begin_scope();
				end_scope();
				statement("const device T& operator [] (size_t i) const");
				begin_scope();
				statement("return ptr[i];");
				end_scope();
				statement("const device T* ptr;");
				end_scope_decl();
				statement("");
			}
			else
			{
				statement("template<typename T>");
				statement("struct spvDescriptorArray;");
				statement("");
			}

			if (msl_options.runtime_array_rich_descriptor &&
			    spv_function_implementations.count(SPVFuncImplVariableSizedDescriptor) != 0)
			{
				statement("template<typename T>");
				statement("struct spvDescriptorArray<device T*>");
				begin_scope();
				statement("spvDescriptorArray(const device spvBufferDescriptor<device T*>* ptr) : ptr(ptr)");
				begin_scope();
				end_scope();
				statement("const device T* operator [] (size_t i) const");
				begin_scope();
				statement("return ptr[i].value;");
				end_scope();
				statement("const int length(int i) const");
				begin_scope();
				statement("return ptr[i].length;");
				end_scope();
				statement("const device spvBufferDescriptor<device T*>* ptr;");
				end_scope_decl();
				statement("");
			}
			break;

		case SPVFuncImplPaddedStd140:
			// .data is used in access chain.
			statement("template <typename T>");
			statement("struct spvPaddedStd140 { alignas(16) T data; };");
			statement("template <typename T, int n>");
			statement("using spvPaddedStd140Matrix = spvPaddedStd140<T>[n];");
			statement("");
			break;

		case SPVFuncImplReduceAdd:
			// Metal doesn't support __builtin_reduce_add or simd_reduce_add, so we need this.
			// Metal also doesn't support the other vector builtins, which would have been useful to make this a single template.

			statement("template <typename T>");
			statement("T reduce_add(vec<T, 2> v) { return v.x + v.y; }");

			statement("template <typename T>");
			statement("T reduce_add(vec<T, 3> v) { return v.x + v.y + v.z; }");

			statement("template <typename T>");
			statement("T reduce_add(vec<T, 4> v) { return v.x + v.y + v.z + v.w; }");

			statement("");
			break;

		case SPVFuncImplImageFence:
			statement("template <typename ImageT>");
			statement("void spvImageFence(ImageT img) { img.fence(); }");
			statement("");
			break;

		case SPVFuncImplTextureCast:
			statement("template <typename T, typename U>");
			statement("T spvTextureCast(U img)");
			begin_scope();
			// MSL complains if you try to cast the texture itself, but casting the reference type is ... ok? *shrug*
			// Gotta go what you gotta do I suppose.
			statement("return reinterpret_cast<thread const T &>(img);");
			end_scope();
			statement("");
			break;

		default:
			break;
		}
	}
}

static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier)
{
	// Easier to do this through text munging since the qualifier does not exist in the type system at all,
	// and plumbing in all that information is not very helpful.
	size_t last_reference = expr.find_last_of('&');
	size_t last_pointer = expr.find_last_of('*');
	size_t last_significant = string::npos;

	if (last_reference == string::npos)
		last_significant = last_pointer;
	else if (last_pointer == string::npos)
		last_significant = last_reference;
	else
		last_significant = max<size_t>(last_reference, last_pointer);

	if (last_significant == string::npos)
		return join(qualifier, " ", expr);
	else
	{
		return join(expr.substr(0, last_significant + 1), " ",
		            qualifier, expr.substr(last_significant + 1, string::npos));
	}
}

void CompilerMSL::declare_constant_arrays()
{
	bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;

	// MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
	// global constants directly, so we are able to use constants as variable expressions.
	bool emitted = false;

	ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
		if (c.specialization)
			return;

		auto &type = this->get<SPIRType>(c.constant_type);
		// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries.
		// FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there.
		// If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to
		// link into Metal libraries. This is hacky.
		if (is_array(type) && (!fully_inlined || is_scalar(type) || is_vector(type)))
		{
			add_resource_name(c.self);
			auto name = to_name(c.self);
			statement(inject_top_level_storage_qualifier(variable_decl(type, name), "constant"),
			          " = ", constant_expression(c), ";");
			emitted = true;
		}
	});

	if (emitted)
		statement("");
}

// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
void CompilerMSL::declare_complex_constant_arrays()
{
	// If we do not have a fully inlined module, we did not opt in to
	// declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays().
	bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
	if (!fully_inlined)
		return;

	// MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
	// global constants directly, so we are able to use constants as variable expressions.
	bool emitted = false;

	ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
		if (c.specialization)
			return;

		auto &type = this->get<SPIRType>(c.constant_type);
		if (is_array(type) && !(is_scalar(type) || is_vector(type)))
		{
			add_resource_name(c.self);
			auto name = to_name(c.self);
			statement("", variable_decl(type, name), " = ", constant_expression(c), ";");
			emitted = true;
		}
	});

	if (emitted)
		statement("");
}

void CompilerMSL::emit_resources()
{
	declare_constant_arrays();

	// Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
	emit_interface_block(stage_out_var_id);
	emit_interface_block(patch_stage_out_var_id);
	emit_interface_block(stage_in_var_id);
	emit_interface_block(patch_stage_in_var_id);
}

// Emit declarations for the specialization Metal function constants
void CompilerMSL::emit_specialization_constants_and_structs()
{
	SpecializationConstant wg_x, wg_y, wg_z;
	ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
	bool emitted = false;

	unordered_set<uint32_t> declared_structs;
	unordered_set<uint32_t> aligned_structs;

	// First, we need to deal with scalar block layout.
	// It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself.
	// In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types.
	// This makes the struct alignment as small as physically possible.
	// When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types.
	ir.for_each_typed_id<SPIRType>([&](uint32_t type_id, const SPIRType &type) {
		if (type.basetype == SPIRType::Struct &&
		    has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
			mark_scalar_layout_structs(type);
	});

	bool builtin_block_type_is_required = false;
	// Very special case. If gl_PerVertex is initialized as an array (tessellation)
	// we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT.
	ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
		auto &type = this->get<SPIRType>(c.constant_type);
		if (is_array(type) && has_decoration(type.self, DecorationBlock) && is_builtin_type(type))
			builtin_block_type_is_required = true;
	});

	// Very particular use of the soft loop lock.
	// align_struct may need to create custom types on the fly, but we don't care about
	// these types for purpose of iterating over them in ir.ids_for_type and friends.
	auto loop_lock = ir.create_loop_soft_lock();

	// Physical storage buffer pointers can have cyclical references,
	// so emit forward declarations of them before other structs.
	// Ignore type_id because we want the underlying struct type from the pointer.
	ir.for_each_typed_id<SPIRType>([&](uint32_t /* type_id */, const SPIRType &type) {
		if (type.basetype == SPIRType::Struct &&
			type.pointer && type.storage == StorageClassPhysicalStorageBuffer &&
			declared_structs.count(type.self) == 0)
		{
			statement("struct ", to_name(type.self), ";");
			declared_structs.insert(type.self);
			emitted = true;
		}
	});
	if (emitted)
		statement("");

	emitted = false;
	declared_structs.clear();

	// It is possible to have multiple spec constants that use the same spec constant ID.
	// The most common cause of this is defining spec constants in GLSL while also declaring
	// the workgroup size to use those spec constants. But, Metal forbids declaring more than
	// one variable with the same function constant ID.
	// In this case, we must only declare one variable with the [[function_constant(id)]]
	// attribute, and use its initializer to initialize all the spec constants with
	// that ID.
	std::unordered_map<uint32_t, ConstantID> unique_func_constants;

	for (auto &id_ : ir.ids_for_constant_undef_or_type)
	{
		auto &id = ir.ids[id_];

		if (id.get_type() == TypeConstant)
		{
			auto &c = id.get<SPIRConstant>();

			if (c.self == workgroup_size_id)
			{
				// TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
				// the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
				// The work group size may be a specialization constant.
				statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup),
				          " [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
				emitted = true;
			}
			else if (c.specialization)
			{
				auto &type = get<SPIRType>(c.constant_type);
				string sc_type_name = type_to_glsl(type);
				add_resource_name(c.self);
				string sc_name = to_name(c.self);

				// Function constants are only supported in MSL 1.2 and later.
				// If we don't support it just declare the "default" directly.
				// This "default" value can be overridden to the true specialization constant by the API user.
				// Specialization constants which are used as array length expressions cannot be function constants in MSL,
				// so just fall back to macros.
				if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
				    !c.is_used_as_array_length)
				{
					// Only scalar, non-composite values can be function constants.
					uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
					if (!unique_func_constants.count(constant_id))
						unique_func_constants.insert(make_pair(constant_id, c.self));
					SPIRType::BaseType sc_tmp_type = expression_type(unique_func_constants[constant_id]).basetype;
					string sc_tmp_name = to_name(unique_func_constants[constant_id]) + "_tmp";
					if (unique_func_constants[constant_id] == c.self)
						statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
						          ")]];");
					statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
					          ") ? ", bitcast_expression(type, sc_tmp_type, sc_tmp_name), " : ", constant_expression(c),
					          ";");
				}
				else if (has_decoration(c.self, DecorationSpecId))
				{
					// Fallback to macro overrides.
					c.specialization_constant_macro_name =
					    constant_value_macro_name(get_decoration(c.self, DecorationSpecId));

					statement("#ifndef ", c.specialization_constant_macro_name);
					statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
					statement("#endif");
					statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
					          ";");
				}
				else
				{
					// Composite specialization constants must be built from other specialization constants.
					statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
				}
				emitted = true;
			}
		}
		else if (id.get_type() == TypeConstantOp)
		{
			auto &c = id.get<SPIRConstantOp>();
			auto &type = get<SPIRType>(c.basetype);
			add_resource_name(c.self);
			auto name = to_name(c.self);
			statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
			emitted = true;
		}
		else if (id.get_type() == TypeType)
		{
			// Output non-builtin interface structs. These include local function structs
			// and structs nested within uniform and read-write buffers.
			auto &type = id.get<SPIRType>();
			TypeID type_id = type.self;

			bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer;
			bool is_block =
			    has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);

			bool is_builtin_block = is_block && is_builtin_type(type);
			bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required);

			// We'll declare this later.
			if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
				is_declarable_struct = false;
			if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
				is_declarable_struct = false;
			if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
				is_declarable_struct = false;
			if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
				is_declarable_struct = false;

			// Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it.
			if (stage_out_masked_builtin_type_id == type_id)
				is_declarable_struct = true;

			// Align and emit declarable structs...but avoid declaring each more than once.
			if (is_declarable_struct && declared_structs.count(type_id) == 0)
			{
				if (emitted)
					statement("");
				emitted = false;

				declared_structs.insert(type_id);

				if (has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
					align_struct(type, aligned_structs);

				// Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
				emit_struct(get<SPIRType>(type_id));
			}
		}
		else if (id.get_type() == TypeUndef)
		{
			auto &undef = id.get<SPIRUndef>();
			auto &type = get<SPIRType>(undef.basetype);
			// OpUndef can be void for some reason ...
			if (type.basetype == SPIRType::Void)
				return;

			// Undefined global memory is not allowed in MSL.
			// Declare constant and init to zeros. Use {}, as global constructors can break Metal.
			statement(
			    inject_top_level_storage_qualifier(variable_decl(type, to_name(undef.self), undef.self), "constant"),
			    " = {};");
			emitted = true;
		}
	}

	if (emitted)
		statement("");
}

void CompilerMSL::emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op)
{
	bool forward = should_forward(op0) && should_forward(op1);
	emit_op(result_type, result_id, join(to_ptr_expression(op0), " ", op, " ", to_ptr_expression(op1)), forward);
	inherit_expression_dependencies(result_id, op0);
	inherit_expression_dependencies(result_id, op1);
}

string CompilerMSL::to_ptr_expression(uint32_t id, bool register_expression_read)
{
	auto *e = maybe_get<SPIRExpression>(id);
	auto expr = enclose_expression(e && e->need_transpose ? e->expression : to_expression(id, register_expression_read));
	if (!should_dereference(id))
		expr = address_of_expression(expr);
	return expr;
}

void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
                                       const char *op)
{
	bool forward = should_forward(op0) && should_forward(op1);
	emit_op(result_type, result_id,
	        join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
	             ") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
	             ")"),
	        forward);

	inherit_expression_dependencies(result_id, op0);
	inherit_expression_dependencies(result_id, op1);
}

bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr)
{
	auto &ptr_type = expression_type(ptr);
	auto &result_type = get<SPIRType>(result_type_id);
	if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput)
		return false;
	if (ptr_type.storage == StorageClassOutput && is_tese_shader())
		return false;

	if (has_decoration(ptr, DecorationPatch))
		return false;
	bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable;

	bool flattened_io = variable_storage_requires_stage_io(ptr_type.storage);

	bool flat_data_type = flattened_io &&
	                      (is_matrix(result_type) || is_array(result_type) || result_type.basetype == SPIRType::Struct);

	// Edge case, even with multi-patch workgroups, we still need to unroll load
	// if we're loading control points directly.
	if (ptr_is_io_variable && is_array(result_type))
		flat_data_type = true;

	if (!flat_data_type)
		return false;

	// Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out.
	// Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup
	// unless we're forced to do this when the code is emitting inoptimal OpLoads.
	string expr;

	uint32_t interface_index = get_extended_decoration(ptr, SPIRVCrossDecorationInterfaceMemberIndex);
	auto *var = maybe_get_backing_variable(ptr);
	auto &expr_type = get_pointee_type(ptr_type.self);

	const auto &iface_type = expression_type(stage_in_ptr_var_id);

	if (!flattened_io)
	{
		// Simplest case for multi-patch workgroups, just unroll array as-is.
		if (interface_index == uint32_t(-1))
			return false;

		expr += type_to_glsl(result_type) + "({ ";
		uint32_t num_control_points = to_array_size_literal(result_type, uint32_t(result_type.array.size()) - 1);

		for (uint32_t i = 0; i < num_control_points; i++)
		{
			const uint32_t indices[2] = { i, interface_index };
			AccessChainMeta meta;
			expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
			                              ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
			if (i + 1 < num_control_points)
				expr += ", ";
		}
		expr += " })";
	}
	else if (result_type.array.size() > 2)
	{
		SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions.");
	}
	else if (result_type.array.size() == 2)
	{
		if (!ptr_is_io_variable)
			SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable.");
		if (interface_index == uint32_t(-1))
			SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
		if (result_type.basetype == SPIRType::Struct || is_matrix(result_type))
			SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO.");

		expr += type_to_glsl(result_type) + "({ ";
		uint32_t num_control_points = to_array_size_literal(result_type, 1);
		uint32_t base_interface_index = interface_index;

		auto &sub_type = get<SPIRType>(result_type.parent_type);

		for (uint32_t i = 0; i < num_control_points; i++)
		{
			expr += type_to_glsl(sub_type) + "({ ";
			interface_index = base_interface_index;
			uint32_t array_size = to_array_size_literal(result_type, 0);
			for (uint32_t j = 0; j < array_size; j++, interface_index++)
			{
				const uint32_t indices[2] = { i, interface_index };

				AccessChainMeta meta;
				expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
				                              ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
				if (!is_matrix(sub_type) && sub_type.basetype != SPIRType::Struct &&
					expr_type.vecsize > sub_type.vecsize)
					expr += vector_swizzle(sub_type.vecsize, 0);

				if (j + 1 < array_size)
					expr += ", ";
			}
			expr += " })";
			if (i + 1 < num_control_points)
				expr += ", ";
		}
		expr += " })";
	}
	else if (result_type.basetype == SPIRType::Struct)
	{
		bool is_array_of_struct = is_array(result_type);
		if (is_array_of_struct && !ptr_is_io_variable)
			SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable.");

		uint32_t num_control_points = 1;
		if (is_array_of_struct)
		{
			num_control_points = to_array_size_literal(result_type, 0);
			expr += type_to_glsl(result_type) + "({ ";
		}

		auto &struct_type = is_array_of_struct ? get<SPIRType>(result_type.parent_type) : result_type;
		assert(struct_type.array.empty());

		for (uint32_t i = 0; i < num_control_points; i++)
		{
			expr += type_to_glsl(struct_type) + "{ ";
			for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++)
			{
				// The base interface index is stored per variable for structs.
				if (var)
				{
					interface_index =
					    get_extended_member_decoration(var->self, j, SPIRVCrossDecorationInterfaceMemberIndex);
				}

				if (interface_index == uint32_t(-1))
					SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");

				const auto &mbr_type = get<SPIRType>(struct_type.member_types[j]);
				const auto &expr_mbr_type = get<SPIRType>(expr_type.member_types[j]);
				if (is_matrix(mbr_type) && ptr_type.storage == StorageClassInput)
				{
					expr += type_to_glsl(mbr_type) + "(";
					for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++)
					{
						if (is_array_of_struct)
						{
							const uint32_t indices[2] = { i, interface_index };
							AccessChainMeta meta;
							expr += access_chain_internal(
									stage_in_ptr_var_id, indices, 2,
									ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
						}
						else
							expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
						if (expr_mbr_type.vecsize > mbr_type.vecsize)
							expr += vector_swizzle(mbr_type.vecsize, 0);

						if (k + 1 < mbr_type.columns)
							expr += ", ";
					}
					expr += ")";
				}
				else if (is_array(mbr_type))
				{
					expr += type_to_glsl(mbr_type) + "({ ";
					uint32_t array_size = to_array_size_literal(mbr_type, 0);
					for (uint32_t k = 0; k < array_size; k++, interface_index++)
					{
						if (is_array_of_struct)
						{
							const uint32_t indices[2] = { i, interface_index };
							AccessChainMeta meta;
							expr += access_chain_internal(
									stage_in_ptr_var_id, indices, 2,
									ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
						}
						else
							expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
						if (expr_mbr_type.vecsize > mbr_type.vecsize)
							expr += vector_swizzle(mbr_type.vecsize, 0);

						if (k + 1 < array_size)
							expr += ", ";
					}
					expr += " })";
				}
				else
				{
					if (is_array_of_struct)
					{
						const uint32_t indices[2] = { i, interface_index };
						AccessChainMeta meta;
						expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
						                              ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT,
						                              &meta);
					}
					else
						expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
					if (expr_mbr_type.vecsize > mbr_type.vecsize)
						expr += vector_swizzle(mbr_type.vecsize, 0);
				}

				if (j + 1 < struct_type.member_types.size())
					expr += ", ";
			}
			expr += " }";
			if (i + 1 < num_control_points)
				expr += ", ";
		}
		if (is_array_of_struct)
			expr += " })";
	}
	else if (is_matrix(result_type))
	{
		bool is_array_of_matrix = is_array(result_type);
		if (is_array_of_matrix && !ptr_is_io_variable)
			SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable.");
		if (interface_index == uint32_t(-1))
			SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");

		if (is_array_of_matrix)
		{
			// Loading a matrix from each control point.
			uint32_t base_interface_index = interface_index;
			uint32_t num_control_points = to_array_size_literal(result_type, 0);
			expr += type_to_glsl(result_type) + "({ ";

			auto &matrix_type = get_variable_element_type(get<SPIRVariable>(ptr));

			for (uint32_t i = 0; i < num_control_points; i++)
			{
				interface_index = base_interface_index;
				expr += type_to_glsl(matrix_type) + "(";
				for (uint32_t j = 0; j < result_type.columns; j++, interface_index++)
				{
					const uint32_t indices[2] = { i, interface_index };

					AccessChainMeta meta;
					expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
					                              ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
					if (expr_type.vecsize > result_type.vecsize)
						expr += vector_swizzle(result_type.vecsize, 0);
					if (j + 1 < result_type.columns)
						expr += ", ";
				}
				expr += ")";
				if (i + 1 < num_control_points)
					expr += ", ";
			}

			expr += " })";
		}
		else
		{
			expr += type_to_glsl(result_type) + "(";
			for (uint32_t i = 0; i < result_type.columns; i++, interface_index++)
			{
				expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
				if (expr_type.vecsize > result_type.vecsize)
					expr += vector_swizzle(result_type.vecsize, 0);
				if (i + 1 < result_type.columns)
					expr += ", ";
			}
			expr += ")";
		}
	}
	else if (ptr_is_io_variable)
	{
		assert(is_array(result_type));
		assert(result_type.array.size() == 1);
		if (interface_index == uint32_t(-1))
			SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");

		// We're loading an array directly from a global variable.
		// This means we're loading one member from each control point.
		expr += type_to_glsl(result_type) + "({ ";
		uint32_t num_control_points = to_array_size_literal(result_type, 0);

		for (uint32_t i = 0; i < num_control_points; i++)
		{
			const uint32_t indices[2] = { i, interface_index };

			AccessChainMeta meta;
			expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
			                              ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
			if (expr_type.vecsize > result_type.vecsize)
				expr += vector_swizzle(result_type.vecsize, 0);

			if (i + 1 < num_control_points)
				expr += ", ";
		}
		expr += " })";
	}
	else
	{
		// We're loading an array from a concrete control point.
		assert(is_array(result_type));
		assert(result_type.array.size() == 1);
		if (interface_index == uint32_t(-1))
			SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");

		expr += type_to_glsl(result_type) + "({ ";
		uint32_t array_size = to_array_size_literal(result_type, 0);
		for (uint32_t i = 0; i < array_size; i++, interface_index++)
		{
			expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
			if (expr_type.vecsize > result_type.vecsize)
				expr += vector_swizzle(result_type.vecsize, 0);
			if (i + 1 < array_size)
				expr += ", ";
		}
		expr += " })";
	}

	emit_op(result_type_id, id, expr, false);
	register_read(id, ptr, false);
	return true;
}

bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
{
	// If this is a per-vertex output, remap it to the I/O array buffer.

	// Any object which did not go through IO flattening shenanigans will go there instead.
	// We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays.

	auto *var = maybe_get_backing_variable(ops[2]);
	bool patch = false;
	bool flat_data = false;
	bool ptr_is_chain = false;
	bool flatten_composites = false;

	bool is_block = false;
	bool is_arrayed = false;

	if (var)
	{
		auto &type = get_variable_data_type(*var);
		is_block = has_decoration(type.self, DecorationBlock);
		is_arrayed = !type.array.empty();

		flatten_composites = variable_storage_requires_stage_io(var->storage);
		patch = has_decoration(ops[2], DecorationPatch) || is_patch_block(type);

		// Should match strip_array in add_interface_block.
		flat_data = var->storage == StorageClassInput || (var->storage == StorageClassOutput && is_tesc_shader());

		// Patch inputs are treated as normal block IO variables, so they don't deal with this path at all.
		if (patch && (!is_block || is_arrayed || var->storage == StorageClassInput))
			flat_data = false;

		// We might have a chained access chain, where
		// we first take the access chain to the control point, and then we chain into a member or something similar.
		// In this case, we need to skip gl_in/gl_out remapping.
		// Also, skip ptr chain for patches.
		ptr_is_chain = var->self != ID(ops[2]);
	}

	bool builtin_variable = false;
	bool variable_is_flat = false;

	if (var && flat_data)
	{
		builtin_variable = is_builtin_variable(*var);

		BuiltIn bi_type = BuiltInMax;
		if (builtin_variable && !is_block)
			bi_type = BuiltIn(get_decoration(var->self, DecorationBuiltIn));

		variable_is_flat = !builtin_variable || is_block ||
		                   bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
		                   bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
	}

	if (variable_is_flat)
	{
		// If output is masked, it is emitted as a "normal" variable, just go through normal code paths.
		// Only check this for the first level of access chain.
		// Dealing with this for partial access chains should be possible, but awkward.
		if (var->storage == StorageClassOutput && !ptr_is_chain)
		{
			bool masked = false;
			if (is_block)
			{
				uint32_t relevant_member_index = patch ? 3 : 4;
				// FIXME: This won't work properly if the application first access chains into gl_out element,
				// then access chains into the member. Super weird, but theoretically possible ...
				if (length > relevant_member_index)
				{
					uint32_t mbr_idx = get<SPIRConstant>(ops[relevant_member_index]).scalar();
					masked = is_stage_output_block_member_masked(*var, mbr_idx, true);
				}
			}
			else if (var)
				masked = is_stage_output_variable_masked(*var);

			if (masked)
				return false;
		}

		AccessChainMeta meta;
		SmallVector<uint32_t> indices;
		uint32_t next_id = ir.increase_bound_by(1);

		indices.reserve(length - 3 + 1);

		uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0);

		VariableID stage_var_id;
		if (patch)
			stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id;
		else
			stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;

		VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id;
		if (!ptr_is_chain && !patch)
		{
			// Index into gl_in/gl_out with first array index.
			indices.push_back(ops[first_non_array_index - 1]);
		}

		auto &result_ptr_type = get<SPIRType>(ops[0]);

		uint32_t const_mbr_id = next_id++;
		uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);

		// If we have a pointer chain expression, and we are no longer pointing to a composite
		// object, we are in the clear. There is no longer a need to flatten anything.
		bool further_access_chain_is_trivial = false;
		if (ptr_is_chain && flatten_composites)
		{
			auto &ptr_type = expression_type(ptr);
			if (!is_array(ptr_type) && !is_matrix(ptr_type) && ptr_type.basetype != SPIRType::Struct)
				further_access_chain_is_trivial = true;
		}

		if (!further_access_chain_is_trivial && (flatten_composites || is_block))
		{
			uint32_t i = first_non_array_index;
			auto *type = &get_variable_element_type(*var);
			if (index == uint32_t(-1) && length >= (first_non_array_index + 1))
			{
				// Maybe this is a struct type in the input class, in which case
				// we put it as a decoration on the corresponding member.
				uint32_t mbr_idx = get_constant(ops[first_non_array_index]).scalar();
				index = get_extended_member_decoration(var->self, mbr_idx,
				                                       SPIRVCrossDecorationInterfaceMemberIndex);
				assert(index != uint32_t(-1));
				i++;
				type = &get<SPIRType>(type->member_types[mbr_idx]);
			}

			// In this case, we're poking into flattened structures and arrays, so now we have to
			// combine the following indices. If we encounter a non-constant index,
			// we're hosed.
			for (; flatten_composites && i < length; ++i)
			{
				if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
					break;

				auto *c = maybe_get<SPIRConstant>(ops[i]);
				if (!c || c->specialization)
					SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. "
					                  "This is currently unsupported.");

				// We're in flattened space, so just increment the member index into IO block.
				// We can only do this once in the current implementation, so either:
				// Struct, Matrix or 1-dimensional array for a control point.
				if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput)
				{
					// Need to consider holes, since individual block members might be masked away.
					uint32_t mbr_idx = c->scalar();
					for (uint32_t j = 0; j < mbr_idx; j++)
						if (!is_stage_output_block_member_masked(*var, j, true))
							index++;
				}
				else
					index += c->scalar();

				if (type->parent_type)
					type = &get<SPIRType>(type->parent_type);
				else if (type->basetype == SPIRType::Struct)
					type = &get<SPIRType>(type->member_types[c->scalar()]);
			}

			// We're not going to emit the actual member name, we let any further OpLoad take care of that.
			// Tag the access chain with the member index we're referencing.
			auto &result_pointee_type = get_pointee_type(result_ptr_type);
			bool defer_access_chain = flatten_composites && (is_matrix(result_pointee_type) || is_array(result_pointee_type) ||
			                                                 result_pointee_type.basetype == SPIRType::Struct);

			if (!defer_access_chain)
			{
				// Access the appropriate member of gl_in/gl_out.
				set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
				indices.push_back(const_mbr_id);

				// Member index is now irrelevant.
				index = uint32_t(-1);

				// Append any straggling access chain indices.
				if (i < length)
					indices.insert(indices.end(), ops + i, ops + length);
			}
			else
			{
				// We must have consumed the entire access chain if we're deferring it.
				assert(i == length);
			}

			if (index != uint32_t(-1))
				set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, index);
			else
				unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
		}
		else
		{
			if (index != uint32_t(-1))
			{
				set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
				indices.push_back(const_mbr_id);
			}

			// Member index is now irrelevant.
			index = uint32_t(-1);
			unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);

			indices.insert(indices.end(), ops + first_non_array_index, ops + length);
		}

		// We use the pointer to the base of the input/output array here,
		// so this is always a pointer chain.
		string e;

		if (!ptr_is_chain)
		{
			// This is the start of an access chain, use ptr_chain to index into control point array.
			e = access_chain(ptr, indices.data(), uint32_t(indices.size()), result_ptr_type, &meta, !patch);
		}
		else
		{
			// If we're accessing a struct, we need to use member indices which are based on the IO block,
			// not actual struct type, so we have to use a split access chain here where
			// first path resolves the control point index, i.e. gl_in[index], and second half deals with
			// looking up flattened member name.

			// However, it is possible that we partially accessed a struct,
			// by taking pointer to member inside the control-point array.
			// For this case, we fall back to a natural access chain since we have already dealt with remapping struct members.
			// One way to check this here is if we have 2 implied read expressions.
			// First one is the gl_in/gl_out struct itself, then an index into that array.
			// If we have traversed further, we use a normal access chain formulation.
			auto *ptr_expr = maybe_get<SPIRExpression>(ptr);
			bool split_access_chain_formulation = flatten_composites && ptr_expr &&
			                                      ptr_expr->implied_read_expressions.size() == 2 &&
			                                      !further_access_chain_is_trivial;

			if (split_access_chain_formulation)
			{
				e = join(to_expression(ptr),
				         access_chain_internal(stage_var_id, indices.data(), uint32_t(indices.size()),
				                               ACCESS_CHAIN_CHAIN_ONLY_BIT, &meta));
			}
			else
			{
				e = access_chain_internal(ptr, indices.data(), uint32_t(indices.size()), 0, &meta);
			}
		}

		// Get the actual type of the object that was accessed. If it's a vector type and we changed it,
		// then we'll need to add a swizzle.
		// For this, we can't necessarily rely on the type of the base expression, because it might be
		// another access chain, and it will therefore already have the "correct" type.
		auto *expr_type = &get_variable_data_type(*var);
		if (has_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID))
			expr_type = &get<SPIRType>(get_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID));
		for (uint32_t i = 3; i < length; i++)
		{
			if (!is_array(*expr_type) && expr_type->basetype == SPIRType::Struct)
				expr_type = &get<SPIRType>(expr_type->member_types[get<SPIRConstant>(ops[i]).scalar()]);
			else
				expr_type = &get<SPIRType>(expr_type->parent_type);
		}
		if (!is_array(*expr_type) && !is_matrix(*expr_type) && expr_type->basetype != SPIRType::Struct &&
		    expr_type->vecsize > result_ptr_type.vecsize)
			e += vector_swizzle(result_ptr_type.vecsize, 0);

		auto &expr = set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2]));
		expr.loaded_from = var->self;
		expr.need_transpose = meta.need_transpose;
		expr.access_chain = true;

		// Mark the result as being packed if necessary.
		if (meta.storage_is_packed)
			set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked);
		if (meta.storage_physical_type != 0)
			set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
		if (meta.storage_is_invariant)
			set_decoration(ops[1], DecorationInvariant);
		// Save the type we found in case the result is used in another access chain.
		set_extended_decoration(ops[1], SPIRVCrossDecorationTessIOOriginalInputTypeID, expr_type->self);

		// If we have some expression dependencies in our access chain, this access chain is technically a forwarded
		// temporary which could be subject to invalidation.
		// Need to assume we're forwarded while calling inherit_expression_depdendencies.
		forwarded_temporaries.insert(ops[1]);
		// The access chain itself is never forced to a temporary, but its dependencies might.
		suppressed_usage_tracking.insert(ops[1]);

		for (uint32_t i = 2; i < length; i++)
		{
			inherit_expression_dependencies(ops[1], ops[i]);
			add_implied_read_expression(expr, ops[i]);
		}

		// If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
		// we're not forwarded after all.
		if (expr.expression_dependencies.empty())
			forwarded_temporaries.erase(ops[1]);

		return true;
	}

	// If this is the inner tessellation level, and we're tessellating triangles,
	// drop the last index. It isn't an array in this case, so we can't have an
	// array reference here. We need to make this ID a variable instead of an
	// expression so we don't try to dereference it as a variable pointer.
	// Don't do this if the index is a constant 1, though. We need to drop stores
	// to that one.
	auto *m = ir.find_meta(var ? var->self : ID(0));
	if (is_tesc_shader() && var && m && m->decoration.builtin_type == BuiltInTessLevelInner &&
	    is_tessellating_triangles())
	{
		auto *c = maybe_get<SPIRConstant>(ops[3]);
		if (c && c->scalar() == 1)
			return false;
		auto &dest_var = set<SPIRVariable>(ops[1], *var);
		dest_var.basetype = ops[0];
		ir.meta[ops[1]] = ir.meta[ops[2]];
		inherit_expression_dependencies(ops[1], ops[2]);
		return true;
	}

	return false;
}

bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
{
	if (!is_tessellating_triangles())
		return false;

	// In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
	// four. This is true even if we are tessellating triangles. This allows clients
	// to use a single tessellation control shader with multiple tessellation evaluation
	// shaders.
	// In Metal, however, only the first element of TessLevelInner and the first three
	// of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
	// levels must be stored to a dedicated buffer in a particular format that depends
	// on the patch type. Therefore, in Triangles mode, any store to the second
	// inner level or the fourth outer level must be dropped.
	const auto *e = maybe_get<SPIRExpression>(id_lhs);
	if (!e || !e->access_chain)
		return false;
	BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
	if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
		return false;
	auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
	if (!c)
		return false;
	return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
	       (builtin == BuiltInTessLevelOuter && c->scalar() == 3);
}

bool CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type,
                                                         spv::StorageClass storage, bool &is_packed)
{
	// If there is any risk of writes happening with the access chain in question,
	// and there is a risk of concurrent write access to other components,
	// we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect.
	// The MSL compiler refuses to allow component-level access for any non-packed vector types.
	if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup))
	{
		const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device";
		expr = join("((", addr_space, " ", type_to_glsl(type), "*)&", enclose_expression(expr), ")");

		// Further indexing should happen with packed rules (array index, not swizzle).
		is_packed = true;
		return true;
	}
	else
		return false;
}

bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base)
{
	auto *var = maybe_get_backing_variable(base);
	if (!var || !is_tessellation_shader())
		return true;

	// We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N.
	// Avoid overriding it back to just gl_ClipDistance.
	// This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case
	// where this triggers is evaluation shader inputs.
	bool redirect_builtin = is_tese_shader() ? var->storage == StorageClassOutput : false;
	return redirect_builtin;
}

// Sets the interface member index for an access chain to a pull-model interpolant.
void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length)
{
	auto *var = maybe_get_backing_variable(ops[2]);
	if (!var || !pull_model_inputs.count(var->self))
		return;
	// Get the base index.
	uint32_t interface_index;
	auto &var_type = get_variable_data_type(*var);
	auto &result_type = get<SPIRType>(ops[0]);
	auto *type = &var_type;
	if (has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex))
	{
		interface_index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
	}
	else
	{
		// Assume an access chain into a struct variable.
		assert(var_type.basetype == SPIRType::Struct);
		auto &c = get<SPIRConstant>(ops[3 + var_type.array.size()]);
		interface_index =
		    get_extended_member_decoration(var->self, c.scalar(), SPIRVCrossDecorationInterfaceMemberIndex);
	}
	// Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted
	// for that getting the base index.
	for (uint32_t i = 3; i < length; ++i)
	{
		if (is_vector(*type) && !is_array(*type) && is_scalar(result_type))
		{
			// We don't want to combine the next index. Actually, we need to save it
			// so we know to apply a swizzle to the result of the interpolation.
			set_extended_decoration(ops[1], SPIRVCrossDecorationInterpolantComponentExpr, ops[i]);
			break;
		}

		auto *c = maybe_get<SPIRConstant>(ops[i]);
		if (!c || c->specialization)
			SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model "
			                  "interpolation. This is currently unsupported.");

		if (type->parent_type)
			type = &get<SPIRType>(type->parent_type);
		else if (type->basetype == SPIRType::Struct)
			type = &get<SPIRType>(type->member_types[c->scalar()]);

		if (!has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex) &&
		    i - 3 == var_type.array.size())
			continue;

		interface_index += c->scalar();
	}
	// Save this to the access chain itself so we can recover it later when calling an interpolation function.
	set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, interface_index);
}


// If the physical type of a physical buffer pointer has been changed
// to a ulong or ulongn vector, add a cast back to the pointer type.
void CompilerMSL::check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type)
{
	auto *p_physical_type = maybe_get<SPIRType>(physical_type);
	if (p_physical_type &&
		p_physical_type->storage == StorageClassPhysicalStorageBuffer &&
		p_physical_type->basetype == to_unsigned_basetype(64))
	{
		if (p_physical_type->vecsize > 1)
			expr += ".x";

		expr = join("((", type_to_glsl(*type), ")", expr, ")");
	}
}

// Override for MSL-specific syntax instructions
void CompilerMSL::emit_instruction(const Instruction &instruction)
{
#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
#define MSL_PTR_BOP(op) emit_binary_ptr_op(ops[0], ops[1], ops[2], ops[3], #op)
	// MSL does care about implicit integer promotion, but those cases are all handled in common code.
#define MSL_BOP_CAST(op, type) \
	emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode), false)
#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define MSL_BFOP_CAST(op, type) \
	emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)

	auto ops = stream(instruction);
	auto opcode = static_cast<Op>(instruction.op);

	opcode = get_remapped_spirv_op(opcode);

	// If we need to do implicit bitcasts, make sure we do it with the correct type.
	uint32_t integer_width = get_integer_width_for_instruction(instruction);
	auto int_type = to_signed_basetype(integer_width);
	auto uint_type = to_unsigned_basetype(integer_width);

	switch (opcode)
	{
	case OpLoad:
	{
		uint32_t id = ops[1];
		uint32_t ptr = ops[2];
		if (is_tessellation_shader())
		{
			if (!emit_tessellation_io_load(ops[0], id, ptr))
				CompilerGLSL::emit_instruction(instruction);
		}
		else
		{
			// Sample mask input for Metal is not an array
			if (BuiltIn(get_decoration(ptr, DecorationBuiltIn)) == BuiltInSampleMask)
				set_decoration(id, DecorationBuiltIn, BuiltInSampleMask);
			CompilerGLSL::emit_instruction(instruction);
		}
		break;
	}

	// Comparisons
	case OpIEqual:
		MSL_BOP_CAST(==, int_type);
		break;

	case OpLogicalEqual:
	case OpFOrdEqual:
		MSL_BOP(==);
		break;

	case OpINotEqual:
		MSL_BOP_CAST(!=, int_type);
		break;

	case OpLogicalNotEqual:
	case OpFOrdNotEqual:
		// TODO: Should probably negate the == result here.
		// Typically OrdNotEqual comes from GLSL which itself does not really specify what
		// happens with NaN.
		// Consider fixing this if we run into real issues.
		MSL_BOP(!=);
		break;

	case OpUGreaterThan:
		MSL_BOP_CAST(>, uint_type);
		break;

	case OpSGreaterThan:
		MSL_BOP_CAST(>, int_type);
		break;

	case OpFOrdGreaterThan:
		MSL_BOP(>);
		break;

	case OpUGreaterThanEqual:
		MSL_BOP_CAST(>=, uint_type);
		break;

	case OpSGreaterThanEqual:
		MSL_BOP_CAST(>=, int_type);
		break;

	case OpFOrdGreaterThanEqual:
		MSL_BOP(>=);
		break;

	case OpULessThan:
		MSL_BOP_CAST(<, uint_type);
		break;

	case OpSLessThan:
		MSL_BOP_CAST(<, int_type);
		break;

	case OpFOrdLessThan:
		MSL_BOP(<);
		break;

	case OpULessThanEqual:
		MSL_BOP_CAST(<=, uint_type);
		break;

	case OpSLessThanEqual:
		MSL_BOP_CAST(<=, int_type);
		break;

	case OpFOrdLessThanEqual:
		MSL_BOP(<=);
		break;

	case OpFUnordEqual:
		MSL_UNORD_BOP(==);
		break;

	case OpFUnordNotEqual:
		// not equal in MSL generates une opcodes to begin with.
		// Since unordered not equal is how it works in C, just inherit that behavior.
		MSL_BOP(!=);
		break;

	case OpFUnordGreaterThan:
		MSL_UNORD_BOP(>);
		break;

	case OpFUnordGreaterThanEqual:
		MSL_UNORD_BOP(>=);
		break;

	case OpFUnordLessThan:
		MSL_UNORD_BOP(<);
		break;

	case OpFUnordLessThanEqual:
		MSL_UNORD_BOP(<=);
		break;

	// Pointer math
	case OpPtrEqual:
		MSL_PTR_BOP(==);
		break;

	case OpPtrNotEqual:
		MSL_PTR_BOP(!=);
		break;

	case OpPtrDiff:
		MSL_PTR_BOP(-);
		break;

	// Derivatives
	case OpDPdx:
	case OpDPdxFine:
	case OpDPdxCoarse:
		MSL_UFOP(dfdx);
		register_control_dependent_expression(ops[1]);
		break;

	case OpDPdy:
	case OpDPdyFine:
	case OpDPdyCoarse:
		MSL_UFOP(dfdy);
		register_control_dependent_expression(ops[1]);
		break;

	case OpFwidth:
	case OpFwidthCoarse:
	case OpFwidthFine:
		MSL_UFOP(fwidth);
		register_control_dependent_expression(ops[1]);
		break;

	// Bitfield
	case OpBitFieldInsert:
	{
		emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "insert_bits", SPIRType::UInt);
		break;
	}

	case OpBitFieldSExtract:
	{
		emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", int_type, int_type,
		                                SPIRType::UInt, SPIRType::UInt);
		break;
	}

	case OpBitFieldUExtract:
	{
		emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", uint_type, uint_type,
		                                SPIRType::UInt, SPIRType::UInt);
		break;
	}

	case OpBitReverse:
		// BitReverse does not have issues with sign since result type must match input type.
		MSL_UFOP(reverse_bits);
		break;

	case OpBitCount:
	{
		auto basetype = expression_type(ops[2]).basetype;
		emit_unary_func_op_cast(ops[0], ops[1], ops[2], "popcount", basetype, basetype);
		break;
	}

	case OpFRem:
		MSL_BFOP(fmod);
		break;

	case OpFMul:
		if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
			MSL_BFOP(spvFMul);
		else
			MSL_BOP(*);
		break;

	case OpFAdd:
		if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
			MSL_BFOP(spvFAdd);
		else
			MSL_BOP(+);
		break;

	case OpFSub:
		if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
			MSL_BFOP(spvFSub);
		else
			MSL_BOP(-);
		break;

	// Atomics
	case OpAtomicExchange:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t ptr = ops[2];
		uint32_t mem_sem = ops[4];
		uint32_t val = ops[5];
		emit_atomic_func_op(result_type, id, "atomic_exchange", opcode, mem_sem, mem_sem, false, ptr, val);
		break;
	}

	case OpAtomicCompareExchange:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t ptr = ops[2];
		uint32_t mem_sem_pass = ops[4];
		uint32_t mem_sem_fail = ops[5];
		uint32_t val = ops[6];
		uint32_t comp = ops[7];
		emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak", opcode,
		                    mem_sem_pass, mem_sem_fail, true,
		                    ptr, comp, true, false, val);
		break;
	}

	case OpAtomicCompareExchangeWeak:
		SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");

	case OpAtomicLoad:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t ptr = ops[2];
		uint32_t mem_sem = ops[4];
		check_atomic_image(ptr);
		emit_atomic_func_op(result_type, id, "atomic_load", opcode, mem_sem, mem_sem, false, ptr, 0);
		break;
	}

	case OpAtomicStore:
	{
		uint32_t result_type = expression_type(ops[0]).self;
		uint32_t id = ops[0];
		uint32_t ptr = ops[0];
		uint32_t mem_sem = ops[2];
		uint32_t val = ops[3];
		check_atomic_image(ptr);
		emit_atomic_func_op(result_type, id, "atomic_store", opcode, mem_sem, mem_sem, false, ptr, val);
		break;
	}

#define MSL_AFMO_IMPL(op, valsrc, valconst)                                                                      \
	do                                                                                                           \
	{                                                                                                            \
		uint32_t result_type = ops[0];                                                                           \
		uint32_t id = ops[1];                                                                                    \
		uint32_t ptr = ops[2];                                                                                   \
		uint32_t mem_sem = ops[4];                                                                               \
		uint32_t val = valsrc;                                                                                   \
		emit_atomic_func_op(result_type, id, "atomic_fetch_" #op, opcode,                                        \
		                    mem_sem, mem_sem, false, ptr, val,                                                   \
		                    false, valconst);                                                                    \
	} while (false)

#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)

	case OpAtomicIIncrement:
		MSL_AFMIO(add);
		break;

	case OpAtomicIDecrement:
		MSL_AFMIO(sub);
		break;

	case OpAtomicIAdd:
	case OpAtomicFAddEXT:
		MSL_AFMO(add);
		break;

	case OpAtomicISub:
		MSL_AFMO(sub);
		break;

	case OpAtomicSMin:
	case OpAtomicUMin:
		MSL_AFMO(min);
		break;

	case OpAtomicSMax:
	case OpAtomicUMax:
		MSL_AFMO(max);
		break;

	case OpAtomicAnd:
		MSL_AFMO(and);
		break;

	case OpAtomicOr:
		MSL_AFMO(or);
		break;

	case OpAtomicXor:
		MSL_AFMO(xor);
		break;

	// Images

	// Reads == Fetches in Metal
	case OpImageRead:
	{
		// Mark that this shader reads from this image
		uint32_t img_id = ops[2];
		auto &type = expression_type(img_id);
		auto *p_var = maybe_get_backing_variable(img_id);
		if (type.image.dim != DimSubpassData)
		{
			if (p_var && has_decoration(p_var->self, DecorationNonReadable))
			{
				unset_decoration(p_var->self, DecorationNonReadable);
				force_recompile();
			}
		}

		// Metal requires explicit fences to break up RAW hazards, even within the same shader invocation
		if (msl_options.readwrite_texture_fences && p_var && !has_decoration(p_var->self, DecorationNonWritable))
		{
			add_spv_func_and_recompile(SPVFuncImplImageFence);
			// Need to wrap this with a value type,
			// since the Metal headers are broken and do not consider case when the image is a reference.
			statement("spvImageFence(", to_expression(img_id), ");");
		}

		emit_texture_op(instruction, false);
		break;
	}

	// Emulate texture2D atomic operations
	case OpImageTexelPointer:
	{
		// When using the pointer, we need to know which variable it is actually loaded from.
		auto *var = maybe_get_backing_variable(ops[2]);
		if (var && atomic_image_vars_emulated.count(var->self))
		{
			uint32_t result_type = ops[0];
			uint32_t id = ops[1];

			std::string coord = to_expression(ops[3]);
			auto &type = expression_type(ops[2]);
			if (type.image.dim == Dim2D)
			{
				coord = join("spvImage2DAtomicCoord(", coord, ", ", to_expression(ops[2]), ")");
			}

			auto &e = set<SPIRExpression>(id, join(to_expression(ops[2]), "_atomic[", coord, "]"), result_type, true);
			e.loaded_from = var ? var->self : ID(0);
			inherit_expression_dependencies(id, ops[3]);
		}
		else
		{
			uint32_t result_type = ops[0];
			uint32_t id = ops[1];

			// Virtual expression. Split this up in the actual image atomic.
			// In GLSL and HLSL we are able to resolve the dereference inline, but MSL has
			// image.op(coord, ...) syntax.
			auto &e =
				set<SPIRExpression>(id, join(to_expression(ops[2]), "@",
				                             bitcast_expression(SPIRType::UInt, ops[3])),
				                    result_type, true);

			// When using the pointer, we need to know which variable it is actually loaded from.
			e.loaded_from = var ? var->self : ID(0);
			inherit_expression_dependencies(id, ops[3]);
		}
		break;
	}

	case OpImageWrite:
	{
		uint32_t img_id = ops[0];
		uint32_t coord_id = ops[1];
		uint32_t texel_id = ops[2];
		const uint32_t *opt = &ops[3];
		uint32_t length = instruction.length - 3;

		// Bypass pointers because we need the real image struct
		auto &type = expression_type(img_id);
		auto &img_type = get<SPIRType>(type.self);

		// Ensure this image has been marked as being written to and force a
		// recommpile so that the image type output will include write access
		auto *p_var = maybe_get_backing_variable(img_id);
		if (p_var && has_decoration(p_var->self, DecorationNonWritable))
		{
			unset_decoration(p_var->self, DecorationNonWritable);
			force_recompile();
		}

		bool forward = false;
		uint32_t bias = 0;
		uint32_t lod = 0;
		uint32_t flags = 0;

		if (length)
		{
			flags = *opt++;
			length--;
		}

		auto test = [&](uint32_t &v, uint32_t flag) {
			if (length && (flags & flag))
			{
				v = *opt++;
				length--;
			}
		};

		test(bias, ImageOperandsBiasMask);
		test(lod, ImageOperandsLodMask);

		auto &texel_type = expression_type(texel_id);
		auto store_type = texel_type;
		store_type.vecsize = 4;

		TextureFunctionArguments args = {};
		args.base.img = img_id;
		args.base.imgtype = &img_type;
		args.base.is_fetch = true;
		args.coord = coord_id;
		args.lod = lod;

		string expr;
		if (needs_frag_discard_checks())
			expr = join("(", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ((void)0) : ");
		expr += join(to_expression(img_id), ".write(",
		             remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)), ", ",
		             CompilerMSL::to_function_args(args, &forward), ")");
		if (needs_frag_discard_checks())
			expr += ")";
		statement(expr, ";");

		if (p_var && variable_storage_is_aliased(*p_var))
			flush_all_aliased_variables();

		break;
	}

	case OpImageQuerySize:
	case OpImageQuerySizeLod:
	{
		uint32_t rslt_type_id = ops[0];
		auto &rslt_type = get<SPIRType>(rslt_type_id);

		uint32_t id = ops[1];

		uint32_t img_id = ops[2];
		string img_exp = to_expression(img_id);
		auto &img_type = expression_type(img_id);
		Dim img_dim = img_type.image.dim;
		bool img_is_array = img_type.image.arrayed;

		if (img_type.basetype != SPIRType::Image)
			SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");

		string lod;
		if (opcode == OpImageQuerySizeLod)
		{
			// LOD index defaults to zero, so don't bother outputing level zero index
			string decl_lod = to_expression(ops[3]);
			if (decl_lod != "0")
				lod = decl_lod;
		}

		string expr = type_to_glsl(rslt_type) + "(";
		expr += img_exp + ".get_width(" + lod + ")";

		if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
			expr += ", " + img_exp + ".get_height(" + lod + ")";

		if (img_dim == Dim3D)
			expr += ", " + img_exp + ".get_depth(" + lod + ")";

		if (img_is_array)
		{
			expr += ", " + img_exp + ".get_array_size()";
			if (img_dim == DimCube && msl_options.emulate_cube_array)
				expr += " / 6";
		}

		expr += ")";

		emit_op(rslt_type_id, id, expr, should_forward(img_id));

		break;
	}

	case OpImageQueryLod:
	{
		if (!msl_options.supports_msl_version(2, 2))
			SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up.");
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t image_id = ops[2];
		uint32_t coord_id = ops[3];
		emit_uninitialized_temporary_expression(result_type, id);

		std::string coord_expr = to_expression(coord_id);
		auto sampler_expr = to_sampler_expression(image_id);
		auto *combined = maybe_get<SPIRCombinedImageSampler>(image_id);
		auto image_expr = combined ? to_expression(combined->image) : to_expression(image_id);
		const SPIRType &image_type = expression_type(image_id);
		const SPIRType &coord_type = expression_type(coord_id);

		switch (image_type.image.dim)
		{
		case Dim1D:
			if (!msl_options.texture_1D_as_2D)
				SPIRV_CROSS_THROW("ImageQueryLod is not supported on 1D textures.");
			[[fallthrough]];
		case Dim2D:
			if (coord_type.vecsize > 2)
				coord_expr = enclose_expression(coord_expr) + ".xy";
			break;
		case DimCube:
		case Dim3D:
			if (coord_type.vecsize > 3)
				coord_expr = enclose_expression(coord_expr) + ".xyz";
			break;
		default:
			SPIRV_CROSS_THROW("Bad image type given to OpImageQueryLod");
		}

		// TODO: It is unclear if calculcate_clamped_lod also conditionally rounds
		// the reported LOD based on the sampler. NEAREST miplevel should
		// round the LOD, but LINEAR miplevel should not round.
		// Let's hope this does not become an issue ...
		statement(to_expression(id), ".x = ", image_expr, ".calculate_clamped_lod(", sampler_expr, ", ",
		          coord_expr, ");");
		statement(to_expression(id), ".y = ", image_expr, ".calculate_unclamped_lod(", sampler_expr, ", ",
		          coord_expr, ");");
		register_control_dependent_expression(id);
		break;
	}

#define MSL_ImgQry(qrytype)                                                                 \
	do                                                                                      \
	{                                                                                       \
		uint32_t rslt_type_id = ops[0];                                                     \
		auto &rslt_type = get<SPIRType>(rslt_type_id);                                      \
		uint32_t id = ops[1];                                                               \
		uint32_t img_id = ops[2];                                                           \
		string img_exp = to_expression(img_id);                                             \
		string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
		emit_op(rslt_type_id, id, expr, should_forward(img_id));                            \
	} while (false)

	case OpImageQueryLevels:
		MSL_ImgQry(mip_levels);
		break;

	case OpImageQuerySamples:
		MSL_ImgQry(samples);
		break;

	case OpImage:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);

		if (combined)
		{
			auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
			auto *var = maybe_get_backing_variable(combined->image);
			if (var)
				e.loaded_from = var->self;
		}
		else
		{
			auto *var = maybe_get_backing_variable(ops[2]);
			SPIRExpression *e;
			if (var && has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler))
				e = &emit_op(result_type, id, join(to_expression(ops[2]), ".plane0"), true, true);
			else
				e = &emit_op(result_type, id, to_expression(ops[2]), true, true);
			if (var)
				e->loaded_from = var->self;
		}
		break;
	}

	// Casting
	case OpQuantizeToF16:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t arg = ops[2];
		string exp = join("spvQuantizeToF16(", to_expression(arg), ")");
		emit_op(result_type, id, exp, should_forward(arg));
		break;
	}

	case OpInBoundsAccessChain:
	case OpAccessChain:
	case OpPtrAccessChain:
		if (is_tessellation_shader())
		{
			if (!emit_tessellation_access_chain(ops, instruction.length))
				CompilerGLSL::emit_instruction(instruction);
		}
		else
			CompilerGLSL::emit_instruction(instruction);
		fix_up_interpolant_access_chain(ops, instruction.length);
		break;

	case OpStore:
	{
		const auto &type = expression_type(ops[0]);

		if (is_out_of_bounds_tessellation_level(ops[0]))
			break;

		if (needs_frag_discard_checks() &&
		    (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
		{
			// If we're in a continue block, this kludge will make the block too complex
			// to emit normally.
			assert(current_emitting_block);
			auto cont_type = continue_block_type(*current_emitting_block);
			if (cont_type != SPIRBlock::ContinueNone && cont_type != SPIRBlock::ComplexLoop)
			{
				current_emitting_block->complex_continue = true;
				force_recompile();
			}
			statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
			begin_scope();
		}
		if (!maybe_emit_array_assignment(ops[0], ops[1]))
			CompilerGLSL::emit_instruction(instruction);
		if (needs_frag_discard_checks() &&
		    (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
			end_scope();
		break;
	}

	// Compute barriers
	case OpMemoryBarrier:
		emit_barrier(0, ops[0], ops[1]);
		break;

	case OpControlBarrier:
		// In GLSL a memory barrier is often followed by a control barrier.
		// But in MSL, memory barriers are also control barriers, so don't
		// emit a simple control barrier if a memory barrier has just been emitted.
		if (previous_instruction_opcode != OpMemoryBarrier)
			emit_barrier(ops[0], ops[1], ops[2]);
		break;

	case OpOuterProduct:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t a = ops[2];
		uint32_t b = ops[3];

		auto &type = get<SPIRType>(result_type);
		string expr = type_to_glsl_constructor(type);
		expr += "(";
		for (uint32_t col = 0; col < type.columns; col++)
		{
			expr += to_enclosed_unpacked_expression(a);
			expr += " * ";
			expr += to_extract_component_expression(b, col);
			if (col + 1 < type.columns)
				expr += ", ";
		}
		expr += ")";
		emit_op(result_type, id, expr, should_forward(a) && should_forward(b));
		inherit_expression_dependencies(id, a);
		inherit_expression_dependencies(id, b);
		break;
	}

	case OpVectorTimesMatrix:
	case OpMatrixTimesVector:
	{
		if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
		{
			CompilerGLSL::emit_instruction(instruction);
			break;
		}

		// If the matrix needs transpose, just flip the multiply order.
		auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]);
		if (e && e->need_transpose)
		{
			e->need_transpose = false;
			string expr;

			if (opcode == OpMatrixTimesVector)
			{
				expr = join("spvFMulVectorMatrix(", to_enclosed_unpacked_expression(ops[3]), ", ",
				            to_unpacked_row_major_matrix_expression(ops[2]), ")");
			}
			else
			{
				expr = join("spvFMulMatrixVector(", to_unpacked_row_major_matrix_expression(ops[3]), ", ",
				            to_enclosed_unpacked_expression(ops[2]), ")");
			}

			bool forward = should_forward(ops[2]) && should_forward(ops[3]);
			emit_op(ops[0], ops[1], expr, forward);
			e->need_transpose = true;
			inherit_expression_dependencies(ops[1], ops[2]);
			inherit_expression_dependencies(ops[1], ops[3]);
		}
		else
		{
			if (opcode == OpMatrixTimesVector)
				MSL_BFOP(spvFMulMatrixVector);
			else
				MSL_BFOP(spvFMulVectorMatrix);
		}
		break;
	}

	case OpMatrixTimesMatrix:
	{
		if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
		{
			CompilerGLSL::emit_instruction(instruction);
			break;
		}

		auto *a = maybe_get<SPIRExpression>(ops[2]);
		auto *b = maybe_get<SPIRExpression>(ops[3]);

		// If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
		// a^T * b^T = (b * a)^T.
		if (a && b && a->need_transpose && b->need_transpose)
		{
			a->need_transpose = false;
			b->need_transpose = false;

			auto expr =
			    join("spvFMulMatrixMatrix(", enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), ", ",
			         enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), ")");

			bool forward = should_forward(ops[2]) && should_forward(ops[3]);
			auto &e = emit_op(ops[0], ops[1], expr, forward);
			e.need_transpose = true;
			a->need_transpose = true;
			b->need_transpose = true;
			inherit_expression_dependencies(ops[1], ops[2]);
			inherit_expression_dependencies(ops[1], ops[3]);
		}
		else
			MSL_BFOP(spvFMulMatrixMatrix);

		break;
	}

	case OpIAddCarry:
	case OpISubBorrow:
	{
		uint32_t result_type = ops[0];
		uint32_t result_id = ops[1];
		uint32_t op0 = ops[2];
		uint32_t op1 = ops[3];
		auto &type = get<SPIRType>(result_type);
		emit_uninitialized_temporary_expression(result_type, result_id);

		auto &res_type = get<SPIRType>(type.member_types[1]);
		if (opcode == OpIAddCarry)
		{
			statement(to_expression(result_id), ".", to_member_name(type, 0), " = ",
					  to_enclosed_unpacked_expression(op0), " + ", to_enclosed_unpacked_expression(op1), ";");
			statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
			          "(1), ", type_to_glsl(res_type), "(0), ", to_unpacked_expression(result_id), ".", to_member_name(type, 0),
			          " >= max(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "));");
		}
		else
		{
			statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " - ",
			          to_enclosed_unpacked_expression(op1), ";");
			statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
			          "(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_unpacked_expression(op0),
			          " >= ", to_enclosed_unpacked_expression(op1), ");");
		}
		break;
	}

	case OpUMulExtended:
	case OpSMulExtended:
	{
		uint32_t result_type = ops[0];
		uint32_t result_id = ops[1];
		uint32_t op0 = ops[2];
		uint32_t op1 = ops[3];
		auto &type = get<SPIRType>(result_type);
		auto input_type = opcode == OpSMulExtended ? int_type : uint_type;
		string cast_op0, cast_op1;

		binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, false);
		emit_uninitialized_temporary_expression(result_type, result_id);
		statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", cast_op0, " * ", cast_op1, ";");
		statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", cast_op0, ", ", cast_op1, ");");
		break;
	}

	case OpArrayLength:
	{
		auto &type = expression_type(ops[2]);
		uint32_t offset = type_struct_member_offset(type, ops[3]);
		uint32_t stride = type_struct_member_array_stride(type, ops[3]);

		auto expr = join("(", to_buffer_size_expression(ops[2]), " - ", offset, ") / ", stride);
		emit_op(ops[0], ops[1], expr, true);
		break;
	}

	// Legacy sub-group stuff ...
	case OpSubgroupBallotKHR:
	case OpSubgroupFirstInvocationKHR:
	case OpSubgroupReadInvocationKHR:
	case OpSubgroupAllKHR:
	case OpSubgroupAnyKHR:
	case OpSubgroupAllEqualKHR:
		emit_subgroup_op(instruction);
		break;

	// SPV_INTEL_shader_integer_functions2
	case OpUCountLeadingZerosINTEL:
		MSL_UFOP(clz);
		break;

	case OpUCountTrailingZerosINTEL:
		MSL_UFOP(ctz);
		break;

	case OpAbsISubINTEL:
	case OpAbsUSubINTEL:
		MSL_BFOP(absdiff);
		break;

	case OpIAddSatINTEL:
	case OpUAddSatINTEL:
		MSL_BFOP(addsat);
		break;

	case OpIAverageINTEL:
	case OpUAverageINTEL:
		MSL_BFOP(hadd);
		break;

	case OpIAverageRoundedINTEL:
	case OpUAverageRoundedINTEL:
		MSL_BFOP(rhadd);
		break;

	case OpISubSatINTEL:
	case OpUSubSatINTEL:
		MSL_BFOP(subsat);
		break;

	case OpIMul32x16INTEL:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t a = ops[2], b = ops[3];
		bool forward = should_forward(a) && should_forward(b);
		emit_op(result_type, id, join("int(short(", to_unpacked_expression(a), ")) * int(short(", to_unpacked_expression(b), "))"), forward);
		inherit_expression_dependencies(id, a);
		inherit_expression_dependencies(id, b);
		break;
	}

	case OpUMul32x16INTEL:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t a = ops[2], b = ops[3];
		bool forward = should_forward(a) && should_forward(b);
		emit_op(result_type, id, join("uint(ushort(", to_unpacked_expression(a), ")) * uint(ushort(", to_unpacked_expression(b), "))"), forward);
		inherit_expression_dependencies(id, a);
		inherit_expression_dependencies(id, b);
		break;
	}

	// SPV_EXT_demote_to_helper_invocation
	case OpDemoteToHelperInvocationEXT:
		if (!msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3.");
		CompilerGLSL::emit_instruction(instruction);
		break;

	case OpIsHelperInvocationEXT:
		if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS.");
		else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
			SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS.");
		emit_op(ops[0], ops[1],
		        needs_manual_helper_invocation_updates() ? builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput) :
		                                                   "simd_is_helper_thread()",
		        false);
		break;

	case OpBeginInvocationInterlockEXT:
	case OpEndInvocationInterlockEXT:
		if (!msl_options.supports_msl_version(2, 0))
			SPIRV_CROSS_THROW("Raster order groups require MSL 2.0.");
		break; // Nothing to do in the body

	case OpConvertUToAccelerationStructureKHR:
		SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL.");
	case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
		SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL.");

	case OpRayQueryInitializeKHR:
	{
		flush_variable_declaration(ops[0]);
		register_write(ops[0]);
		add_spv_func_and_recompile(SPVFuncImplRayQueryIntersectionParams);

		statement(to_expression(ops[0]), ".reset(", "ray(", to_expression(ops[4]), ", ", to_expression(ops[6]), ", ",
		          to_expression(ops[5]), ", ", to_expression(ops[7]), "), ", to_expression(ops[1]), ", ", to_expression(ops[3]),
		          ", spvMakeIntersectionParams(", to_expression(ops[2]), "));");
		break;
	}
	case OpRayQueryProceedKHR:
	{
		flush_variable_declaration(ops[0]);
		register_write(ops[2]);
		emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".next()"), false);
		break;
	}
#define MSL_RAY_QUERY_IS_CANDIDATE get<SPIRConstant>(ops[3]).scalar_i32() == 0

#define MSL_RAY_QUERY_GET_OP(op, msl_op)                                                   \
	case OpRayQueryGet##op##KHR:                                                           \
		flush_variable_declaration(ops[2]);                                                \
		emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \
		break

#define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op)                                                          \
	case OpRayQueryGet##op##KHR:                                                                                 \
		flush_variable_declaration(ops[2]);                                                                      \
		if (MSL_RAY_QUERY_IS_CANDIDATE)                                                                          \
			emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \
		else                                                                                                     \
			emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \
		break

#define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op)
#define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op)

		MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance);
		MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_origin);
		MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_direction);
		MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id);
		MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id);
		MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord);
		MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id);
		MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id);
		MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin);
		MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction);
		MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform);
		MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform);
		MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing);

	case OpRayQueryGetIntersectionTypeKHR:
		flush_variable_declaration(ops[2]);
		if (MSL_RAY_QUERY_IS_CANDIDATE)
			emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_candidate_intersection_type()) - 1"),
			        false);
		else
			emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_committed_intersection_type())"), false);
		break;
	case OpRayQueryGetIntersectionTKHR:
		flush_variable_declaration(ops[2]);
		if (MSL_RAY_QUERY_IS_CANDIDATE)
			emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_candidate_triangle_distance()"), false);
		else
			emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_committed_distance()"), false);
		break;
	case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
	{
		flush_variable_declaration(ops[0]);
		emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".is_candidate_non_opaque_bounding_box()"), false);
		break;
	}
	case OpRayQueryConfirmIntersectionKHR:
		flush_variable_declaration(ops[0]);
		register_write(ops[0]);
		statement(to_expression(ops[0]), ".commit_triangle_intersection();");
		break;
	case OpRayQueryGenerateIntersectionKHR:
		flush_variable_declaration(ops[0]);
		register_write(ops[0]);
		statement(to_expression(ops[0]), ".commit_bounding_box_intersection(", to_expression(ops[1]), ");");
		break;
	case OpRayQueryTerminateKHR:
		flush_variable_declaration(ops[0]);
		register_write(ops[0]);
		statement(to_expression(ops[0]), ".abort();");
		break;
#undef MSL_RAY_QUERY_GET_OP
#undef MSL_RAY_QUERY_IS_CANDIDATE
#undef MSL_RAY_QUERY_IS_OP2
#undef MSL_RAY_QUERY_GET_OP2
#undef MSL_RAY_QUERY_OP_INNER2

	case OpConvertPtrToU:
	case OpConvertUToPtr:
	case OpBitcast:
	{
		auto &type = get<SPIRType>(ops[0]);
		auto &input_type = expression_type(ops[2]);

		if (opcode != OpBitcast || type.pointer || input_type.pointer)
		{
			string op;

			if (type.vecsize == 1 && input_type.vecsize == 1)
				op = join("reinterpret_cast<", type_to_glsl(type), ">(", to_unpacked_expression(ops[2]), ")");
			else if (input_type.vecsize == 2)
				op = join("reinterpret_cast<", type_to_glsl(type), ">(as_type<ulong>(", to_unpacked_expression(ops[2]), "))");
			else
				op = join("as_type<", type_to_glsl(type), ">(reinterpret_cast<ulong>(", to_unpacked_expression(ops[2]), "))");

			emit_op(ops[0], ops[1], op, should_forward(ops[2]));
			inherit_expression_dependencies(ops[1], ops[2]);
		}
		else
			CompilerGLSL::emit_instruction(instruction);

		break;
	}

	case OpSDot:
	case OpUDot:
	case OpSUDot:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t vec1 = ops[2];
		uint32_t vec2 = ops[3];

		auto &input_type1 = expression_type(vec1);
		auto &input_type2 = expression_type(vec2);

		string vec1input, vec2input;
		auto input_size = input_type1.vecsize;
		if (instruction.length == 5)
		{
			if (ops[4] == PackedVectorFormatPackedVectorFormat4x8Bit)
			{
				string type = opcode == OpSDot || opcode == OpSUDot ? "char4" : "uchar4";
				vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
				type = opcode == OpSDot ? "char4" : "uchar4";
				vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
				input_size = 4;
			}
			else
				SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
		}
		else
		{
			// Inputs are sign or zero-extended to their target width.
			SPIRType::BaseType vec1_expected_type =
					opcode != OpUDot ?
					to_signed_basetype(input_type1.width) :
					to_unsigned_basetype(input_type1.width);

			SPIRType::BaseType vec2_expected_type =
					opcode != OpSDot ?
					to_unsigned_basetype(input_type2.width) :
					to_signed_basetype(input_type2.width);

			vec1input = bitcast_expression(vec1_expected_type, vec1);
			vec2input = bitcast_expression(vec2_expected_type, vec2);
		}

		auto &type = get<SPIRType>(result_type);

		// We'll get the appropriate sign-extend or zero-extend, no matter which type we cast to here.
		// The addition in reduce_add is sign-invariant.
		auto result_type_cast = join(type_to_glsl(type), input_size);

		string exp = join("reduce_add(",
		                  result_type_cast, "(", vec1input, ") * ",
		                  result_type_cast, "(", vec2input, "))");

		emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
		inherit_expression_dependencies(id, vec1);
		inherit_expression_dependencies(id, vec2);
		break;
	}

	case OpSDotAccSat:
	case OpUDotAccSat:
	case OpSUDotAccSat:
	{
		uint32_t result_type = ops[0];
		uint32_t id = ops[1];
		uint32_t vec1 = ops[2];
		uint32_t vec2 = ops[3];
		uint32_t acc = ops[4];

		auto input_type1 = expression_type(vec1);
		auto input_type2 = expression_type(vec2);

		string vec1input, vec2input;
		if (instruction.length == 6)
		{
			if (ops[5] == PackedVectorFormatPackedVectorFormat4x8Bit)
			{
				string type = opcode == OpSDotAccSat || opcode == OpSUDotAccSat ? "char4" : "uchar4";
				vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
				type = opcode == OpSDotAccSat ? "char4" : "uchar4";
				vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
				input_type1.vecsize = 4;
				input_type2.vecsize = 4;
			}
			else
				SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
		}
		else
		{
			// Inputs are sign or zero-extended to their target width.
			SPIRType::BaseType vec1_expected_type =
					opcode != OpUDotAccSat ?
					to_signed_basetype(input_type1.width) :
					to_unsigned_basetype(input_type1.width);

			SPIRType::BaseType vec2_expected_type =
					opcode != OpSDotAccSat ?
					to_unsigned_basetype(input_type2.width) :
					to_signed_basetype(input_type2.width);

			vec1input = bitcast_expression(vec1_expected_type, vec1);
			vec2input = bitcast_expression(vec2_expected_type, vec2);
		}

		auto &type = get<SPIRType>(result_type);

		SPIRType::BaseType pre_saturate_type =
				opcode != OpUDotAccSat ?
				to_signed_basetype(type.width) :
				to_unsigned_basetype(type.width);

		input_type1.basetype = pre_saturate_type;
		input_type2.basetype = pre_saturate_type;

		string exp = join(type_to_glsl(type), "(addsat(reduce_add(",
		                  type_to_glsl(input_type1), "(", vec1input, ") * ",
		                  type_to_glsl(input_type2), "(", vec2input, ")), ",
						  bitcast_expression(pre_saturate_type, acc), "))");

		emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
		inherit_expression_dependencies(id, vec1);
		inherit_expression_dependencies(id, vec2);
		break;
	}

	default:
		CompilerGLSL::emit_instruction(instruction);
		break;
	}

	previous_instruction_opcode = opcode;
}

void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse)
{
	if (sparse)
		SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL.");

	if (msl_options.use_framebuffer_fetch_subpasses)
	{
		auto *ops = stream(i);

		uint32_t result_type_id = ops[0];
		uint32_t id = ops[1];
		uint32_t img = ops[2];

		auto &type = expression_type(img);
		auto &imgtype = get<SPIRType>(type.self);

		// Use Metal's native frame-buffer fetch API for subpass inputs.
		if (imgtype.image.dim == DimSubpassData)
		{
			// Subpass inputs cannot be invalidated,
			// so just forward the expression directly.
			string expr = to_expression(img);
			emit_op(result_type_id, id, expr, true);
			return;
		}
	}

	// Fallback to default implementation
	CompilerGLSL::emit_texture_op(i, sparse);
}

void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
{
	if (get_execution_model() != ExecutionModelGLCompute && !is_tesc_shader())
		return;

	uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation);
	uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation);
	// Use the wider of the two scopes (smaller value)
	exe_scope = min(exe_scope, mem_scope);

	if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem)
		// In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop.
		return;

	string bar_stmt;
	if ((msl_options.is_ios() && msl_options.supports_msl_version(1, 2)) || msl_options.supports_msl_version(2))
		bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier";
	else
		bar_stmt = "threadgroup_barrier";
	bar_stmt += "(";

	uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone);

	// Use the | operator to combine flags if we can.
	if (msl_options.supports_msl_version(1, 2))
	{
		string mem_flags = "";
		// For tesc shaders, this also affects objects in the Output storage class.
		// Since in Metal, these are placed in a device buffer, we have to sync device memory here.
		if (is_tesc_shader() ||
		    (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)))
			mem_flags += "mem_flags::mem_device";

		// Fix tessellation patch function processing
		if (is_tesc_shader() || (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
		{
			if (!mem_flags.empty())
				mem_flags += " | ";
			mem_flags += "mem_flags::mem_threadgroup";
		}
		if (mem_sem & MemorySemanticsImageMemoryMask)
		{
			if (!mem_flags.empty())
				mem_flags += " | ";
			mem_flags += "mem_flags::mem_texture";
		}

		if (mem_flags.empty())
			mem_flags = "mem_flags::mem_none";

		bar_stmt += mem_flags;
	}
	else
	{
		if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) &&
		    (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
			bar_stmt += "mem_flags::mem_device_and_threadgroup";
		else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))
			bar_stmt += "mem_flags::mem_device";
		else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))
			bar_stmt += "mem_flags::mem_threadgroup";
		else if (mem_sem & MemorySemanticsImageMemoryMask)
			bar_stmt += "mem_flags::mem_texture";
		else
			bar_stmt += "mem_flags::mem_none";
	}

	bar_stmt += ");";

	statement(bar_stmt);

	assert(current_emitting_block);
	flush_control_dependent_expressions(current_emitting_block->self);
	flush_all_active_variables();
}

static bool storage_class_array_is_thread(StorageClass storage)
{
	switch (storage)
	{
	case StorageClassInput:
	case StorageClassOutput:
	case StorageClassGeneric:
	case StorageClassFunction:
	case StorageClassPrivate:
		return true;

	default:
		return false;
	}
}

bool CompilerMSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id,
								  StorageClass lhs_storage, StorageClass rhs_storage)
{
	// Allow Metal to use the array<T> template to make arrays a value type.
	// This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback.
	bool lhs_is_thread_storage = storage_class_array_is_thread(lhs_storage);
	bool rhs_is_thread_storage = storage_class_array_is_thread(rhs_storage);

	bool lhs_is_array_template = lhs_is_thread_storage || lhs_storage == StorageClassWorkgroup;
	bool rhs_is_array_template = rhs_is_thread_storage || rhs_storage == StorageClassWorkgroup;

	// Special considerations for stage IO variables.
	// If the variable is actually backed by non-user visible device storage, we use array templates for those.
	//
	// Another special consideration is given to thread local variables which happen to have Offset decorations
	// applied to them. Block-like types do not use array templates, so we need to force POD path if we detect
	// these scenarios. This check isn't perfect since it would be technically possible to mix and match these things,
	// and for a fully correct solution we might have to track array template state through access chains as well,
	// but for all reasonable use cases, this should suffice.
	// This special case should also only apply to Function/Private storage classes.
	// We should not check backing variable for temporaries.
	auto *lhs_var = maybe_get_backing_variable(lhs_id);
	if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(lhs_var->storage))
		lhs_is_array_template = true;
	else if (lhs_var && lhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(lhs_var->basetype)))
		lhs_is_array_template = false;

	auto *rhs_var = maybe_get_backing_variable(rhs_id);
	if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(rhs_var->storage))
		rhs_is_array_template = true;
	else if (rhs_var && rhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(rhs_var->basetype)))
		rhs_is_array_template = false;

	// If threadgroup storage qualifiers are *not* used:
	// Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier.
	if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array())
	{
		// Fall back to normal copy path.
		return false;
	}
	else
	{
		// Ensure the LHS variable has been declared
		if (lhs_var)
			flush_variable_declaration(lhs_var->self);

		string lhs;
		if (expr)
			lhs = expr;
		else
			lhs = to_expression(lhs_id);

		// Assignment from an array initializer is fine.
		auto &type = expression_type(rhs_id);
		auto *var = maybe_get_backing_variable(rhs_id);

		// Unfortunately, we cannot template on address space in MSL,
		// so explicit address space redirection it is ...
		bool is_constant = false;
		if (ir.ids[rhs_id].get_type() == TypeConstant)
		{
			is_constant = true;
		}
		else if (var && var->remapped_variable && var->statically_assigned &&
		         ir.ids[var->static_expression].get_type() == TypeConstant)
		{
			is_constant = true;
		}
		else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant)
		{
			is_constant = true;
		}

		// For the case where we have OpLoad triggering an array copy,
		// we cannot easily detect this case ahead of time since it's
		// context dependent. We might have to force a recompile here
		// if this is the only use of array copies in our shader.
		add_spv_func_and_recompile(type.array.size() > 1 ? SPVFuncImplArrayCopyMultidim : SPVFuncImplArrayCopy);

		const char *tag = nullptr;
		if (lhs_is_thread_storage && is_constant)
			tag = "FromConstantToStack";
		else if (lhs_storage == StorageClassWorkgroup && is_constant)
			tag = "FromConstantToThreadGroup";
		else if (lhs_is_thread_storage && rhs_is_thread_storage)
			tag = "FromStackToStack";
		else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage)
			tag = "FromStackToThreadGroup";
		else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup)
			tag = "FromThreadGroupToStack";
		else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup)
			tag = "FromThreadGroupToThreadGroup";
		else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer)
			tag = "FromDeviceToDevice";
		else if (lhs_storage == StorageClassStorageBuffer && is_constant)
			tag = "FromConstantToDevice";
		else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup)
			tag = "FromThreadGroupToDevice";
		else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage)
			tag = "FromStackToDevice";
		else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer)
			tag = "FromDeviceToThreadGroup";
		else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer)
			tag = "FromDeviceToStack";
		else
			SPIRV_CROSS_THROW("Unknown storage class used for copying arrays.");

		// Pass internal array of spvUnsafeArray<> into wrapper functions
		if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays)
			statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ".elements);");
		if (lhs_is_array_template && !msl_options.force_native_arrays)
			statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ");");
		else if (rhs_is_array_template && !msl_options.force_native_arrays)
			statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ".elements);");
		else
			statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ");");
	}

	return true;
}

uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const
{
	if (is_tessellating_triangles())
		return builtin == BuiltInTessLevelInner ? 1 : 3;
	else
		return builtin == BuiltInTessLevelInner ? 2 : 4;
}

// Since MSL does not allow arrays to be copied via simple variable assignment,
// if the LHS and RHS represent an assignment of an entire array, it must be
// implemented by calling an array copy function.
// Returns whether the struct assignment was emitted.
bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
{
	// We only care about assignments of an entire array
	auto &type = expression_type(id_lhs);
	if (!is_array(get_pointee_type(type)))
		return false;

	auto *var = maybe_get<SPIRVariable>(id_lhs);

	// Is this a remapped, static constant? Don't do anything.
	if (var && var->remapped_variable && var->statically_assigned)
		return true;

	if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
	{
		// Special case, if we end up declaring a variable when assigning the constant array,
		// we can avoid the copy by directly assigning the constant expression.
		// This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
		// the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
		// After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
		statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
		return true;
	}

	if (is_tesc_shader() && has_decoration(id_lhs, DecorationBuiltIn))
	{
		auto builtin = BuiltIn(get_decoration(id_lhs, DecorationBuiltIn));
		// Need to manually unroll the array store.
		if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)
		{
			uint32_t array_size = get_physical_tess_level_array_size(builtin);
			if (array_size == 1)
				statement(to_expression(id_lhs), " = half(", to_expression(id_rhs), "[0]);");
			else
			{
				for (uint32_t i = 0; i < array_size; i++)
					statement(to_expression(id_lhs), "[", i, "] = half(", to_expression(id_rhs), "[", i, "]);");
			}
			return true;
		}
	}

	auto lhs_storage = get_expression_effective_storage_class(id_lhs);
	auto rhs_storage = get_expression_effective_storage_class(id_rhs);
	if (!emit_array_copy(nullptr, id_lhs, id_rhs, lhs_storage, rhs_storage))
		return false;

	register_write(id_lhs);

	return true;
}

// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode,
                                      uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
                                      bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
{
	string exp;

	auto &ptr_type = expression_type(obj);
	auto &type = get_pointee_type(ptr_type);
	auto expected_type = type.basetype;
	if (opcode == OpAtomicUMax || opcode == OpAtomicUMin)
		expected_type = to_unsigned_basetype(type.width);
	else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin)
		expected_type = to_signed_basetype(type.width);

	bool use_native_image_atomic;
	if (msl_options.supports_msl_version(3, 1))
		use_native_image_atomic = check_atomic_image(obj);
	else
		use_native_image_atomic = false;

	if (type.width == 64)
		SPIRV_CROSS_THROW("MSL currently does not support 64-bit atomics.");

	auto remapped_type = type;
	remapped_type.basetype = expected_type;

	auto *var = maybe_get_backing_variable(obj);
	const auto *res_type = var ? &get<SPIRType>(var->basetype) : nullptr;
	assert(type.storage != StorageClassImage || res_type);

	bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;

	bool check_discard = opcode != OpAtomicLoad && needs_frag_discard_checks() &&
	                     ptr_type.storage != StorageClassWorkgroup;

	// Even compare exchange atomics are vec4 on metal for ... reasons :v
	uint32_t vec4_temporary_id = 0;
	if (use_native_image_atomic && is_atomic_compare_exchange_strong)
	{
		uint32_t &tmp_id = extra_sub_expressions[result_id];
		if (!tmp_id)
		{
			tmp_id = ir.increase_bound_by(2);

			auto vec4_type = get<SPIRType>(result_type);
			vec4_type.vecsize = 4;
			set<SPIRType>(tmp_id + 1, vec4_type);
		}

		vec4_temporary_id = tmp_id;
	}

	if (check_discard)
	{
		if (is_atomic_compare_exchange_strong)
		{
			// We're already emitting a CAS loop here; a conditional won't hurt.
			emit_uninitialized_temporary_expression(result_type, result_id);
			if (vec4_temporary_id)
				emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
			statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
			begin_scope();
		}
		else
			exp = join("(!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ");
	}

	if (use_native_image_atomic)
	{
		auto obj_expression = to_expression(obj);
		auto split_index = obj_expression.find_first_of('@');

		// Will only be false if we're in "force recompile later" mode.
		if (split_index != string::npos)
		{
			auto coord = obj_expression.substr(split_index + 1);
			auto image_expr = obj_expression.substr(0, split_index);

			// Handle problem cases with sign where we need signed min/max on a uint image for example.
			// It seems to work to cast the texture type itself, even if it is probably wildly outside of spec,
			// but SPIR-V requires this to work.
			if ((opcode == OpAtomicUMax || opcode == OpAtomicUMin ||
			     opcode == OpAtomicSMax || opcode == OpAtomicSMin) &&
			    type.basetype != expected_type)
			{
				auto *backing_var = maybe_get_backing_variable(obj);
				if (backing_var)
				{
					add_spv_func_and_recompile(SPVFuncImplTextureCast);

					const auto *backing_type = &get<SPIRType>(backing_var->basetype);
					while (backing_type->op != OpTypeImage)
						backing_type = &get<SPIRType>(backing_type->parent_type);

					auto img_type = *backing_type;
					auto tmp_type = type;
					tmp_type.basetype = expected_type;
					img_type.image.type = ir.increase_bound_by(1);
					set<SPIRType>(img_type.image.type, tmp_type);

					image_expr = join("spvTextureCast<", type_to_glsl(img_type, obj), ">(", image_expr, ")");
				}
			}

			exp += join(image_expr, ".", op, "(");
			if (ptr_type.storage == StorageClassImage && res_type->image.arrayed)
			{
				switch (res_type->image.dim)
				{
				case Dim1D:
					if (msl_options.texture_1D_as_2D)
						exp += join("uint2(", coord, ".x, 0), ", coord, ".y");
					else
						exp += join(coord, ".x, ", coord, ".y");

					break;
				case Dim2D:
					exp += join(coord, ".xy, ", coord, ".z");
					break;
				default:
					SPIRV_CROSS_THROW("Cannot do atomics on Cube textures.");
				}
			}
			else if (ptr_type.storage == StorageClassImage && res_type->image.dim == Dim1D && msl_options.texture_1D_as_2D)
				exp += join("uint2(", coord, ", 0)");
			else
				exp += coord;
		}
		else
		{
			exp += obj_expression;
		}
	}
	else
	{
		exp += string(op) + "_explicit(";
		exp += "(";
		// Emulate texture2D atomic operations
		if (ptr_type.storage == StorageClassImage)
		{
			auto &flags = ir.get_decoration_bitset(var->self);
			if (decoration_flags_signal_volatile(flags))
				exp += "volatile ";
			exp += "device";
		}
		else if (var && ptr_type.storage != StorageClassPhysicalStorageBuffer)
		{
			exp += get_argument_address_space(*var);
		}
		else
		{
			// Fallback scenario, could happen for raw pointers.
			exp += ptr_type.storage == StorageClassWorkgroup ? "threadgroup" : "device";
		}

		exp += " atomic_";
		// For signed and unsigned min/max, we can signal this through the pointer type.
		// There is no other way, since C++ does not have explicit signage for atomics.
		exp += type_to_glsl(remapped_type);
		exp += "*)";

		exp += "&";
		exp += to_enclosed_expression(obj);
	}

	if (is_atomic_compare_exchange_strong)
	{
		assert(strcmp(op, "atomic_compare_exchange_weak") == 0);
		assert(op2);
		assert(has_mem_order_2);
		exp += ", &";
		exp += to_name(vec4_temporary_id ? vec4_temporary_id : result_id);
		exp += ", ";
		exp += to_expression(op2);

		if (!use_native_image_atomic)
		{
			exp += ", ";
			exp += get_memory_order(mem_order_1);
			exp += ", ";
			exp += get_memory_order(mem_order_2);
		}
		exp += ")";

		// MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
		// The MSL function returns false if the atomic write fails OR the comparison test fails,
		// so we must validate that it wasn't the comparison test that failed before continuing
		// the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
		// The function updates the comparator value from the memory value, so the additional
		// comparison test evaluates the memory value against the expected value.
		if (!check_discard)
		{
			emit_uninitialized_temporary_expression(result_type, result_id);
			if (vec4_temporary_id)
				emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
		}

		statement("do");
		begin_scope();

		string scalar_expression;
		if (vec4_temporary_id)
			scalar_expression = join(to_expression(vec4_temporary_id), ".x");
		else
			scalar_expression = to_expression(result_id);

		statement(scalar_expression, " = ", to_expression(op1), ";");
		end_scope_decl(join("while (!", exp, " && ", scalar_expression, " == ", to_enclosed_expression(op1), ")"));
		if (vec4_temporary_id)
			statement(to_expression(result_id), " = ", scalar_expression, ";");

		// Vulkan: (section 9.29: ...  and values returned by atomic instructions in helper invocations are undefined)
		if (check_discard)
		{
			end_scope();
			statement("else");
			begin_scope();
			statement(to_expression(result_id), " = {};");
			end_scope();
		}
	}
	else
	{
		assert(strcmp(op, "atomic_compare_exchange_weak") != 0);

		if (op1)
		{
			exp += ", ";
			if (op1_is_literal)
				exp += to_string(op1);
			else
				exp += bitcast_expression(expected_type, op1);
		}

		if (op2)
			exp += ", " + to_expression(op2);

		if (!use_native_image_atomic)
		{
			exp += string(", ") + get_memory_order(mem_order_1);
			if (has_mem_order_2)
				exp += string(", ") + get_memory_order(mem_order_2);
		}

		exp += ")";

		// For some particular reason, atomics return vec4 in Metal ...
		if (use_native_image_atomic)
			exp += ".x";

		// Vulkan: (section 9.29: ...  and values returned by atomic instructions in helper invocations are undefined)
		if (check_discard)
		{
			exp += " : ";
			if (strcmp(op, "atomic_store") != 0)
				exp += join(type_to_glsl(get<SPIRType>(result_type)), "{}");
			else
				exp += "((void)0)";
			exp += ")";
		}

		if (expected_type != type.basetype)
			exp = bitcast_expression(type, expected_type, exp);

		if (strcmp(op, "atomic_store") != 0)
			emit_op(result_type, result_id, exp, false);
		else
			statement(exp, ";");
	}

	flush_all_atomic_capable_variables();
}

// Metal only supports relaxed memory order for now
const char *CompilerMSL::get_memory_order(uint32_t)
{
	return "memory_order_relaxed";
}

// Override for MSL-specific extension syntax instructions.
// In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results.
void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
{
	auto op = static_cast<GLSLstd450>(eop);

	// If we need to do implicit bitcasts, make sure we do it with the correct type.
	uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
	auto int_type = to_signed_basetype(integer_width);
	auto uint_type = to_unsigned_basetype(integer_width);

	op = get_remapped_glsl_op(op);

	auto &restype = get<SPIRType>(result_type);

	switch (op)
	{
	case GLSLstd450Sinh:
		if (restype.basetype == SPIRType::Half)
		{
			// MSL does not have overload for half. Force-cast back to half.
			auto expr = join("half(fast::sinh(", to_unpacked_expression(args[0]), "))");
			emit_op(result_type, id, expr, should_forward(args[0]));
			inherit_expression_dependencies(id, args[0]);
		}
		else
			emit_unary_func_op(result_type, id, args[0], "fast::sinh");
		break;
	case GLSLstd450Cosh:
		if (restype.basetype == SPIRType::Half)
		{
			// MSL does not have overload for half. Force-cast back to half.
			auto expr = join("half(fast::cosh(", to_unpacked_expression(args[0]), "))");
			emit_op(result_type, id, expr, should_forward(args[0]));
			inherit_expression_dependencies(id, args[0]);
		}
		else
			emit_unary_func_op(result_type, id, args[0], "fast::cosh");
		break;
	case GLSLstd450Tanh:
		if (restype.basetype == SPIRType::Half)
		{
			// MSL does not have overload for half. Force-cast back to half.
			auto expr = join("half(fast::tanh(", to_unpacked_expression(args[0]), "))");
			emit_op(result_type, id, expr, should_forward(args[0]));
			inherit_expression_dependencies(id, args[0]);
		}
		else
			emit_unary_func_op(result_type, id, args[0], "precise::tanh");
		break;
	case GLSLstd450Atan2:
		if (restype.basetype == SPIRType::Half)
		{
			// MSL does not have overload for half. Force-cast back to half.
			auto expr = join("half(fast::atan2(", to_unpacked_expression(args[0]), ", ", to_unpacked_expression(args[1]), "))");
			emit_op(result_type, id, expr, should_forward(args[0]) && should_forward(args[1]));
			inherit_expression_dependencies(id, args[0]);
			inherit_expression_dependencies(id, args[1]);
		}
		else
			emit_binary_func_op(result_type, id, args[0], args[1], "precise::atan2");
		break;
	case GLSLstd450InverseSqrt:
		emit_unary_func_op(result_type, id, args[0], "rsqrt");
		break;
	case GLSLstd450RoundEven:
		emit_unary_func_op(result_type, id, args[0], "rint");
		break;

	case GLSLstd450FindILsb:
	{
		// In this template version of findLSB, we return T.
		auto basetype = expression_type(args[0]).basetype;
		emit_unary_func_op_cast(result_type, id, args[0], "spvFindLSB", basetype, basetype);
		break;
	}

	case GLSLstd450FindSMsb:
		emit_unary_func_op_cast(result_type, id, args[0], "spvFindSMSB", int_type, int_type);
		break;

	case GLSLstd450FindUMsb:
		emit_unary_func_op_cast(result_type, id, args[0], "spvFindUMSB", uint_type, uint_type);
		break;

	case GLSLstd450PackSnorm4x8:
		emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
		break;
	case GLSLstd450PackUnorm4x8:
		emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
		break;
	case GLSLstd450PackSnorm2x16:
		emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
		break;
	case GLSLstd450PackUnorm2x16:
		emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
		break;

	case GLSLstd450PackHalf2x16:
	{
		auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
		emit_op(result_type, id, expr, should_forward(args[0]));
		inherit_expression_dependencies(id, args[0]);
		break;
	}

	case GLSLstd450UnpackSnorm4x8:
		emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
		break;
	case GLSLstd450UnpackUnorm4x8:
		emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
		break;
	case GLSLstd450UnpackSnorm2x16:
		emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
		break;
	case GLSLstd450UnpackUnorm2x16:
		emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
		break;

	case GLSLstd450UnpackHalf2x16:
	{
		auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
		emit_op(result_type, id, expr, should_forward(args[0]));
		inherit_expression_dependencies(id, args[0]);
		break;
	}

	case GLSLstd450PackDouble2x32:
		emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
		break;
	case GLSLstd450UnpackDouble2x32:
		emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
		break;

	case GLSLstd450MatrixInverse:
	{
		auto &mat_type = get<SPIRType>(result_type);
		switch (mat_type.columns)
		{
		case 2:
			emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
			break;
		case 3:
			emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
			break;
		case 4:
			emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
			break;
		default:
			break;
		}
		break;
	}

	case GLSLstd450FMin:
		// If the result type isn't float, don't bother calling the specific
		// precise::/fast:: version. Metal doesn't have those for half and
		// double types.
		if (get<SPIRType>(result_type).basetype != SPIRType::Float)
			emit_binary_func_op(result_type, id, args[0], args[1], "min");
		else
			emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
		break;

	case GLSLstd450FMax:
		if (get<SPIRType>(result_type).basetype != SPIRType::Float)
			emit_binary_func_op(result_type, id, args[0], args[1], "max");
		else
			emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
		break;

	case GLSLstd450FClamp:
		// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
		if (get<SPIRType>(result_type).basetype != SPIRType::Float)
			emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
		else
			emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
		break;

	case GLSLstd450NMin:
		if (get<SPIRType>(result_type).basetype != SPIRType::Float)
			emit_binary_func_op(result_type, id, args[0], args[1], "min");
		else
			emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
		break;

	case GLSLstd450NMax:
		if (get<SPIRType>(result_type).basetype != SPIRType::Float)
			emit_binary_func_op(result_type, id, args[0], args[1], "max");
		else
			emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
		break;

	case GLSLstd450NClamp:
		// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
		if (get<SPIRType>(result_type).basetype != SPIRType::Float)
			emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
		else
			emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
		break;

	case GLSLstd450InterpolateAtCentroid:
	{
		// We can't just emit the expression normally, because the qualified name contains a call to the default
		// interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct
		// the base for the method call.
		uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
		string component;
		if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
		{
			uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
			auto *c = maybe_get<SPIRConstant>(index_expr);
			if (!c || c->specialization)
				component = join("[", to_expression(index_expr), "]");
			else
				component = join(".", index_to_swizzle(c->scalar()));
		}
		emit_op(result_type, id,
		        join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
		             ".interpolate_at_centroid()", component),
		        should_forward(args[0]));
		break;
	}

	case GLSLstd450InterpolateAtSample:
	{
		uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
		string component;
		if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
		{
			uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
			auto *c = maybe_get<SPIRConstant>(index_expr);
			if (!c || c->specialization)
				component = join("[", to_expression(index_expr), "]");
			else
				component = join(".", index_to_swizzle(c->scalar()));
		}
		emit_op(result_type, id,
		        join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
		             ".interpolate_at_sample(", to_expression(args[1]), ")", component),
		        should_forward(args[0]) && should_forward(args[1]));
		break;
	}

	case GLSLstd450InterpolateAtOffset:
	{
		uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
		string component;
		if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
		{
			uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
			auto *c = maybe_get<SPIRConstant>(index_expr);
			if (!c || c->specialization)
				component = join("[", to_expression(index_expr), "]");
			else
				component = join(".", index_to_swizzle(c->scalar()));
		}
		// Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do.
		// Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this.
		// It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel.
		emit_op(result_type, id,
		        join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
		             ".interpolate_at_offset(", to_expression(args[1]), " + 0.4375)", component),
		        should_forward(args[0]) && should_forward(args[1]));
		break;
	}

	case GLSLstd450Distance:
		// MSL does not support scalar versions here.
		if (expression_type(args[0]).vecsize == 1)
		{
			// Equivalent to length(a - b) -> abs(a - b).
			emit_op(result_type, id,
			        join("abs(", to_enclosed_unpacked_expression(args[0]), " - ",
			             to_enclosed_unpacked_expression(args[1]), ")"),
			        should_forward(args[0]) && should_forward(args[1]));
			inherit_expression_dependencies(id, args[0]);
			inherit_expression_dependencies(id, args[1]);
		}
		else
			CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;

	case GLSLstd450Length:
		// MSL does not support scalar versions, so use abs().
		if (expression_type(args[0]).vecsize == 1)
			emit_unary_func_op(result_type, id, args[0], "abs");
		else
			CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;

	case GLSLstd450Normalize:
	{
		auto &exp_type = expression_type(args[0]);
		// MSL does not support scalar versions here.
		// MSL has no implementation for normalize in the fast:: namespace for half2 and half3
		// Returns -1 or 1 for valid input, sign() does the job.
		if (exp_type.vecsize == 1)
			emit_unary_func_op(result_type, id, args[0], "sign");
		else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half)
			emit_unary_func_op(result_type, id, args[0], "normalize");
		else
			emit_unary_func_op(result_type, id, args[0], "fast::normalize");
		break;
	}
	case GLSLstd450Reflect:
		if (get<SPIRType>(result_type).vecsize == 1)
			emit_binary_func_op(result_type, id, args[0], args[1], "spvReflect");
		else
			CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;

	case GLSLstd450Refract:
		if (get<SPIRType>(result_type).vecsize == 1)
			emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvRefract");
		else
			CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;

	case GLSLstd450FaceForward:
		if (get<SPIRType>(result_type).vecsize == 1)
			emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvFaceForward");
		else
			CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;

	case GLSLstd450Modf:
	case GLSLstd450Frexp:
	{
		// Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary.
		// Another special case is if the variable is in a storage class which is not thread.
		auto *ptr = maybe_get<SPIRExpression>(args[1]);
		auto &type = expression_type(args[1]);

		bool is_thread_storage = storage_class_array_is_thread(type.storage);
		if (type.storage == StorageClassOutput && capture_output_to_buffer)
			is_thread_storage = false;

		if (!is_thread_storage ||
		    (ptr && ptr->access_chain && is_scalar(expression_type(args[1]))))
		{
			register_call_out_argument(args[1]);
			forced_temporaries.insert(id);

			// Need to create temporaries and copy over to access chain after.
			// We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ...
			uint32_t &tmp_id = extra_sub_expressions[id];
			if (!tmp_id)
				tmp_id = ir.increase_bound_by(1);

			uint32_t tmp_type_id = get_pointee_type_id(expression_type_id(args[1]));
			emit_uninitialized_temporary_expression(tmp_type_id, tmp_id);
			emit_binary_func_op(result_type, id, args[0], tmp_id, eop == GLSLstd450Modf ? "modf" : "frexp");
			statement(to_expression(args[1]), " = ", to_expression(tmp_id), ";");
		}
		else
			CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;
	}

	case GLSLstd450Pow:
		// powr makes x < 0.0 undefined, just like SPIR-V.
		emit_binary_func_op(result_type, id, args[0], args[1], "powr");
		break;

	default:
		CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
		break;
	}
}

void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
                                                        const uint32_t *args, uint32_t count)
{
	enum AMDShaderTrinaryMinMax
	{
		FMin3AMD = 1,
		UMin3AMD = 2,
		SMin3AMD = 3,
		FMax3AMD = 4,
		UMax3AMD = 5,
		SMax3AMD = 6,
		FMid3AMD = 7,
		UMid3AMD = 8,
		SMid3AMD = 9
	};

	if (!msl_options.supports_msl_version(2, 1))
		SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1.");

	auto op = static_cast<AMDShaderTrinaryMinMax>(eop);

	switch (op)
	{
	case FMid3AMD:
	case UMid3AMD:
	case SMid3AMD:
		emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "median3");
		break;
	default:
		CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, id, eop, args, count);
		break;
	}
}

// Emit a structure declaration for the specified interface variable.
void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
{
	if (ib_var_id)
	{
		auto &ib_var = get<SPIRVariable>(ib_var_id);
		auto &ib_type = get_variable_data_type(ib_var);
		//assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
		assert(ib_type.basetype == SPIRType::Struct);
		emit_struct(ib_type);
	}
}

// Emits the declaration signature of the specified function.
// If this is the entry point function, Metal-specific return value and function arguments are added.
void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
{
	if (func.self != ir.default_entry_point)
		add_function_overload(func);

	local_variable_names = resource_names;
	string decl;

	processing_entry_point = func.self == ir.default_entry_point;

	// Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib.
	if (!processing_entry_point)
		statement(force_inline);

	auto &type = get<SPIRType>(func.return_type);

	if (!type.array.empty() && msl_options.force_native_arrays)
	{
		// We cannot return native arrays in MSL, so "return" through an out variable.
		decl += "void";
	}
	else
	{
		decl += func_type_decl(type);
	}

	decl += " ";
	decl += to_name(func.self);
	decl += "(";

	if (!type.array.empty() && msl_options.force_native_arrays)
	{
		// Fake arrays returns by writing to an out array instead.
		decl += "thread ";
		decl += type_to_glsl(type);
		decl += " (&spvReturnValue)";
		decl += type_to_array_glsl(type, 0);
		if (!func.arguments.empty())
			decl += ", ";
	}

	if (processing_entry_point)
	{
		if (msl_options.argument_buffers)
			decl += entry_point_args_argument_buffer(!func.arguments.empty());
		else
			decl += entry_point_args_classic(!func.arguments.empty());

		// append entry point args to avoid conflicts in local variable names.
		local_variable_names.insert(resource_names.begin(), resource_names.end());

		// If entry point function has variables that require early declaration,
		// ensure they each have an empty initializer, creating one if needed.
		// This is done at this late stage because the initialization expression
		// is cleared after each compilation pass.
		for (auto var_id : vars_needing_early_declaration)
		{
			auto &ed_var = get<SPIRVariable>(var_id);
			ID &initializer = ed_var.initializer;
			if (!initializer)
				initializer = ir.increase_bound_by(1);

			// Do not override proper initializers.
			if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
				set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
		}
	}

	for (auto &arg : func.arguments)
	{
		uint32_t name_id = arg.id;

		auto *var = maybe_get<SPIRVariable>(arg.id);
		if (var)
		{
			// If we need to modify the name of the variable, make sure we modify the original variable.
			// Our alias is just a shadow variable.
			if (arg.alias_global_variable && var->basevariable)
				name_id = var->basevariable;

			var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
		}

		add_local_variable_name(name_id);

		decl += argument_decl(arg);

		bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);

		auto &arg_type = get<SPIRType>(arg.type);
		if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler)
		{
			// Manufacture automatic plane args for multiplanar texture
			uint32_t planes = 1;
			if (auto *constexpr_sampler = find_constexpr_sampler(name_id))
				if (constexpr_sampler->ycbcr_conversion_enable)
					planes = constexpr_sampler->planes;
			for (uint32_t i = 1; i < planes; i++)
				decl += join(", ", argument_decl(arg), plane_name_suffix, i);

			// Manufacture automatic sampler arg for SampledImage texture
			if (arg_type.image.dim != DimBuffer)
			{
				if (arg_type.array.empty() || (var ? is_var_runtime_size_array(*var) : is_runtime_size_array(arg_type)))
				{
					decl += join(", ", sampler_type(arg_type, arg.id, false), " ", to_sampler_expression(name_id));
				}
				else
				{
					const char *sampler_address_space =
							descriptor_address_space(name_id,
							                         StorageClassUniformConstant,
							                         "thread const");
					decl += join(", ", sampler_address_space, " ", sampler_type(arg_type, name_id, false), "& ",
					             to_sampler_expression(name_id));
				}
			}
		}

		// Manufacture automatic swizzle arg.
		if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type) &&
		    !is_dynamic_img_sampler)
		{
			bool arg_is_array = !arg_type.array.empty();
			decl += join(", constant uint", arg_is_array ? "* " : "& ", to_swizzle_expression(name_id));
		}

		if (buffer_requires_array_length(name_id))
		{
			bool arg_is_array = !arg_type.array.empty();
			decl += join(", constant uint", arg_is_array ? "* " : "& ", to_buffer_size_expression(name_id));
		}

		if (&arg != &func.arguments.back())
			decl += ", ";
	}

	decl += ")";
	statement(decl);
}

static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler)
{
	// For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images
	// use implicit reconstruction.
	return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1;
}

// Returns the texture sampling function string for the specified image and sampling characteristics.
string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args)
{
	VariableID img = args.base.img;
	const MSLConstexprSampler *constexpr_sampler = nullptr;
	bool is_dynamic_img_sampler = false;
	if (auto *var = maybe_get_backing_variable(img))
	{
		constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
		is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
	}

	// Special-case gather. We have to alter the component being looked up in the swizzle case.
	if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler &&
	    (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
	{
		bool is_compare = comparison_ids.count(img);
		add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle);
		return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
	}

	// Special-case gather with an array of offsets. We have to lower into 4 separate gathers.
	if (args.has_array_offsets && !is_dynamic_img_sampler &&
	    (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
	{
		bool is_compare = comparison_ids.count(img);
		add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareConstOffsets : SPVFuncImplGatherConstOffsets);
		add_spv_func_and_recompile(SPVFuncImplForwardArgs);
		return is_compare ? "spvGatherCompareConstOffsets" : "spvGatherConstOffsets";
	}

	auto *combined = maybe_get<SPIRCombinedImageSampler>(img);

	// Texture reference
	string fname;
	if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler)
	{
		if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3)
			SPIRV_CROSS_THROW("Unhandled number of color image planes!");
		// 444 images aren't downsampled, so we don't need to do linear filtering.
		if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 ||
		    constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST)
		{
			if (constexpr_sampler->planes == 2)
				add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest2Plane);
			else
				add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest3Plane);
			fname = "spvChromaReconstructNearest";
		}
		else // Linear with a downsampled format
		{
			fname = "spvChromaReconstructLinear";
			switch (constexpr_sampler->resolution)
			{
			case MSL_FORMAT_RESOLUTION_444:
				assert(false);
				break; // not reached
			case MSL_FORMAT_RESOLUTION_422:
				switch (constexpr_sampler->x_chroma_offset)
				{
				case MSL_CHROMA_LOCATION_COSITED_EVEN:
					if (constexpr_sampler->planes == 2)
						add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven2Plane);
					else
						add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven3Plane);
					fname += "422CositedEven";
					break;
				case MSL_CHROMA_LOCATION_MIDPOINT:
					if (constexpr_sampler->planes == 2)
						add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint2Plane);
					else
						add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint3Plane);
					fname += "422Midpoint";
					break;
				default:
					SPIRV_CROSS_THROW("Invalid chroma location.");
				}
				break;
			case MSL_FORMAT_RESOLUTION_420:
				fname += "420";
				switch (constexpr_sampler->x_chroma_offset)
				{
				case MSL_CHROMA_LOCATION_COSITED_EVEN:
					switch (constexpr_sampler->y_chroma_offset)
					{
					case MSL_CHROMA_LOCATION_COSITED_EVEN:
						if (constexpr_sampler->planes == 2)
							add_spv_func_and_recompile(
							    SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane);
						else
							add_spv_func_and_recompile(
							    SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane);
						fname += "XCositedEvenYCositedEven";
						break;
					case MSL_CHROMA_LOCATION_MIDPOINT:
						if (constexpr_sampler->planes == 2)
							add_spv_func_and_recompile(
							    SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane);
						else
							add_spv_func_and_recompile(
							    SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane);
						fname += "XCositedEvenYMidpoint";
						break;
					default:
						SPIRV_CROSS_THROW("Invalid Y chroma location.");
					}
					break;
				case MSL_CHROMA_LOCATION_MIDPOINT:
					switch (constexpr_sampler->y_chroma_offset)
					{
					case MSL_CHROMA_LOCATION_COSITED_EVEN:
						if (constexpr_sampler->planes == 2)
							add_spv_func_and_recompile(
							    SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane);
						else
							add_spv_func_and_recompile(
							    SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane);
						fname += "XMidpointYCositedEven";
						break;
					case MSL_CHROMA_LOCATION_MIDPOINT:
						if (constexpr_sampler->planes == 2)
							add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane);
						else
							add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane);
						fname += "XMidpointYMidpoint";
						break;
					default:
						SPIRV_CROSS_THROW("Invalid Y chroma location.");
					}
					break;
				default:
					SPIRV_CROSS_THROW("Invalid X chroma location.");
				}
				break;
			default:
				SPIRV_CROSS_THROW("Invalid format resolution.");
			}
		}
	}
	else
	{
		fname = to_expression(combined ? combined->image : img) + ".";

		// Texture function and sampler
		if (args.base.is_fetch)
			fname += "read";
		else if (args.base.is_gather)
			fname += "gather";
		else
			fname += "sample";

		if (args.has_dref)
			fname += "_compare";
	}

	return fname;
}

string CompilerMSL::convert_to_f32(const string &expr, uint32_t components)
{
	SPIRType t { components > 1 ? OpTypeVector : OpTypeFloat };
	t.basetype = SPIRType::Float;
	t.vecsize = components;
	t.columns = 1;
	return join(type_to_glsl_constructor(t), "(", expr, ")");
}

static inline bool sampling_type_needs_f32_conversion(const SPIRType &type)
{
	// Double is not supported to begin with, but doesn't hurt to check for completion.
	return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double;
}

// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
{
	VariableID img = args.base.img;
	auto &imgtype = *args.base.imgtype;
	uint32_t lod = args.lod;
	uint32_t grad_x = args.grad_x;
	uint32_t grad_y = args.grad_y;
	uint32_t bias = args.bias;

	const MSLConstexprSampler *constexpr_sampler = nullptr;
	bool is_dynamic_img_sampler = false;
	if (auto *var = maybe_get_backing_variable(img))
	{
		constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
		is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
	}

	string farg_str;
	bool forward = true;

	if (!is_dynamic_img_sampler)
	{
		// Texture reference (for some cases)
		if (needs_chroma_reconstruction(constexpr_sampler))
		{
			// Multiplanar images need two or three textures.
			farg_str += to_expression(img);
			for (uint32_t i = 1; i < constexpr_sampler->planes; i++)
				farg_str += join(", ", to_expression(img), plane_name_suffix, i);
		}
		else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
		         msl_options.swizzle_texture_samples && args.base.is_gather)
		{
			auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
			farg_str += to_expression(combined ? combined->image : img);
		}

		// Gathers with constant offsets call a special function, so include the texture.
		if (args.has_array_offsets)
			farg_str += to_expression(img);

		// Sampler reference
		if (!args.base.is_fetch)
		{
			if (!farg_str.empty())
				farg_str += ", ";
			farg_str += to_sampler_expression(img);
		}

		if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
		    msl_options.swizzle_texture_samples && args.base.is_gather)
		{
			// Add the swizzle constant from the swizzle buffer.
			farg_str += ", " + to_swizzle_expression(img);
			used_swizzle_buffer = true;
		}

		// Const offsets gather puts the const offsets before the other args.
		if (args.has_array_offsets)
		{
			forward = forward && should_forward(args.offset);
			farg_str += ", " + to_expression(args.offset);
		}

		// Const offsets gather or swizzled gather puts the component before the other args.
		if (args.component && (args.has_array_offsets || msl_options.swizzle_texture_samples))
		{
			forward = forward && should_forward(args.component);
			farg_str += ", " + to_component_argument(args.component);
		}
	}

	// Texture coordinates
	forward = forward && should_forward(args.coord);
	auto coord_expr = to_enclosed_expression(args.coord);
	auto &coord_type = expression_type(args.coord);
	bool coord_is_fp = type_is_floating_point(coord_type);
	bool is_cube_fetch = false;

	string tex_coords = coord_expr;
	uint32_t alt_coord_component = 0;

	switch (imgtype.image.dim)
	{

	case Dim1D:
		if (coord_type.vecsize > 1)
			tex_coords = enclose_expression(tex_coords) + ".x";

		if (args.base.is_fetch)
			tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
		else if (sampling_type_needs_f32_conversion(coord_type))
			tex_coords = convert_to_f32(tex_coords, 1);

		if (msl_options.texture_1D_as_2D)
		{
			if (args.base.is_fetch)
				tex_coords = "uint2(" + tex_coords + ", 0)";
			else
				tex_coords = "float2(" + tex_coords + ", 0.5)";
		}

		alt_coord_component = 1;
		break;

	case DimBuffer:
		if (coord_type.vecsize > 1)
			tex_coords = enclose_expression(tex_coords) + ".x";

		if (msl_options.texture_buffer_native)
		{
			tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
		}
		else
		{
			// Metal texel buffer textures are 2D, so convert 1D coord to 2D.
			// Support for Metal 2.1's new texture_buffer type.
			if (args.base.is_fetch)
			{
				if (msl_options.texel_buffer_texture_width > 0)
				{
					tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
				}
				else
				{
					tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " +
					             to_expression(img) + ")";
				}
			}
		}

		alt_coord_component = 1;
		break;

	case DimSubpassData:
		// If we're using Metal's native frame-buffer fetch API for subpass inputs,
		// this path will not be hit.
		tex_coords = "uint2(gl_FragCoord.xy)";
		alt_coord_component = 2;
		break;

	case Dim2D:
		if (coord_type.vecsize > 2)
			tex_coords = enclose_expression(tex_coords) + ".xy";

		if (args.base.is_fetch)
			tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
		else if (sampling_type_needs_f32_conversion(coord_type))
			tex_coords = convert_to_f32(tex_coords, 2);

		alt_coord_component = 2;
		break;

	case Dim3D:
		if (coord_type.vecsize > 3)
			tex_coords = enclose_expression(tex_coords) + ".xyz";

		if (args.base.is_fetch)
			tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
		else if (sampling_type_needs_f32_conversion(coord_type))
			tex_coords = convert_to_f32(tex_coords, 3);

		alt_coord_component = 3;
		break;

	case DimCube:
		if (args.base.is_fetch)
		{
			is_cube_fetch = true;
			tex_coords += ".xy";
			tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
		}
		else
		{
			if (coord_type.vecsize > 3)
				tex_coords = enclose_expression(tex_coords) + ".xyz";
		}

		if (sampling_type_needs_f32_conversion(coord_type))
			tex_coords = convert_to_f32(tex_coords, 3);

		alt_coord_component = 3;
		break;

	default:
		break;
	}

	if (args.base.is_fetch && args.offset)
	{
		// Fetch offsets must be applied directly to the coordinate.
		forward = forward && should_forward(args.offset);
		auto &type = expression_type(args.offset);
		if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D)
		{
			if (type.basetype != SPIRType::UInt)
				tex_coords += join(" + uint2(", bitcast_expression(SPIRType::UInt, args.offset), ", 0)");
			else
				tex_coords += join(" + uint2(", to_enclosed_expression(args.offset), ", 0)");
		}
		else
		{
			if (type.basetype != SPIRType::UInt)
				tex_coords += " + " + bitcast_expression(SPIRType::UInt, args.offset);
			else
				tex_coords += " + " + to_enclosed_expression(args.offset);
		}
	}

	// If projection, use alt coord as divisor
	if (args.base.is_proj)
	{
		if (sampling_type_needs_f32_conversion(coord_type))
			tex_coords += " / " + convert_to_f32(to_extract_component_expression(args.coord, alt_coord_component), 1);
		else
			tex_coords += " / " + to_extract_component_expression(args.coord, alt_coord_component);
	}

	if (!farg_str.empty())
		farg_str += ", ";

	if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array)
	{
		farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy";

		if (is_cube_fetch)
			farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ")";
		else
			farg_str +=
			    ", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" +
			    round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
			    ") * 6u)";

		add_spv_func_and_recompile(SPVFuncImplCubemapTo2DArrayFace);
	}
	else
	{
		farg_str += tex_coords;

		// If fetch from cube, add face explicitly
		if (is_cube_fetch)
		{
			// Special case for cube arrays, face and layer are packed in one dimension.
			if (imgtype.image.arrayed)
				farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") % 6u";
			else
				farg_str +=
				    ", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, 2), coord_is_fp) + ")";
		}

		// If array, use alt coord
		if (imgtype.image.arrayed)
		{
			// Special case for cube arrays, face and layer are packed in one dimension.
			if (imgtype.image.dim == DimCube && args.base.is_fetch)
			{
				farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") / 6u";
			}
			else
			{
				farg_str +=
				    ", uint(" +
				    round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
				    ")";
				if (imgtype.image.dim == DimSubpassData)
				{
					if (msl_options.multiview)
						farg_str += " + gl_ViewIndex";
					else if (msl_options.arrayed_subpass_input)
						farg_str += " + gl_Layer";
				}
			}
		}
		else if (imgtype.image.dim == DimSubpassData)
		{
			if (msl_options.multiview)
				farg_str += ", gl_ViewIndex";
			else if (msl_options.arrayed_subpass_input)
				farg_str += ", gl_Layer";
		}
	}

	// Depth compare reference value
	if (args.dref)
	{
		forward = forward && should_forward(args.dref);
		farg_str += ", ";

		auto &dref_type = expression_type(args.dref);

		string dref_expr;
		if (args.base.is_proj)
			dref_expr = join(to_enclosed_expression(args.dref), " / ",
			                 to_extract_component_expression(args.coord, alt_coord_component));
		else
			dref_expr = to_expression(args.dref);

		if (sampling_type_needs_f32_conversion(dref_type))
			dref_expr = convert_to_f32(dref_expr, 1);

		farg_str += dref_expr;

		if (msl_options.is_macos() && (grad_x || grad_y))
		{
			// For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
			// However, the most common case here is to have a constant gradient of 0, as that is the only way to express
			// LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
			// We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
			bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
			bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
			if (constant_zero_x && constant_zero_y &&
			    (!imgtype.image.arrayed || !msl_options.sample_dref_lod_array_as_grad))
			{
				lod = 0;
				grad_x = 0;
				grad_y = 0;
				farg_str += ", level(0)";
			}
			else if (!msl_options.supports_msl_version(2, 3))
			{
				SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
				                  "supported on macOS prior to MSL 2.3.");
			}
		}

		if (msl_options.is_macos() && bias)
		{
			// Bias is not supported either on macOS with sample_compare.
			// Verify it is compile-time zero, and drop the argument.
			if (expression_is_constant_null(bias))
			{
				bias = 0;
			}
			else if (!msl_options.supports_msl_version(2, 3))
			{
				SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported "
				                  "on macOS prior to MSL 2.3.");
			}
		}
	}

	// LOD Options
	// Metal does not support LOD for 1D textures.
	if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
	{
		forward = forward && should_forward(bias);
		farg_str += ", bias(" + to_expression(bias) + ")";
	}

	// Metal does not support LOD for 1D textures.
	if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
	{
		forward = forward && should_forward(lod);
		if (args.base.is_fetch)
		{
			farg_str += ", " + to_expression(lod);
		}
		else if (msl_options.sample_dref_lod_array_as_grad && args.dref && imgtype.image.arrayed)
		{
			if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
				SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
				                  "supported on macOS prior to MSL 2.3.");
			// Some Metal devices have a bug where the LoD is erroneously biased upward
			// when using a level() argument. Since this doesn't happen as much with gradient2d(),
			// if we perform the LoD calculation in reverse, we can pass a gradient
			// instead.
			// lod = log2(rhoMax/eta) -> exp2(lod) = rhoMax/eta
			// If we make all of the scale factors the same, eta will be 1 and
			// exp2(lod) = rho.
			// rhoX = dP/dx * extent; rhoY = dP/dy * extent
			// Therefore, dP/dx = dP/dy = exp2(lod)/extent.
			// (Subtracting 0.5 before exponentiation gives better results.)
			string grad_opt, extent, grad_coord;
			VariableID base_img = img;
			if (auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
				base_img = combined->image;
			switch (imgtype.image.dim)
			{
			case Dim1D:
				grad_opt = "gradient2d";
				extent = join("float2(", to_expression(base_img), ".get_width(), 1.0)");
				break;
			case Dim2D:
				grad_opt = "gradient2d";
				extent = join("float2(", to_expression(base_img), ".get_width(), ", to_expression(base_img), ".get_height())");
				break;
			case DimCube:
				if (imgtype.image.arrayed && msl_options.emulate_cube_array)
				{
					grad_opt = "gradient2d";
					extent = join("float2(", to_expression(base_img), ".get_width())");
				}
				else
				{
					if (msl_options.agx_manual_cube_grad_fixup)
					{
						add_spv_func_and_recompile(SPVFuncImplGradientCube);
						grad_opt = "spvGradientCube";
						grad_coord = tex_coords + ", ";
					}
					else
					{
						grad_opt = "gradientcube";
					}
					extent = join("float3(", to_expression(base_img), ".get_width())");
				}
				break;
			default:
				grad_opt = "unsupported_gradient_dimension";
				extent = "float3(1.0)";
				break;
			}
			farg_str += join(", ", grad_opt, "(", grad_coord, "exp2(", to_expression(lod), " - 0.5) / ", extent,
			                 ", exp2(", to_expression(lod), " - 0.5) / ", extent, ")");
		}
		else
		{
			farg_str += ", level(" + to_expression(lod) + ")";
		}
	}
	else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) &&
	         imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2)
	{
		// Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
		// Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
		farg_str += ", 0";
	}

	// Metal does not support LOD for 1D textures.
	if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
	{
		forward = forward && should_forward(grad_x);
		forward = forward && should_forward(grad_y);
		string grad_opt, grad_coord;
		switch (imgtype.image.dim)
		{
		case Dim1D:
		case Dim2D:
			grad_opt = "gradient2d";
			break;
		case Dim3D:
			grad_opt = "gradient3d";
			break;
		case DimCube:
			if (imgtype.image.arrayed && msl_options.emulate_cube_array)
			{
				grad_opt = "gradient2d";
			}
			else if (msl_options.agx_manual_cube_grad_fixup)
			{
				add_spv_func_and_recompile(SPVFuncImplGradientCube);
				grad_opt = "spvGradientCube";
				grad_coord = tex_coords + ", ";
			}
			else
			{
				grad_opt = "gradientcube";
			}
			break;
		default:
			grad_opt = "unsupported_gradient_dimension";
			break;
		}
		farg_str += join(", ", grad_opt, "(", grad_coord, to_expression(grad_x), ", ", to_expression(grad_y), ")");
	}

	if (args.min_lod)
	{
		if (!msl_options.supports_msl_version(2, 2))
			SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up.");

		forward = forward && should_forward(args.min_lod);
		farg_str += ", min_lod_clamp(" + to_expression(args.min_lod) + ")";
	}

	// Add offsets
	string offset_expr;
	const SPIRType *offset_type = nullptr;
	if (args.offset && !args.base.is_fetch && !args.has_array_offsets)
	{
		forward = forward && should_forward(args.offset);
		offset_expr = to_expression(args.offset);
		offset_type = &expression_type(args.offset);
	}

	if (!offset_expr.empty())
	{
		switch (imgtype.image.dim)
		{
		case Dim1D:
			if (!msl_options.texture_1D_as_2D)
				break;
			if (offset_type->vecsize > 1)
				offset_expr = enclose_expression(offset_expr) + ".x";

			farg_str += join(", int2(", offset_expr, ", 0)");
			break;

		case Dim2D:
			if (offset_type->vecsize > 2)
				offset_expr = enclose_expression(offset_expr) + ".xy";

			farg_str += ", " + offset_expr;
			break;

		case Dim3D:
			if (offset_type->vecsize > 3)
				offset_expr = enclose_expression(offset_expr) + ".xyz";

			farg_str += ", " + offset_expr;
			break;

		default:
			break;
		}
	}

	if (args.component && !args.has_array_offsets)
	{
		// If 2D has gather component, ensure it also has an offset arg
		if (imgtype.image.dim == Dim2D && offset_expr.empty())
			farg_str += ", int2(0)";

		if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler)
		{
			forward = forward && should_forward(args.component);

			uint32_t image_var = 0;
			if (const auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
			{
				if (const auto *img_var = maybe_get_backing_variable(combined->image))
					image_var = img_var->self;
			}
			else if (const auto *var = maybe_get_backing_variable(img))
			{
				image_var = var->self;
			}

			if (image_var == 0 || !is_depth_image(expression_type(image_var), image_var))
				farg_str += ", " + to_component_argument(args.component);
		}
	}

	if (args.sample)
	{
		forward = forward && should_forward(args.sample);
		farg_str += ", ";
		farg_str += to_expression(args.sample);
	}

	*p_forward = forward;

	return farg_str;
}

// If the texture coordinates are floating point, invokes MSL round() function to round them.
string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
{
	return coord_is_fp ? ("rint(" + tex_coords + ")") : tex_coords;
}

// Returns a string to use in an image sampling function argument.
// The ID must be a scalar constant.
string CompilerMSL::to_component_argument(uint32_t id)
{
	uint32_t component_index = evaluate_constant_u32(id);
	switch (component_index)
	{
	case 0:
		return "component::x";
	case 1:
		return "component::y";
	case 2:
		return "component::z";
	case 3:
		return "component::w";

	default:
		SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
		                  " is not a valid Component index, which must be one of 0, 1, 2, or 3.");
	}
}

// Establish sampled image as expression object and assign the sampler to it.
void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
{
	set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
}

string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
                                  SmallVector<uint32_t> &inherited_expressions)
{
	auto *ops = stream(i);
	uint32_t result_type_id = ops[0];
	uint32_t img = ops[2];
	auto &result_type = get<SPIRType>(result_type_id);
	auto op = static_cast<Op>(i.op);
	bool is_gather = (op == OpImageGather || op == OpImageDrefGather);

	// Bypass pointers because we need the real image struct
	auto &type = expression_type(img);
	auto &imgtype = get<SPIRType>(type.self);

	const MSLConstexprSampler *constexpr_sampler = nullptr;
	bool is_dynamic_img_sampler = false;
	if (auto *var = maybe_get_backing_variable(img))
	{
		constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
		is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
	}

	string expr;
	if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
	{
		// If this needs sampler Y'CbCr conversion, we need to do some additional
		// processing.
		switch (constexpr_sampler->ycbcr_model)
		{
		case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
		case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
			// Default
			break;
		case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
			add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT709);
			expr += "spvConvertYCbCrBT709(";
			break;
		case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
			add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT601);
			expr += "spvConvertYCbCrBT601(";
			break;
		case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
			add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT2020);
			expr += "spvConvertYCbCrBT2020(";
			break;
		default:
			SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
		}

		if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
		{
			switch (constexpr_sampler->ycbcr_range)
			{
			case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL:
				add_spv_func_and_recompile(SPVFuncImplExpandITUFullRange);
				expr += "spvExpandITUFullRange(";
				break;
			case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW:
				add_spv_func_and_recompile(SPVFuncImplExpandITUNarrowRange);
				expr += "spvExpandITUNarrowRange(";
				break;
			default:
				SPIRV_CROSS_THROW("Invalid Y'CbCr range.");
			}
		}
	}
	else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
	         !is_dynamic_img_sampler)
	{
		add_spv_func_and_recompile(SPVFuncImplTextureSwizzle);
		expr += "spvTextureSwizzle(";
	}

	string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions);

	if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
	{
		if (!constexpr_sampler->swizzle_is_identity())
		{
			static const char swizzle_names[] = "rgba";
			if (!constexpr_sampler->swizzle_has_one_or_zero())
			{
				// If we can, do it inline.
				expr += inner_expr + ".";
				for (uint32_t c = 0; c < 4; c++)
				{
					switch (constexpr_sampler->swizzle[c])
					{
					case MSL_COMPONENT_SWIZZLE_IDENTITY:
						expr += swizzle_names[c];
						break;
					case MSL_COMPONENT_SWIZZLE_R:
					case MSL_COMPONENT_SWIZZLE_G:
					case MSL_COMPONENT_SWIZZLE_B:
					case MSL_COMPONENT_SWIZZLE_A:
						expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
						break;
					default:
						SPIRV_CROSS_THROW("Invalid component swizzle.");
					}
				}
			}
			else
			{
				// Otherwise, we need to emit a temporary and swizzle that.
				uint32_t temp_id = ir.increase_bound_by(1);
				emit_op(result_type_id, temp_id, inner_expr, false);
				for (auto &inherit : inherited_expressions)
					inherit_expression_dependencies(temp_id, inherit);
				inherited_expressions.clear();
				inherited_expressions.push_back(temp_id);

				switch (op)
				{
				case OpImageSampleDrefImplicitLod:
				case OpImageSampleImplicitLod:
				case OpImageSampleProjImplicitLod:
				case OpImageSampleProjDrefImplicitLod:
					register_control_dependent_expression(temp_id);
					break;

				default:
					break;
				}
				expr += type_to_glsl(result_type) + "(";
				for (uint32_t c = 0; c < 4; c++)
				{
					switch (constexpr_sampler->swizzle[c])
					{
					case MSL_COMPONENT_SWIZZLE_IDENTITY:
						expr += to_expression(temp_id) + "." + swizzle_names[c];
						break;
					case MSL_COMPONENT_SWIZZLE_ZERO:
						expr += "0";
						break;
					case MSL_COMPONENT_SWIZZLE_ONE:
						expr += "1";
						break;
					case MSL_COMPONENT_SWIZZLE_R:
					case MSL_COMPONENT_SWIZZLE_G:
					case MSL_COMPONENT_SWIZZLE_B:
					case MSL_COMPONENT_SWIZZLE_A:
						expr += to_expression(temp_id) + "." +
						        swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
						break;
					default:
						SPIRV_CROSS_THROW("Invalid component swizzle.");
					}
					if (c < 3)
						expr += ", ";
				}
				expr += ")";
			}
		}
		else
			expr += inner_expr;
		if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
		{
			expr += join(", ", constexpr_sampler->bpc, ")");
			if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY)
				expr += ")";
		}
	}
	else
	{
		expr += inner_expr;
		if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
		    !is_dynamic_img_sampler)
		{
			// Add the swizzle constant from the swizzle buffer.
			expr += ", " + to_swizzle_expression(img) + ")";
			used_swizzle_buffer = true;
		}
	}

	return expr;
}

static string create_swizzle(MSLComponentSwizzle swizzle)
{
	switch (swizzle)
	{
	case MSL_COMPONENT_SWIZZLE_IDENTITY:
		return "spvSwizzle::none";
	case MSL_COMPONENT_SWIZZLE_ZERO:
		return "spvSwizzle::zero";
	case MSL_COMPONENT_SWIZZLE_ONE:
		return "spvSwizzle::one";
	case MSL_COMPONENT_SWIZZLE_R:
		return "spvSwizzle::red";
	case MSL_COMPONENT_SWIZZLE_G:
		return "spvSwizzle::green";
	case MSL_COMPONENT_SWIZZLE_B:
		return "spvSwizzle::blue";
	case MSL_COMPONENT_SWIZZLE_A:
		return "spvSwizzle::alpha";
	default:
		SPIRV_CROSS_THROW("Invalid component swizzle.");
	}
}

// Returns a string representation of the ID, usable as a function arg.
// Manufacture automatic sampler arg for SampledImage texture.
string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id)
{
	string arg_str;

	auto &type = expression_type(id);
	bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
	// If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around.
	bool arg_is_dynamic_img_sampler = has_extended_decoration(id, SPIRVCrossDecorationDynamicImageSampler);
	if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler)
		arg_str = join("spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">(");

	auto *c = maybe_get<SPIRConstant>(id);
	if (msl_options.force_native_arrays && c && !get<SPIRType>(c->constant_type).array.empty())
	{
		// If we are passing a constant array directly to a function for some reason,
		// the callee will expect an argument in thread const address space
		// (since we can only bind to arrays with references in MSL).
		// To resolve this, we must emit a copy in this address space.
		// This kind of code gen should be rare enough that performance is not a real concern.
		// Inline the SPIR-V to avoid this kind of suboptimal codegen.
		//
		// We risk calling this inside a continue block (invalid code),
		// so just create a thread local copy in the current function.
		arg_str = join("_", id, "_array_copy");
		auto &constants = current_function->constant_arrays_needed_on_stack;
		auto itr = find(begin(constants), end(constants), ID(id));
		if (itr == end(constants))
		{
			force_recompile();
			constants.push_back(id);
		}
	}
	// Dereference pointer variables where needed.
	// FIXME: This dereference is actually backwards. We should really just support passing pointer variables between functions.
	else if (should_dereference(id))
		arg_str += dereference_expression(type, CompilerGLSL::to_func_call_arg(arg, id));
	else
		arg_str += CompilerGLSL::to_func_call_arg(arg, id);

	// Need to check the base variable in case we need to apply a qualified alias.
	uint32_t var_id = 0;
	auto *var = maybe_get<SPIRVariable>(id);
	if (var)
		var_id = var->basevariable;

	if (!arg_is_dynamic_img_sampler)
	{
		auto *constexpr_sampler = find_constexpr_sampler(var_id ? var_id : id);
		if (type.basetype == SPIRType::SampledImage)
		{
			// Manufacture automatic plane args for multiplanar texture
			uint32_t planes = 1;
			if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
			{
				planes = constexpr_sampler->planes;
				// If this parameter isn't aliasing a global, then we need to use
				// the special "dynamic image-sampler" class to pass it--and we need
				// to use it for *every* non-alias parameter, in case a combined
				// image-sampler with a Y'CbCr conversion is passed. Hopefully, this
				// pathological case is so rare that it should never be hit in practice.
				if (!arg.alias_global_variable)
					add_spv_func_and_recompile(SPVFuncImplDynamicImageSampler);
			}
			for (uint32_t i = 1; i < planes; i++)
				arg_str += join(", ", CompilerGLSL::to_func_call_arg(arg, id), plane_name_suffix, i);
			// Manufacture automatic sampler arg if the arg is a SampledImage texture.
			if (type.image.dim != DimBuffer)
				arg_str += ", " + to_sampler_expression(var_id ? var_id : id);

			// Add sampler Y'CbCr conversion info if we have it
			if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
			{
				SmallVector<string> samp_args;

				switch (constexpr_sampler->resolution)
				{
				case MSL_FORMAT_RESOLUTION_444:
					// Default
					break;
				case MSL_FORMAT_RESOLUTION_422:
					samp_args.push_back("spvFormatResolution::_422");
					break;
				case MSL_FORMAT_RESOLUTION_420:
					samp_args.push_back("spvFormatResolution::_420");
					break;
				default:
					SPIRV_CROSS_THROW("Invalid format resolution.");
				}

				if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST)
					samp_args.push_back("spvChromaFilter::linear");

				if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
					samp_args.push_back("spvXChromaLocation::midpoint");
				if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
					samp_args.push_back("spvYChromaLocation::midpoint");
				switch (constexpr_sampler->ycbcr_model)
				{
				case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
					// Default
					break;
				case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
					samp_args.push_back("spvYCbCrModelConversion::ycbcr_identity");
					break;
				case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
					samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_709");
					break;
				case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
					samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_601");
					break;
				case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
					samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_2020");
					break;
				default:
					SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
				}
				if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL)
					samp_args.push_back("spvYCbCrRange::itu_narrow");
				samp_args.push_back(join("spvComponentBits(", constexpr_sampler->bpc, ")"));
				arg_str += join(", spvYCbCrSampler(", merge(samp_args), ")");
			}
		}

		if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
			arg_str += join(", (uint(", create_swizzle(constexpr_sampler->swizzle[3]), ") << 24) | (uint(",
			                create_swizzle(constexpr_sampler->swizzle[2]), ") << 16) | (uint(",
			                create_swizzle(constexpr_sampler->swizzle[1]), ") << 8) | uint(",
			                create_swizzle(constexpr_sampler->swizzle[0]), ")");
		else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
			arg_str += ", " + to_swizzle_expression(var_id ? var_id : id);

		if (buffer_requires_array_length(var_id))
			arg_str += ", " + to_buffer_size_expression(var_id ? var_id : id);

		if (is_dynamic_img_sampler)
			arg_str += ")";
	}

	// Emulate texture2D atomic operations
	auto *backing_var = maybe_get_backing_variable(var_id);
	if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
	{
		arg_str += ", " + to_expression(var_id) + "_atomic";
	}

	return arg_str;
}

// If the ID represents a sampled image that has been assigned a sampler already,
// generate an expression for the sampler, otherwise generate a fake sampler name
// by appending a suffix to the expression constructed from the ID.
string CompilerMSL::to_sampler_expression(uint32_t id)
{
	auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
	if (combined && combined->sampler)
		return to_expression(combined->sampler);

	uint32_t expr_id = combined ? uint32_t(combined->image) : id;

	// Constexpr samplers are declared as local variables,
	// so exclude any qualifier names on the image expression.
	if (auto *var = maybe_get_backing_variable(expr_id))
	{
		uint32_t img_id =  var->basevariable ? var->basevariable : VariableID(var->self);
		if (find_constexpr_sampler(img_id))
			return Compiler::to_name(img_id) + sampler_name_suffix;
	}

	auto img_expr = to_expression(expr_id);
	auto index = img_expr.find_first_of('[');
	if (index == string::npos)
		return img_expr + sampler_name_suffix;
	else
		return img_expr.substr(0, index) + sampler_name_suffix + img_expr.substr(index);
}

string CompilerMSL::to_swizzle_expression(uint32_t id)
{
	auto *combined = maybe_get<SPIRCombinedImageSampler>(id);

	auto expr = to_expression(combined ? combined->image : VariableID(id));
	auto index = expr.find_first_of('[');

	// If an image is part of an argument buffer translate this to a legal identifier.
	string::size_type period = 0;
	while ((period = expr.find_first_of('.', period)) != string::npos && period < index)
		expr[period] = '_';

	if (index == string::npos)
		return expr + swizzle_name_suffix;
	else
	{
		auto image_expr = expr.substr(0, index);
		auto array_expr = expr.substr(index);
		return image_expr + swizzle_name_suffix + array_expr;
	}
}

string CompilerMSL::to_buffer_size_expression(uint32_t id)
{
	auto expr = to_expression(id);
	auto index = expr.find_first_of('[');

	// This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to
	// the pointer expression spvDescriptorSetN.name to make a reasonable expression here.
	// This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set.
	if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*')
		expr = address_of_expression(expr);

	// If a buffer is part of an argument buffer translate this to a legal identifier.
	for (auto &c : expr)
		if (c == '.')
			c = '_';

	if (index == string::npos)
		return expr + buffer_size_name_suffix;
	else
	{
		auto buffer_expr = expr.substr(0, index);
		auto array_expr = expr.substr(index);
		if (auto var = maybe_get_backing_variable(id))
		{
			if (is_var_runtime_size_array(*var))
			{
				if (!msl_options.runtime_array_rich_descriptor)
					SPIRV_CROSS_THROW("OpArrayLength requires rich descriptor format");

				auto last_pos = array_expr.find_last_of(']');
				if (last_pos != std::string::npos)
					return buffer_expr + ".length(" + array_expr.substr(1, last_pos - 1) + ")";
			}
		}
		return buffer_expr + buffer_size_name_suffix + array_expr;
	}
}

// Checks whether the type is a Block all of whose members have DecorationPatch.
bool CompilerMSL::is_patch_block(const SPIRType &type)
{
	if (!has_decoration(type.self, DecorationBlock))
		return false;

	for (uint32_t i = 0; i < type.member_types.size(); i++)
	{
		if (!has_member_decoration(type.self, i, DecorationPatch))
			return false;
	}

	return true;
}

// Checks whether the ID is a row_major matrix that requires conversion before use
bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
{
	auto *e = maybe_get<SPIRExpression>(id);
	if (e)
		return e->need_transpose;
	else
		return has_decoration(id, DecorationRowMajor);
}

// Checks whether the member is a row_major matrix that requires conversion before use
bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
{
	return has_member_decoration(type.self, index, DecorationRowMajor);
}

string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
                                             bool is_packed, bool relaxed)
{
	if (!is_matrix(exp_type))
	{
		return CompilerGLSL::convert_row_major_matrix(std::move(exp_str), exp_type, physical_type_id, is_packed, relaxed);
	}
	else
	{
		strip_enclosed_expression(exp_str);
		if (physical_type_id != 0 || is_packed)
			exp_str = unpack_expression_type(exp_str, exp_type, physical_type_id, is_packed, true);
		return join("transpose(", exp_str, ")");
	}
}

// Called automatically at the end of the entry point function
void CompilerMSL::emit_fixup()
{
	if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
	{
		if (options.vertex.fixup_clipspace)
			statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
			          ".w) * 0.5;       // Adjust clip-space for Metal");

		if (options.vertex.flip_vert_y)
			statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", "    // Invert Y-axis for Metal");
	}
}

// Return a string defining a structure member, with padding and packing.
string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
                                     const string &qualifier)
{
	uint32_t orig_member_type_id = member_type_id;
	if (member_is_remapped_physical_type(type, index))
		member_type_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID);
	auto &physical_type = get<SPIRType>(member_type_id);

	// If this member is packed, mark it as so.
	string pack_pfx;

	// Allow Metal to use the array<T> template to make arrays a value type
	uint32_t orig_id = 0;
	if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
		orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);

	bool row_major = false;
	if (is_matrix(physical_type))
		row_major = has_member_decoration(type.self, index, DecorationRowMajor);

	SPIRType row_major_physical_type { OpTypeMatrix };
	const SPIRType *declared_type = &physical_type;

	// If a struct is being declared with physical layout,
	// do not use array<T> wrappers.
	// This avoids a lot of complicated cases with packed vectors and matrices,
	// and generally we cannot copy full arrays in and out of buffers into Function
	// address space.
	// Array of resources should also be declared as builtin arrays.
	if (has_member_decoration(type.self, index, DecorationOffset))
		is_using_builtin_array = true;
	else if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
		is_using_builtin_array = true;

	if (member_is_packed_physical_type(type, index))
	{
		// If we're packing a matrix, output an appropriate typedef
		if (physical_type.basetype == SPIRType::Struct)
		{
			SPIRV_CROSS_THROW("Cannot emit a packed struct currently.");
		}
		else if (is_matrix(physical_type))
		{
			uint32_t rows = physical_type.vecsize;
			uint32_t cols = physical_type.columns;
			pack_pfx = "packed_";
			if (row_major)
			{
				// These are stored transposed.
				rows = physical_type.columns;
				cols = physical_type.vecsize;
				pack_pfx = "packed_rm_";
			}
			string base_type = physical_type.width == 16 ? "half" : "float";
			string td_line = "typedef ";
			td_line += "packed_" + base_type + to_string(rows);
			td_line += " " + pack_pfx;
			// Use the actual matrix size here.
			td_line += base_type + to_string(physical_type.columns) + "x" + to_string(physical_type.vecsize);
			td_line += "[" + to_string(cols) + "]";
			td_line += ";";
			add_typedef_line(td_line);
		}
		else if (!is_scalar(physical_type)) // scalar type is already packed.
			pack_pfx = "packed_";
	}
	else if (is_matrix(physical_type))
	{
		if (!msl_options.supports_msl_version(3, 0) &&
		    has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
		{
			pack_pfx = "spvStorage_";
			add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
			// The pack prefix causes problems with array<T> wrappers.
			is_using_builtin_array = true;
		}
		if (row_major)
		{
			// Need to declare type with flipped vecsize/columns.
			row_major_physical_type = physical_type;
			swap(row_major_physical_type.vecsize, row_major_physical_type.columns);
			declared_type = &row_major_physical_type;
		}
	}

	// iOS Tier 1 argument buffers do not support writable images.
	if (physical_type.basetype == SPIRType::Image &&
		physical_type.image.sampled == 2 &&
		msl_options.is_ios() &&
		msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1 &&
		!has_decoration(orig_id, DecorationNonWritable))
	{
		SPIRV_CROSS_THROW("Writable images are not allowed on Tier1 argument buffers on iOS.");
	}

	// Array information is baked into these types.
	string array_type;
	if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler &&
	    physical_type.basetype != SPIRType::SampledImage)
	{
		BuiltIn builtin = BuiltInMax;

		// Special handling. In [[stage_out]] or [[stage_in]] blocks,
		// we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want
		// template array types to be declared.
		bool is_ib_in_out =
				((stage_out_var_id && get_stage_out_struct_type().self == type.self &&
				  variable_storage_requires_stage_io(StorageClassOutput)) ||
				 (stage_in_var_id && get_stage_in_struct_type().self == type.self &&
				  variable_storage_requires_stage_io(StorageClassInput)));
		if (is_ib_in_out && is_member_builtin(type, index, &builtin))
			is_using_builtin_array = true;
		array_type = type_to_array_glsl(physical_type, orig_id);
	}

	if (orig_id)
	{
		auto *data_type = declared_type;
		if (is_pointer(*data_type))
			data_type = &get_pointee_type(*data_type);

		if (is_array(*data_type) && get_resource_array_size(*data_type, orig_id) == 0)
		{
			// Hack for declaring unsized array of resources. Need to declare dummy sized array by value inline.
			// This can then be wrapped in spvDescriptorArray as usual.
			array_type = "[1] /* unsized array hack */";
		}
	}

	string decl_type;
	if (declared_type->vecsize > 4)
	{
		auto orig_type = get<SPIRType>(orig_member_type_id);
		if (is_matrix(orig_type) && row_major)
			swap(orig_type.vecsize, orig_type.columns);
		orig_type.columns = 1;
		decl_type = type_to_glsl(orig_type, orig_id, true);

		if (declared_type->columns > 1)
			decl_type = join("spvPaddedStd140Matrix<", decl_type, ", ", declared_type->columns, ">");
		else
			decl_type = join("spvPaddedStd140<", decl_type, ">");
	}
	else
		decl_type = type_to_glsl(*declared_type, orig_id, true);

	const char *overlapping_binding_tag =
			has_extended_member_decoration(type.self, index, SPIRVCrossDecorationOverlappingBinding) ?
			"// Overlapping binding: " : "";

	auto result = join(overlapping_binding_tag, pack_pfx, decl_type, " ", qualifier,
	                   to_member_name(type, index), member_attribute_qualifier(type, index), array_type, ";");

	is_using_builtin_array = false;
	return result;
}

// Emit a structure member, padding and packing to maintain the correct memeber alignments.
void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
                                     const string &qualifier, uint32_t)
{
	// If this member requires padding to maintain its declared offset, emit a dummy padding member before it.
	if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget))
	{
		uint32_t pad_len = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget);
		statement("char _m", index, "_pad", "[", pad_len, "];");
	}

	// Handle HLSL-style 0-based vertex/instance index.
	builtin_declaration = true;
	statement(to_struct_member(type, member_type_id, index, qualifier));
	builtin_declaration = false;
}

void CompilerMSL::emit_struct_padding_target(const SPIRType &type)
{
	uint32_t struct_size = get_declared_struct_size_msl(type, true, true);
	uint32_t target_size = get_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget);
	if (target_size < struct_size)
		SPIRV_CROSS_THROW("Cannot pad with negative bytes.");
	else if (target_size > struct_size)
		statement("char _m0_final_padding[", target_size - struct_size, "];");
}

// Return a MSL qualifier for the specified function attribute member
string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
{
	auto &execution = get_entry_point();

	uint32_t mbr_type_id = type.member_types[index];
	auto &mbr_type = get<SPIRType>(mbr_type_id);

	BuiltIn builtin = BuiltInMax;
	bool is_builtin = is_member_builtin(type, index, &builtin);

	if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
	{
		string quals = join(
		    " [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary), ")");
		if (interlocked_resources.count(
		        get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID)))
			quals += ", raster_order_group(0)";
		quals += "]]";
		return quals;
	}

	// Vertex function inputs
	if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
	{
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInVertexId:
			case BuiltInVertexIndex:
			case BuiltInBaseVertex:
			case BuiltInInstanceId:
			case BuiltInInstanceIndex:
			case BuiltInBaseInstance:
				if (msl_options.vertex_for_tessellation)
					return "";
				return string(" [[") + builtin_qualifier(builtin) + "]]";

			case BuiltInDrawIndex:
				SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");

			default:
				return "";
			}
		}

		uint32_t locn;
		if (is_builtin)
			locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
		else
			locn = get_member_location(type.self, index);

		if (locn != k_unknown_location)
			return string(" [[attribute(") + convert_to_string(locn) + ")]]";
	}

	// Vertex and tessellation evaluation function outputs
	if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) || is_tese_shader()) &&
	    type.storage == StorageClassOutput)
	{
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInPointSize:
				// Only mark the PointSize builtin if really rendering points.
				// Some shaders may include a PointSize builtin even when used to render
				// non-point topologies, and Metal will reject this builtin when compiling
				// the shader into a render pipeline that uses a non-point topology.
				return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";

			case BuiltInViewportIndex:
				if (!msl_options.supports_msl_version(2, 0))
					SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
				/* fallthrough */
			case BuiltInPosition:
			case BuiltInLayer:
				return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");

			case BuiltInClipDistance:
				if (has_member_decoration(type.self, index, DecorationIndex))
					return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
				else
					return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");

			case BuiltInCullDistance:
				if (has_member_decoration(type.self, index, DecorationIndex))
					return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
				else
					return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");

			default:
				return "";
			}
		}
		string loc_qual = member_location_attribute_qualifier(type, index);
		if (!loc_qual.empty())
			return join(" [[", loc_qual, "]]");
	}

	if (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation && type.storage == StorageClassOutput)
	{
		// For this type of shader, we always arrange for it to capture its
		// output to a buffer. For this reason, qualifiers are irrelevant here.
		if (is_builtin)
			// We still have to assign a location so the output struct will sort correctly.
			get_or_allocate_builtin_output_member_location(builtin, type.self, index);
		return "";
	}

	// Tessellation control function inputs
	if (is_tesc_shader() && type.storage == StorageClassInput)
	{
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInInvocationId:
			case BuiltInPrimitiveId:
				if (msl_options.multi_patch_workgroup)
					return "";
				return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
			case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
			case BuiltInSubgroupSize: // FIXME: Should work in any stage
				if (msl_options.emulate_subgroups)
					return "";
				return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
			case BuiltInPatchVertices:
				return "";
			// Others come from stage input.
			default:
				break;
			}
		}
		if (msl_options.multi_patch_workgroup)
			return "";

		uint32_t locn;
		if (is_builtin)
			locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
		else
			locn = get_member_location(type.self, index);

		if (locn != k_unknown_location)
			return string(" [[attribute(") + convert_to_string(locn) + ")]]";
	}

	// Tessellation control function outputs
	if (is_tesc_shader() && type.storage == StorageClassOutput)
	{
		// For this type of shader, we always arrange for it to capture its
		// output to a buffer. For this reason, qualifiers are irrelevant here.
		if (is_builtin)
			// We still have to assign a location so the output struct will sort correctly.
			get_or_allocate_builtin_output_member_location(builtin, type.self, index);
		return "";
	}

	// Tessellation evaluation function inputs
	if (is_tese_shader() && type.storage == StorageClassInput)
	{
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInPrimitiveId:
			case BuiltInTessCoord:
				return string(" [[") + builtin_qualifier(builtin) + "]]";
			case BuiltInPatchVertices:
				return "";
			// Others come from stage input.
			default:
				break;
			}
		}

		if (msl_options.raw_buffer_tese_input)
			return "";

		// The special control point array must not be marked with an attribute.
		if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
			return "";

		uint32_t locn;
		if (is_builtin)
			locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
		else
			locn = get_member_location(type.self, index);

		if (locn != k_unknown_location)
			return string(" [[attribute(") + convert_to_string(locn) + ")]]";
	}

	// Tessellation evaluation function outputs were handled above.

	// Fragment function inputs
	if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
	{
		string quals;
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInViewIndex:
				if (!msl_options.multiview || !msl_options.multiview_layered_rendering)
					break;
				/* fallthrough */
			case BuiltInFrontFacing:
			case BuiltInPointCoord:
			case BuiltInFragCoord:
			case BuiltInSampleId:
			case BuiltInSampleMask:
			case BuiltInLayer:
			case BuiltInBaryCoordKHR:
			case BuiltInBaryCoordNoPerspKHR:
				quals = builtin_qualifier(builtin);
				break;

			case BuiltInClipDistance:
				return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
			case BuiltInCullDistance:
				return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");

			default:
				break;
			}
		}
		else
			quals = member_location_attribute_qualifier(type, index);

		if (builtin == BuiltInBaryCoordKHR || builtin == BuiltInBaryCoordNoPerspKHR)
		{
			if (has_member_decoration(type.self, index, DecorationFlat) ||
			    has_member_decoration(type.self, index, DecorationCentroid) ||
			    has_member_decoration(type.self, index, DecorationSample) ||
			    has_member_decoration(type.self, index, DecorationNoPerspective))
			{
				// NoPerspective is baked into the builtin type.
				SPIRV_CROSS_THROW(
				    "Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs.");
			}
		}

		// Don't bother decorating integers with the 'flat' attribute; it's
		// the default (in fact, the only option). Also don't bother with the
		// FragCoord builtin; it's always noperspective on Metal.
		if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
		{
			if (has_member_decoration(type.self, index, DecorationFlat))
			{
				if (!quals.empty())
					quals += ", ";
				quals += "flat";
			}
			else if (has_member_decoration(type.self, index, DecorationCentroid))
			{
				if (!quals.empty())
					quals += ", ";
				if (has_member_decoration(type.self, index, DecorationNoPerspective))
					quals += "centroid_no_perspective";
				else
					quals += "centroid_perspective";
			}
			else if (has_member_decoration(type.self, index, DecorationSample))
			{
				if (!quals.empty())
					quals += ", ";
				if (has_member_decoration(type.self, index, DecorationNoPerspective))
					quals += "sample_no_perspective";
				else
					quals += "sample_perspective";
			}
			else if (has_member_decoration(type.self, index, DecorationNoPerspective))
			{
				if (!quals.empty())
					quals += ", ";
				quals += "center_no_perspective";
			}
		}

		if (!quals.empty())
			return " [[" + quals + "]]";
	}

	// Fragment function outputs
	if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
	{
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInFragStencilRefEXT:
				// Similar to PointSize, only mark FragStencilRef if there's a stencil buffer.
				// Some shaders may include a FragStencilRef builtin even when used to render
				// without a stencil attachment, and Metal will reject this builtin
				// when compiling the shader into a render pipeline that does not set
				// stencilAttachmentPixelFormat.
				if (!msl_options.enable_frag_stencil_ref_builtin)
					return "";
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up.");
				return string(" [[") + builtin_qualifier(builtin) + "]]";

			case BuiltInFragDepth:
				// Ditto FragDepth.
				if (!msl_options.enable_frag_depth_builtin)
					return "";
				/* fallthrough */
			case BuiltInSampleMask:
				return string(" [[") + builtin_qualifier(builtin) + "]]";

			default:
				return "";
			}
		}
		uint32_t locn = get_member_location(type.self, index);
		// Metal will likely complain about missing color attachments, too.
		if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn)))
			return "";
		if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
			return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
			            ")]]");
		else if (locn != k_unknown_location)
			return join(" [[color(", locn, ")]]");
		else if (has_member_decoration(type.self, index, DecorationIndex))
			return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
		else
			return "";
	}

	// Compute function inputs
	if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
	{
		if (is_builtin)
		{
			switch (builtin)
			{
			case BuiltInNumSubgroups:
			case BuiltInSubgroupId:
			case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
			case BuiltInSubgroupSize: // FIXME: Should work in any stage
				if (msl_options.emulate_subgroups)
					break;
				/* fallthrough */
			case BuiltInGlobalInvocationId:
			case BuiltInWorkgroupId:
			case BuiltInNumWorkgroups:
			case BuiltInLocalInvocationId:
			case BuiltInLocalInvocationIndex:
				return string(" [[") + builtin_qualifier(builtin) + "]]";

			default:
				return "";
			}
		}
	}

	return "";
}

// A user-defined output variable is considered to match an input variable in the subsequent
// stage if the two variables are declared with the same Location and Component decoration and
// match in type and decoration, except that interpolation decorations are not required to match.
// For the purposes of interface matching, variables declared without a Component decoration are
// considered to have a Component decoration of zero.
string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index)
{
	string quals;
	uint32_t comp;
	uint32_t locn = get_member_location(type.self, index, &comp);
	if (locn != k_unknown_location)
	{
		quals += "user(locn";
		quals += convert_to_string(locn);
		if (comp != k_unknown_component && comp != 0)
		{
			quals += "_";
			quals += convert_to_string(comp);
		}
		quals += ")";
	}
	return quals;
}

// Returns the location decoration of the member with the specified index in the specified type.
// If the location of the member has been explicitly set, that location is used. If not, this
// function assumes the members are ordered in their location order, and simply returns the
// index as the location.
uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const
{
	if (comp)
	{
		if (has_member_decoration(type_id, index, DecorationComponent))
			*comp = get_member_decoration(type_id, index, DecorationComponent);
		else
			*comp = k_unknown_component;
	}

	if (has_member_decoration(type_id, index, DecorationLocation))
		return get_member_decoration(type_id, index, DecorationLocation);
	else
		return k_unknown_location;
}

uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
                                                                    uint32_t type_id, uint32_t index,
                                                                    uint32_t *comp)
{
	uint32_t loc = get_member_location(type_id, index, comp);
	if (loc != k_unknown_location)
		return loc;

	if (comp)
		*comp = k_unknown_component;

	// Late allocation. Find a location which is unused by the application.
	// This can happen for built-in inputs in tessellation which are mixed and matched with user inputs.
	auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
	uint32_t count = type_to_location_count(mbr_type);

	loc = 0;

	const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
		for (uint32_t i = 0; i < location_count; i++)
			if (location_inputs_in_use.count(location + i) != 0)
				return true;
		return false;
	};

	while (location_range_in_use(loc, count))
		loc++;

	set_member_decoration(type_id, index, DecorationLocation, loc);

	// Triangle tess level inputs are shared in one packed float4,
	// mark both builtins as sharing one location.
	if (!msl_options.raw_buffer_tese_input && is_tessellating_triangles() &&
	    (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
	{
		builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc;
		builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc;
	}
	else
		builtin_to_automatic_input_location[builtin] = loc;

	mark_location_as_used_by_shader(loc, mbr_type, StorageClassInput, true);
	return loc;
}

uint32_t CompilerMSL::get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin,
                                                                     uint32_t type_id, uint32_t index,
                                                                     uint32_t *comp)
{
	uint32_t loc = get_member_location(type_id, index, comp);
	if (loc != k_unknown_location)
		return loc;
	loc = 0;

	if (comp)
		*comp = k_unknown_component;

	// Late allocation. Find a location which is unused by the application.
	// This can happen for built-in outputs in tessellation which are mixed and matched with user inputs.
	auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
	uint32_t count = type_to_location_count(mbr_type);

	const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
		for (uint32_t i = 0; i < location_count; i++)
			if (location_outputs_in_use.count(location + i) != 0)
				return true;
		return false;
	};

	while (location_range_in_use(loc, count))
		loc++;

	set_member_decoration(type_id, index, DecorationLocation, loc);

	// Triangle tess level inputs are shared in one packed float4;
	// mark both builtins as sharing one location.
	if (is_tessellating_triangles() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
	{
		builtin_to_automatic_output_location[BuiltInTessLevelInner] = loc;
		builtin_to_automatic_output_location[BuiltInTessLevelOuter] = loc;
	}
	else
		builtin_to_automatic_output_location[builtin] = loc;

	mark_location_as_used_by_shader(loc, mbr_type, StorageClassOutput, true);
	return loc;
}

// Returns the type declaration for a function, including the
// entry type if the current function is the entry point function
string CompilerMSL::func_type_decl(SPIRType &type)
{
	// The regular function return type. If not processing the entry point function, that's all we need
	string return_type = type_to_glsl(type) + type_to_array_glsl(type, 0);
	if (!processing_entry_point)
		return return_type;

	// If an outgoing interface block has been defined, and it should be returned, override the entry point return type
	bool ep_should_return_output = !get_is_rasterization_disabled();
	if (stage_out_var_id && ep_should_return_output)
		return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type, 0);

	// Prepend a entry type, based on the execution model
	string entry_type;
	auto &execution = get_entry_point();
	switch (execution.model)
	{
	case ExecutionModelVertex:
		if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(1, 2))
			SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
		entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex";
		break;
	case ExecutionModelTessellationEvaluation:
		if (!msl_options.supports_msl_version(1, 2))
			SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
		if (execution.flags.get(ExecutionModeIsolines))
			SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
		if (msl_options.is_ios())
			entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ") ]] vertex");
		else
			entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ", ",
			                  execution.output_vertices, ") ]] vertex");
		break;
	case ExecutionModelFragment:
		entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment";
		break;
	case ExecutionModelTessellationControl:
		if (!msl_options.supports_msl_version(1, 2))
			SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
		if (execution.flags.get(ExecutionModeIsolines))
			SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
		/* fallthrough */
	case ExecutionModelGLCompute:
	case ExecutionModelKernel:
		entry_type = "kernel";
		break;
	default:
		entry_type = "unknown";
		break;
	}

	return entry_type + " " + return_type;
}

bool CompilerMSL::is_tesc_shader() const
{
	return get_execution_model() == ExecutionModelTessellationControl;
}

bool CompilerMSL::is_tese_shader() const
{
	return get_execution_model() == ExecutionModelTessellationEvaluation;
}

bool CompilerMSL::uses_explicit_early_fragment_test()
{
	auto &ep_flags = get_entry_point().flags;
	return ep_flags.get(ExecutionModeEarlyFragmentTests) || ep_flags.get(ExecutionModePostDepthCoverage);
}

// In MSL, address space qualifiers are required for all pointer or reference variables
string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
{
	const auto &type = get<SPIRType>(argument.basetype);
	return get_type_address_space(type, argument.self, true);
}

bool CompilerMSL::decoration_flags_signal_volatile(const Bitset &flags)
{
	return flags.get(DecorationVolatile) || flags.get(DecorationCoherent);
}

string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument)
{
	// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
	Bitset flags;
	auto *var = maybe_get<SPIRVariable>(id);
	if (var && type.basetype == SPIRType::Struct &&
	    (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
		flags = get_buffer_block_flags(id);
	else
		flags = get_decoration_bitset(id);

	const char *addr_space = nullptr;
	switch (type.storage)
	{
	case StorageClassWorkgroup:
		addr_space = "threadgroup";
		break;

	case StorageClassStorageBuffer:
	case StorageClassPhysicalStorageBuffer:
	{
		// For arguments from variable pointers, we use the write count deduction, so
		// we should not assume any constness here. Only for global SSBOs.
		bool readonly = false;
		if (!var || has_decoration(type.self, DecorationBlock))
			readonly = flags.get(DecorationNonWritable);

		addr_space = readonly ? "const device" : "device";
		break;
	}

	case StorageClassUniform:
	case StorageClassUniformConstant:
	case StorageClassPushConstant:
		if (type.basetype == SPIRType::Struct)
		{
			bool ssbo = has_decoration(type.self, DecorationBufferBlock);
			if (ssbo)
				addr_space = flags.get(DecorationNonWritable) ? "const device" : "device";
			else
				addr_space = "constant";
		}
		else if (!argument)
		{
			addr_space = "constant";
		}
		else if (type_is_msl_framebuffer_fetch(type))
		{
			// Subpass inputs are passed around by value.
			addr_space = "";
		}
		break;

	case StorageClassFunction:
	case StorageClassGeneric:
		break;

	case StorageClassInput:
		if (is_tesc_shader() && var && var->basevariable == stage_in_ptr_var_id)
			addr_space = msl_options.multi_patch_workgroup ? "const device" : "threadgroup";
		// Don't pass tessellation levels in the device AS; we load and convert them
		// to float manually.
		if (is_tese_shader() && msl_options.raw_buffer_tese_input && var)
		{
			bool is_stage_in = var->basevariable == stage_in_ptr_var_id;
			bool is_patch_stage_in = has_decoration(var->self, DecorationPatch);
			bool is_builtin = has_decoration(var->self, DecorationBuiltIn);
			BuiltIn builtin = (BuiltIn)get_decoration(var->self, DecorationBuiltIn);
			bool is_tess_level = is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner);
			if (is_stage_in || (is_patch_stage_in && !is_tess_level))
				addr_space = "const device";
		}
		if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id)
			addr_space = "thread";
		break;

	case StorageClassOutput:
		if (capture_output_to_buffer)
		{
			if (var && type.storage == StorageClassOutput)
			{
				bool is_masked = is_stage_output_variable_masked(*var);

				if (is_masked)
				{
					if (is_tessellation_shader())
						addr_space = "threadgroup";
					else
						addr_space = "thread";
				}
				else if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))
					addr_space = "threadgroup";
			}

			if (!addr_space)
				addr_space = "device";
		}
		break;

	default:
		break;
	}

	if (!addr_space)
	{
		// No address space for plain values.
		addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : "";
	}

	return join(decoration_flags_signal_volatile(flags) ? "volatile " : "", addr_space);
}

const char *CompilerMSL::to_restrict(uint32_t id, bool space)
{
	// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
	Bitset flags;
	if (ir.ids[id].get_type() == TypeVariable)
	{
		uint32_t type_id = expression_type_id(id);
		auto &type = expression_type(id);
		if (type.basetype == SPIRType::Struct &&
		    (has_decoration(type_id, DecorationBlock) || has_decoration(type_id, DecorationBufferBlock)))
			flags = get_buffer_block_flags(id);
		else
			flags = get_decoration_bitset(id);
	}
	else
		flags = get_decoration_bitset(id);

	return flags.get(DecorationRestrict) || flags.get(DecorationRestrictPointerEXT) ?
	       (space ? "__restrict " : "__restrict") : "";
}

string CompilerMSL::entry_point_arg_stage_in()
{
	string decl;

	if ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
	    (is_tese_shader() && msl_options.raw_buffer_tese_input))
		return decl;

	// Stage-in structure
	uint32_t stage_in_id;
	if (is_tese_shader())
		stage_in_id = patch_stage_in_var_id;
	else
		stage_in_id = stage_in_var_id;

	if (stage_in_id)
	{
		auto &var = get<SPIRVariable>(stage_in_id);
		auto &type = get_variable_data_type(var);

		add_resource_name(var.self);
		decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
	}

	return decl;
}

// Returns true if this input builtin should be a direct parameter on a shader function parameter list,
// and false for builtins that should be passed or calculated some other way.
bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type)
{
	switch (bi_type)
	{
	// Vertex function in
	case BuiltInVertexId:
	case BuiltInVertexIndex:
	case BuiltInBaseVertex:
	case BuiltInInstanceId:
	case BuiltInInstanceIndex:
	case BuiltInBaseInstance:
		return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation;
	// Tess. control function in
	case BuiltInPosition:
	case BuiltInPointSize:
	case BuiltInClipDistance:
	case BuiltInCullDistance:
	case BuiltInPatchVertices:
		return false;
	case BuiltInInvocationId:
	case BuiltInPrimitiveId:
		return !is_tesc_shader() || !msl_options.multi_patch_workgroup;
	// Tess. evaluation function in
	case BuiltInTessLevelInner:
	case BuiltInTessLevelOuter:
		return false;
	// Fragment function in
	case BuiltInSamplePosition:
	case BuiltInHelperInvocation:
	case BuiltInBaryCoordKHR:
	case BuiltInBaryCoordNoPerspKHR:
		return false;
	case BuiltInViewIndex:
		return get_execution_model() == ExecutionModelFragment && msl_options.multiview &&
		       msl_options.multiview_layered_rendering;
	// Compute function in
	case BuiltInSubgroupId:
	case BuiltInNumSubgroups:
		return !msl_options.emulate_subgroups;
	// Any stage function in
	case BuiltInDeviceIndex:
	case BuiltInSubgroupEqMask:
	case BuiltInSubgroupGeMask:
	case BuiltInSubgroupGtMask:
	case BuiltInSubgroupLeMask:
	case BuiltInSubgroupLtMask:
		return false;
	case BuiltInSubgroupSize:
		if (msl_options.fixed_subgroup_size != 0)
			return false;
		/* fallthrough */
	case BuiltInSubgroupLocalInvocationId:
		return !msl_options.emulate_subgroups;
	default:
		return true;
	}
}

// Returns true if this is a fragment shader that runs per sample, and false otherwise.
bool CompilerMSL::is_sample_rate() const
{
	auto &caps = get_declared_capabilities();
	return get_execution_model() == ExecutionModelFragment &&
	       (msl_options.force_sample_rate_shading ||
	        std::find(caps.begin(), caps.end(), CapabilitySampleRateShading) != caps.end() ||
	        (msl_options.use_framebuffer_fetch_subpasses && need_subpass_input_ms));
}

bool CompilerMSL::is_intersection_query() const
{
	auto &caps = get_declared_capabilities();
	return std::find(caps.begin(), caps.end(), CapabilityRayQueryKHR) != caps.end();
}

void CompilerMSL::entry_point_args_builtin(string &ep_args)
{
	// Builtin variables
	SmallVector<pair<SPIRVariable *, BuiltIn>, 8> active_builtins;
	ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
		if (var.storage != StorageClassInput)
			return;

		auto bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));

		// Don't emit SamplePosition as a separate parameter. In the entry
		// point, we get that by calling get_sample_position() on the sample ID.
		if (is_builtin_variable(var) &&
		    get_variable_data_type(var).basetype != SPIRType::Struct &&
		    get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
		{
			// If the builtin is not part of the active input builtin set, don't emit it.
			// Relevant for multiple entry-point modules which might declare unused builtins.
			if (!active_input_builtins.get(bi_type) || !interface_variable_exists_in_entry_point(var_id))
				return;

			// Remember this variable. We may need to correct its type.
			active_builtins.push_back(make_pair(&var, bi_type));

			if (is_direct_input_builtin(bi_type))
			{
				if (!ep_args.empty())
					ep_args += ", ";

				// Handle HLSL-style 0-based vertex/instance index.
				builtin_declaration = true;

				// Handle different MSL gl_TessCoord types. (float2, float3)
				if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads))
					ep_args += "float2 " + to_expression(var_id) + "In";
				else
					ep_args += builtin_type_decl(bi_type, var_id) + " " + to_expression(var_id);

				ep_args += string(" [[") + builtin_qualifier(bi_type);
				if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(ExecutionModePostDepthCoverage))
				{
					if (!msl_options.supports_msl_version(2))
						SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0.");
					if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
						SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3.");
					ep_args += ", post_depth_coverage";
				}
				ep_args += "]]";
				builtin_declaration = false;
			}
		}

		if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase))
		{
			// This is a special implicit builtin, not corresponding to any SPIR-V builtin,
			// which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present,
			// assume we emitted it for a good reason.
			assert(msl_options.supports_msl_version(1, 2));
			if (!ep_args.empty())
				ep_args += ", ";

			ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_origin]]";
		}

		if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize))
		{
			// This is another special implicit builtin, not corresponding to any SPIR-V builtin,
			// which holds the number of vertices and instances to draw. If it's present,
			// assume we emitted it for a good reason.
			assert(msl_options.supports_msl_version(1, 2));
			if (!ep_args.empty())
				ep_args += ", ";

			ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_size]]";
		}
	});

	// Correct the types of all encountered active builtins. We couldn't do this before
	// because ensure_correct_builtin_type() may increase the bound, which isn't allowed
	// while iterating over IDs.
	for (auto &var : active_builtins)
		var.first->basetype = ensure_correct_builtin_type(var.first->basetype, var.second);

	// Handle HLSL-style 0-based vertex/instance index.
	if (needs_base_vertex_arg == TriState::Yes)
		ep_args += built_in_func_arg(BuiltInBaseVertex, !ep_args.empty());

	if (needs_base_instance_arg == TriState::Yes)
		ep_args += built_in_func_arg(BuiltInBaseInstance, !ep_args.empty());

	if (capture_output_to_buffer)
	{
		// Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
		// specially because it needs to be a pointer, not a reference.
		if (stage_out_var_id)
		{
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
			                " [[buffer(", msl_options.shader_output_buffer_index, ")]]");
		}

		if (is_tesc_shader())
		{
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args +=
			    join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
		}
		else if (stage_out_var_id &&
		         !(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
		{
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args +=
			    join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
		}

		if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation &&
		    (active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInVertexId)) &&
		    msl_options.vertex_index_type != Options::IndexType::None)
		{
			// Add the index buffer so we can set gl_VertexIndex correctly.
			if (!ep_args.empty())
				ep_args += ", ";
			switch (msl_options.vertex_index_type)
			{
			case Options::IndexType::None:
				break;
			case Options::IndexType::UInt16:
				ep_args += join("const device ushort* ", index_buffer_var_name, " [[buffer(",
				                msl_options.shader_index_buffer_index, ")]]");
				break;
			case Options::IndexType::UInt32:
				ep_args += join("const device uint* ", index_buffer_var_name, " [[buffer(",
				                msl_options.shader_index_buffer_index, ")]]");
				break;
			}
		}

		// Tessellation control shaders get three additional parameters:
		// a buffer to hold the per-patch data, a buffer to hold the per-patch
		// tessellation levels, and a block of workgroup memory to hold the
		// input control point data.
		if (is_tesc_shader())
		{
			if (patch_stage_out_var_id)
			{
				if (!ep_args.empty())
					ep_args += ", ";
				ep_args +=
				    join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
				         " [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
			}
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
			                convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");

			// Initializer for tess factors must be handled specially since it's never declared as a normal variable.
			uint32_t outer_factor_initializer_id = 0;
			uint32_t inner_factor_initializer_id = 0;
			ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
				if (!has_decoration(var.self, DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer)
					return;

				BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
				if (builtin == BuiltInTessLevelInner)
					inner_factor_initializer_id = var.initializer;
				else if (builtin == BuiltInTessLevelOuter)
					outer_factor_initializer_id = var.initializer;
			});

			const SPIRConstant *c = nullptr;

			if (outer_factor_initializer_id && (c = maybe_get<SPIRConstant>(outer_factor_initializer_id)))
			{
				auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
				entry_func.fixup_hooks_in.push_back(
				    [=]()
				    {
					    uint32_t components = is_tessellating_triangles() ? 3 : 4;
					    for (uint32_t i = 0; i < components; i++)
					    {
						    statement(builtin_to_glsl(BuiltInTessLevelOuter, StorageClassOutput), "[", i,
						              "] = ", "half(", to_expression(c->subconstants[i]), ");");
					    }
				    });
			}

			if (inner_factor_initializer_id && (c = maybe_get<SPIRConstant>(inner_factor_initializer_id)))
			{
				auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
				if (is_tessellating_triangles())
				{
					entry_func.fixup_hooks_in.push_back([=]() {
						statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), " = ", "half(",
						          to_expression(c->subconstants[0]), ");");
					});
				}
				else
				{
					entry_func.fixup_hooks_in.push_back([=]() {
						for (uint32_t i = 0; i < 2; i++)
						{
							statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), "[", i, "] = ",
							          "half(", to_expression(c->subconstants[i]), ");");
						}
					});
				}
			}

			if (stage_in_var_id)
			{
				if (!ep_args.empty())
					ep_args += ", ";
				if (msl_options.multi_patch_workgroup)
				{
					ep_args += join("device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
					                " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
				}
				else
				{
					ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
					                " [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
				}
			}
		}
	}
	// Tessellation evaluation shaders get three additional parameters:
	// a buffer for the per-patch data, a buffer for the per-patch
	// tessellation levels, and a buffer for the control point data.
	if (is_tese_shader() && msl_options.raw_buffer_tese_input)
	{
		if (patch_stage_in_var_id)
		{
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args +=
			    join("const device ", type_to_glsl(get_patch_stage_in_struct_type()), "* ", patch_input_buffer_var_name,
			         " [[buffer(", convert_to_string(msl_options.shader_patch_input_buffer_index), ")]]");
		}

		if (tess_level_inner_var_id || tess_level_outer_var_id)
		{
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args += join("const device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name,
			                " [[buffer(", convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
		}

		if (stage_in_var_id)
		{
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args += join("const device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
			                " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
		}
	}
}

string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
{
	string ep_args = entry_point_arg_stage_in();
	Bitset claimed_bindings;

	for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
	{
		uint32_t id = argument_buffer_ids[i];
		if (id == 0)
			continue;

		add_resource_name(id);
		auto &var = get<SPIRVariable>(id);
		auto &type = get_variable_data_type(var);

		if (!ep_args.empty())
			ep_args += ", ";

		// Check if the argument buffer binding itself has been remapped.
		uint32_t buffer_binding;
		auto itr = resource_bindings.find({ get_entry_point().model, i, kArgumentBufferBinding });
		if (itr != end(resource_bindings))
		{
			buffer_binding = itr->second.first.msl_buffer;
			itr->second.second = true;
		}
		else
		{
			// As a fallback, directly map desc set <-> binding.
			// If that was taken, take the next buffer binding.
			if (claimed_bindings.get(i))
				buffer_binding = next_metal_resource_index_buffer;
			else
				buffer_binding = i;
		}

		claimed_bindings.set(buffer_binding);

		ep_args += get_argument_address_space(var) + " ";

		if (recursive_inputs.count(type.self))
			ep_args += string("void* ") + to_restrict(id, true) + to_name(id) + "_vp";
		else
			ep_args += type_to_glsl(type) + "& " + to_restrict(id, true) + to_name(id);

		ep_args += " [[buffer(" + convert_to_string(buffer_binding) + ")]]";

		next_metal_resource_index_buffer = max(next_metal_resource_index_buffer, buffer_binding + 1);
	}

	entry_point_args_discrete_descriptors(ep_args);
	entry_point_args_builtin(ep_args);

	if (!ep_args.empty() && append_comma)
		ep_args += ", ";

	return ep_args;
}

const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const
{
	// Try by ID.
	{
		auto itr = constexpr_samplers_by_id.find(id);
		if (itr != end(constexpr_samplers_by_id))
			return &itr->second;
	}

	// Try by binding.
	{
		uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
		uint32_t binding = get_decoration(id, DecorationBinding);

		auto itr = constexpr_samplers_by_binding.find({ desc_set, binding });
		if (itr != end(constexpr_samplers_by_binding))
			return &itr->second;
	}

	return nullptr;
}

void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
{
	// Output resources, sorted by resource index & type
	// We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
	// with different order of buffers can result in issues with buffer assignments inside the driver.
	struct Resource
	{
		SPIRVariable *var;
		SPIRVariable *discrete_descriptor_alias;
		string name;
		SPIRType::BaseType basetype;
		uint32_t index;
		uint32_t plane;
		uint32_t secondary_index;
	};

	SmallVector<Resource> resources;

	entry_point_bindings.clear();
	ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
		if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
		     var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
		    !is_hidden_variable(var))
		{
			auto &type = get_variable_data_type(var);
			uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);

			if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant)
			{
				if (descriptor_set_is_argument_buffer(desc_set))
				{
					if (is_var_runtime_size_array(var))
					{
						// Runtime arrays need to be wrapped in spvDescriptorArray from argument buffer payload.
						entry_point_bindings.push_back(&var);
						// We'll wrap this, so to_name() will always use non-qualified name.
						// We'll need the qualified name to create temporary variable instead.
						ir.meta[var_id].decoration.qualified_alias_explicit_override = true;
					}
					return;
				}
			}

			// Handle descriptor aliasing of simple discrete cases.
			// We can handle aliasing of buffers by casting pointers.
			// The amount of aliasing we can perform for discrete descriptors is very limited.
			// For fully mutable-style aliasing, we need argument buffers where we can exploit the fact
			// that descriptors are all 8 bytes.
			SPIRVariable *discrete_descriptor_alias = nullptr;
			if (var.storage == StorageClassUniform || var.storage == StorageClassStorageBuffer)
			{
				for (auto &resource : resources)
				{
					if (get_decoration(resource.var->self, DecorationDescriptorSet) ==
					    get_decoration(var_id, DecorationDescriptorSet) &&
					    get_decoration(resource.var->self, DecorationBinding) ==
					    get_decoration(var_id, DecorationBinding) &&
					    resource.basetype == SPIRType::Struct && type.basetype == SPIRType::Struct &&
					    (resource.var->storage == StorageClassUniform ||
					     resource.var->storage == StorageClassStorageBuffer))
					{
						discrete_descriptor_alias = resource.var;
						// Self-reference marks that we should declare the resource,
						// and it's being used as an alias (so we can emit void* instead).
						resource.discrete_descriptor_alias = resource.var;
						// Need to promote interlocked usage so that the primary declaration is correct.
						if (interlocked_resources.count(var_id))
							interlocked_resources.insert(resource.var->self);
						break;
					}
				}
			}

			const MSLConstexprSampler *constexpr_sampler = nullptr;
			if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
			{
				constexpr_sampler = find_constexpr_sampler(var_id);
				if (constexpr_sampler)
				{
					// Mark this ID as a constexpr sampler for later in case it came from set/bindings.
					constexpr_samplers_by_id[var_id] = *constexpr_sampler;
				}
			}

			// Emulate texture2D atomic operations
			uint32_t secondary_index = 0;
			if (atomic_image_vars_emulated.count(var.self))
			{
				secondary_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
			}

			if (type.basetype == SPIRType::SampledImage)
			{
				add_resource_name(var_id);

				uint32_t plane_count = 1;
				if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
					plane_count = constexpr_sampler->planes;

				entry_point_bindings.push_back(&var);
				for (uint32_t i = 0; i < plane_count; i++)
					resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), SPIRType::Image,
					                     get_metal_resource_index(var, SPIRType::Image, i), i, secondary_index });

				if (type.image.dim != DimBuffer && !constexpr_sampler)
				{
					resources.push_back({&var, discrete_descriptor_alias, to_sampler_expression(var_id), SPIRType::Sampler,
					                     get_metal_resource_index(var, SPIRType::Sampler), 0, 0 });
				}
			}
			else if (!constexpr_sampler)
			{
				// constexpr samplers are not declared as resources.
				add_resource_name(var_id);

				// Don't allocate resource indices for aliases.
				uint32_t resource_index = ~0u;
				if (!discrete_descriptor_alias)
					resource_index = get_metal_resource_index(var, type.basetype);

				entry_point_bindings.push_back(&var);
				resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), type.basetype,
				                     resource_index, 0, secondary_index });
			}
		}
	});

	stable_sort(resources.begin(), resources.end(),
	            [](const Resource &lhs, const Resource &rhs)
	            { return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index); });

	for (auto &r : resources)
	{
		auto &var = *r.var;
		auto &type = get_variable_data_type(var);

		uint32_t var_id = var.self;

		switch (r.basetype)
		{
		case SPIRType::Struct:
		{
			auto &m = ir.meta[type.self];
			if (m.members.size() == 0)
				break;

			if (r.discrete_descriptor_alias)
			{
				if (r.var == r.discrete_descriptor_alias)
				{
					auto primary_name = join("spvBufferAliasSet",
					                         get_decoration(var_id, DecorationDescriptorSet),
					                         "Binding",
					                         get_decoration(var_id, DecorationBinding));

					// Declare the primary alias as void*
					if (!ep_args.empty())
						ep_args += ", ";
					ep_args += get_argument_address_space(var) + " void* " + primary_name;
					ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
					if (interlocked_resources.count(var_id))
						ep_args += ", raster_order_group(0)";
					ep_args += "]]";
				}

				buffer_aliases_discrete.push_back(r.var->self);
			}
			else if (!type.array.empty())
			{
				if (type.array.size() > 1)
					SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");

				is_using_builtin_array = true;
				if (is_var_runtime_size_array(var))
				{
					add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
					if (!ep_args.empty())
						ep_args += ", ";
					const bool ssbo = has_decoration(type.self, DecorationBufferBlock);
					if ((var.storage == spv::StorageClassStorageBuffer || ssbo) &&
					    msl_options.runtime_array_rich_descriptor)
					{
						add_spv_func_and_recompile(SPVFuncImplVariableSizedDescriptor);
						ep_args += "const device spvBufferDescriptor<" + get_argument_address_space(var) + " " +
						           type_to_glsl(type) + "*>* ";
					}
					else
					{
						ep_args += "const device spvDescriptor<" + get_argument_address_space(var) + " " +
						           type_to_glsl(type) + "*>* ";
					}
					ep_args += to_restrict(var_id, true) + r.name + "_";
					ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
					if (interlocked_resources.count(var_id))
						ep_args += ", raster_order_group(0)";
					ep_args += "]]";
				}
				else
				{
					uint32_t array_size = get_resource_array_size(type, var_id);
					for (uint32_t i = 0; i < array_size; ++i)
					{
						if (!ep_args.empty())
							ep_args += ", ";
						ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " +
						           to_restrict(var_id, true) + r.name + "_" + convert_to_string(i);
						ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")";
						if (interlocked_resources.count(var_id))
							ep_args += ", raster_order_group(0)";
						ep_args += "]]";
					}
				}
				is_using_builtin_array = false;
			}
			else
			{
				if (!ep_args.empty())
					ep_args += ", ";
				ep_args += get_argument_address_space(var) + " ";

				if (recursive_inputs.count(type.self))
					ep_args += string("void* ") + to_restrict(var_id, true) + r.name + "_vp";
				else
					ep_args += type_to_glsl(type) + "& " + to_restrict(var_id, true) + r.name;

				ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
				if (interlocked_resources.count(var_id))
					ep_args += ", raster_order_group(0)";
				ep_args += "]]";
			}
			break;
		}
		case SPIRType::Sampler:
			if (!ep_args.empty())
				ep_args += ", ";
			ep_args += sampler_type(type, var_id, false) + " " + r.name;
			if (is_var_runtime_size_array(var))
				ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")]]";
			else
				ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
			break;
		case SPIRType::Image:
		{
			if (!ep_args.empty())
				ep_args += ", ";

			// Use Metal's native frame-buffer fetch API for subpass inputs.
			const auto &basetype = get<SPIRType>(var.basetype);
			if (!type_is_msl_framebuffer_fetch(basetype))
			{
				ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
				if (r.plane > 0)
					ep_args += join(plane_name_suffix, r.plane);

				if (is_var_runtime_size_array(var))
					ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")";
				else
					ep_args += " [[texture(" + convert_to_string(r.index) + ")";

				if (interlocked_resources.count(var_id))
					ep_args += ", raster_order_group(0)";
				ep_args += "]]";
			}
			else
			{
				if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
					SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3.");
				ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
				ep_args += " [[color(" + convert_to_string(r.index) + ")]]";
			}

			// Emulate texture2D atomic operations
			if (atomic_image_vars_emulated.count(var.self))
			{
				auto &flags = ir.get_decoration_bitset(var.self);
				const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
				ep_args += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(basetype.image.type), 0));
				ep_args += "* " + r.name + "_atomic";
				ep_args += " [[buffer(" + convert_to_string(r.secondary_index) + ")";
				if (interlocked_resources.count(var_id))
					ep_args += ", raster_order_group(0)";
				ep_args += "]]";
			}
			break;
		}
		case SPIRType::AccelerationStructure:
		{
			if (is_var_runtime_size_array(var))
			{
				add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
				const auto &parent_type = get<SPIRType>(type.parent_type);
				if (!ep_args.empty())
					ep_args += ", ";
				ep_args += "const device spvDescriptor<" + type_to_glsl(parent_type) + ">* " +
				           to_restrict(var_id, true) + r.name + "_";
				ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
			}
			else
			{
				if (!ep_args.empty())
					ep_args += ", ";
				ep_args += type_to_glsl(type, var_id) + " " + r.name;
				ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
			}
			break;
		}
		default:
			if (!ep_args.empty())
				ep_args += ", ";
			if (!type.pointer)
				ep_args += get_type_address_space(get<SPIRType>(var.basetype), var_id) + " " +
				           type_to_glsl(type, var_id) + "& " + r.name;
			else
				ep_args += type_to_glsl(type, var_id) + " " + r.name;
			ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
			if (interlocked_resources.count(var_id))
				ep_args += ", raster_order_group(0)";
			ep_args += "]]";
			break;
		}
	}
}

// Returns a string containing a comma-delimited list of args for the entry point function
// This is the "classic" method of MSL 1 when we don't have argument buffer support.
string CompilerMSL::entry_point_args_classic(bool append_comma)
{
	string ep_args = entry_point_arg_stage_in();
	entry_point_args_discrete_descriptors(ep_args);
	entry_point_args_builtin(ep_args);

	if (!ep_args.empty() && append_comma)
		ep_args += ", ";

	return ep_args;
}

void CompilerMSL::fix_up_shader_inputs_outputs()
{
	auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);

	// Emit a guard to ensure we don't execute beyond the last vertex.
	// Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that
	// tessellation control shaders do, so early returns should be OK. We may need to revisit this
	// if it ever becomes possible to use barriers from a vertex shader.
	if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
	{
		entry_func.fixup_hooks_in.push_back([this]() {
			statement("if (any(", to_expression(builtin_invocation_id_id),
			          " >= ", to_expression(builtin_stage_input_size_id), "))");
			statement("    return;");
		});
	}

	// Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths.
	ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
		auto &type = get_variable_data_type(var);
		uint32_t var_id = var.self;
		bool ssbo = has_decoration(type.self, DecorationBufferBlock);

		if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var))
		{
			if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
			{
				entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
					bool is_array_type = !type.array.empty();

					uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
					if (descriptor_set_is_argument_buffer(desc_set))
					{
						statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
						          is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
						          ".spvSwizzleConstants", "[",
						          convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
					}
					else
					{
						// If we have an array of images, we need to be able to index into it, so take a pointer instead.
						statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
						          is_array_type ? " = &" : " = ", to_name(swizzle_buffer_id), "[",
						          convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
					}
				});
			}
		}
		else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) &&
		         !is_hidden_variable(var))
		{
			if (buffer_requires_array_length(var.self))
			{
				entry_func.fixup_hooks_in.push_back(
				    [this, &type, &var, var_id]()
				    {
					    bool is_array_type = !type.array.empty() && !is_var_runtime_size_array(var);

					    uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
					    if (descriptor_set_is_argument_buffer(desc_set))
					    {
						    statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
						              is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
						              ".spvBufferSizeConstants", "[",
						              convert_to_string(get_metal_resource_index(var, SPIRType::UInt)), "];");
					    }
					    else
					    {
						    // If we have an array of images, we need to be able to index into it, so take a pointer instead.
						    statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
						              is_array_type ? " = &" : " = ", to_name(buffer_size_buffer_id), "[",
						              convert_to_string(get_metal_resource_index(var, type.basetype)), "];");
					    }
				    });
			}
		}

		if (!msl_options.argument_buffers &&
		     msl_options.replace_recursive_inputs && type_contains_recursion(type) &&
		    (var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
		     var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer))
		{
			recursive_inputs.insert(type.self);
			entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
				auto addr_space = get_argument_address_space(var);
				auto var_name = to_name(var_id);
				statement(addr_space, " auto& ", to_restrict(var_id, true), var_name,
				          " = *(", addr_space, " ", type_to_glsl(type), "*)", var_name, "_vp;");
			});
		}
	});

	// Builtin variables
	ir.for_each_typed_id<SPIRVariable>([this, &entry_func](uint32_t, SPIRVariable &var) {
		uint32_t var_id = var.self;
		BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;

		if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
			return;
		if (!interface_variable_exists_in_entry_point(var.self))
			return;

		if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bi_type))
		{
			switch (bi_type)
			{
			case BuiltInSamplePosition:
				entry_func.fixup_hooks_in.push_back([=]() {
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
					          to_expression(builtin_sample_id_id), ");");
				});
				break;
			case BuiltInFragCoord:
				if (is_sample_rate())
				{
					entry_func.fixup_hooks_in.push_back([=]() {
						statement(to_expression(var_id), ".xy += get_sample_position(",
						          to_expression(builtin_sample_id_id), ") - 0.5;");
					});
				}
				break;
			case BuiltInInvocationId:
				// This is direct-mapped without multi-patch workgroups.
				if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
					break;

				entry_func.fixup_hooks_in.push_back([=]() {
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
					          to_expression(builtin_invocation_id_id), ".x % ", this->get_entry_point().output_vertices,
					          ";");
				});
				break;
			case BuiltInPrimitiveId:
				// This is natively supported by fragment and tessellation evaluation shaders.
				// In tessellation control shaders, this is direct-mapped without multi-patch workgroups.
				if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
					break;

				entry_func.fixup_hooks_in.push_back([=]() {
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = min(",
					          to_expression(builtin_invocation_id_id), ".x / ", this->get_entry_point().output_vertices,
					          ", spvIndirectParams[1] - 1);");
				});
				break;
			case BuiltInPatchVertices:
				if (is_tese_shader())
				{
					if (msl_options.raw_buffer_tese_input)
					{
						entry_func.fixup_hooks_in.push_back(
						    [=]() {
							    statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
							              get_entry_point().output_vertices, ";");
						    });
					}
					else
					{
						entry_func.fixup_hooks_in.push_back(
						    [=]()
						    {
							    statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
							              to_expression(patch_stage_in_var_id), ".gl_in.size();");
						    });
					}
				}
				else
				{
					entry_func.fixup_hooks_in.push_back([=]() {
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
					});
				}
				break;
			case BuiltInTessCoord:
				if (get_entry_point().flags.get(ExecutionModeQuads))
				{
					// The entry point will only have a float2 TessCoord variable.
					// Pad to float3.
					entry_func.fixup_hooks_in.push_back([=]() {
						auto name = builtin_to_glsl(BuiltInTessCoord, StorageClassInput);
						statement("float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);");
					});
				}

				// Emit a fixup to account for the shifted domain. Don't do this for triangles;
				// MoltenVK will just reverse the winding order instead.
				if (msl_options.tess_domain_origin_lower_left && !is_tessellating_triangles())
				{
					string tc = to_expression(var_id);
					entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
				}
				break;
			case BuiltInSubgroupId:
				if (!msl_options.emulate_subgroups)
					break;
				// For subgroup emulation, this is the same as the local invocation index.
				entry_func.fixup_hooks_in.push_back([=]() {
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
					          to_expression(builtin_local_invocation_index_id), ";");
				});
				break;
			case BuiltInNumSubgroups:
				if (!msl_options.emulate_subgroups)
					break;
				// For subgroup emulation, this is the same as the workgroup size.
				entry_func.fixup_hooks_in.push_back([=]() {
					auto &type = expression_type(builtin_workgroup_size_id);
					string size_expr = to_expression(builtin_workgroup_size_id);
					if (type.vecsize >= 3)
						size_expr = join(size_expr, ".x * ", size_expr, ".y * ", size_expr, ".z");
					else if (type.vecsize == 2)
						size_expr = join(size_expr, ".x * ", size_expr, ".y");
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", size_expr, ";");
				});
				break;
			case BuiltInSubgroupLocalInvocationId:
				if (!msl_options.emulate_subgroups)
					break;
				// For subgroup emulation, assume subgroups of size 1.
				entry_func.fixup_hooks_in.push_back(
				    [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); });
				break;
			case BuiltInSubgroupSize:
				if (msl_options.emulate_subgroups)
				{
					// For subgroup emulation, assume subgroups of size 1.
					entry_func.fixup_hooks_in.push_back(
					    [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 1;"); });
				}
				else if (msl_options.fixed_subgroup_size != 0)
				{
					entry_func.fixup_hooks_in.push_back([=]() {
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
						          msl_options.fixed_subgroup_size, ";");
					});
				}
				break;
			case BuiltInSubgroupEqMask:
				if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
				entry_func.fixup_hooks_in.push_back([=]() {
					if (msl_options.is_ios())
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", "uint4(1 << ",
						          to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
					}
					else
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
						          to_expression(builtin_subgroup_invocation_id_id), " >= 32 ? uint4(0, (1 << (",
						          to_expression(builtin_subgroup_invocation_id_id), " - 32)), uint2(0)) : uint4(1 << ",
						          to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
					}
				});
				break;
			case BuiltInSubgroupGeMask:
				if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
				if (msl_options.fixed_subgroup_size != 0)
					add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
				entry_func.fixup_hooks_in.push_back([=]() {
					// Case where index < 32, size < 32:
					// mask0 = bfi(0, 0xFFFFFFFF, index, size - index);
					// mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0
					// Case where index < 32 but size >= 32:
					// mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index);
					// mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32);
					// Case where index >= 32:
					// mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0
					// mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index);
					// This is expressed without branches to avoid divergent
					// control flow--hence the complicated min/max expressions.
					// This is further complicated by the fact that if you attempt
					// to bfi/bfe out-of-bounds on Metal, undefined behavior is the
					// result.
					if (msl_options.fixed_subgroup_size > 32)
					{
						// Don't use the subgroup size variable with fixed subgroup sizes,
						// since the variables could be defined in the wrong order.
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
						          to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(32 - (int)",
						          to_expression(builtin_subgroup_invocation_id_id),
						          ", 0)), insert_bits(0u, 0xFFFFFFFF,"
						          " (uint)max((int)",
						          to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), ",
						          msl_options.fixed_subgroup_size, " - max(",
						          to_expression(builtin_subgroup_invocation_id_id),
						          ", 32u)), uint2(0));");
					}
					else if (msl_options.fixed_subgroup_size != 0)
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
						          to_expression(builtin_subgroup_invocation_id_id), ", ",
						          msl_options.fixed_subgroup_size, " - ",
						          to_expression(builtin_subgroup_invocation_id_id),
						          "), uint3(0));");
					}
					else if (msl_options.is_ios())
					{
						// On iOS, the SIMD-group size will currently never exceed 32.
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
						          to_expression(builtin_subgroup_invocation_id_id), ", ",
						          to_expression(builtin_subgroup_size_id), " - ",
						          to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
					}
					else
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
						          to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(min((int)",
						          to_expression(builtin_subgroup_size_id), ", 32) - (int)",
						          to_expression(builtin_subgroup_invocation_id_id),
						          ", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
						          to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), (uint)max((int)",
						          to_expression(builtin_subgroup_size_id), " - (int)max(",
						          to_expression(builtin_subgroup_invocation_id_id), ", 32u), 0)), uint2(0));");
					}
				});
				break;
			case BuiltInSubgroupGtMask:
				if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
				add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
				entry_func.fixup_hooks_in.push_back([=]() {
					// The same logic applies here, except now the index is one
					// more than the subgroup invocation ID.
					if (msl_options.fixed_subgroup_size > 32)
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(32 - (int)",
						          to_expression(builtin_subgroup_invocation_id_id),
						          " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), ",
						          msl_options.fixed_subgroup_size, " - max(",
						          to_expression(builtin_subgroup_invocation_id_id),
						          " + 1, 32u)), uint2(0));");
					}
					else if (msl_options.fixed_subgroup_size != 0)
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
						          msl_options.fixed_subgroup_size, " - ",
						          to_expression(builtin_subgroup_invocation_id_id),
						          " - 1), uint3(0));");
					}
					else if (msl_options.is_ios())
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
						          to_expression(builtin_subgroup_size_id), " - ",
						          to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));");
					}
					else
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(min((int)",
						          to_expression(builtin_subgroup_size_id), ", 32) - (int)",
						          to_expression(builtin_subgroup_invocation_id_id),
						          " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), (uint)max((int)",
						          to_expression(builtin_subgroup_size_id), " - (int)max(",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), 0)), uint2(0));");
					}
				});
				break;
			case BuiltInSubgroupLeMask:
				if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
				add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
				entry_func.fixup_hooks_in.push_back([=]() {
					if (msl_options.is_ios())
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(extract_bits(0xFFFFFFFF, 0, ",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1), uint3(0));");
					}
					else
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
						          to_expression(builtin_subgroup_invocation_id_id),
						          " + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
						          to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0)), uint2(0));");
					}
				});
				break;
			case BuiltInSubgroupLtMask:
				if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
				add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
				entry_func.fixup_hooks_in.push_back([=]() {
					if (msl_options.is_ios())
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(extract_bits(0xFFFFFFFF, 0, ",
						          to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
					}
					else
					{
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
						          " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
						          to_expression(builtin_subgroup_invocation_id_id),
						          ", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
						          to_expression(builtin_subgroup_invocation_id_id), " - 32, 0)), uint2(0));");
					}
				});
				break;
			case BuiltInViewIndex:
				if (!msl_options.multiview)
				{
					// According to the Vulkan spec, when not running under a multiview
					// render pass, ViewIndex is 0.
					entry_func.fixup_hooks_in.push_back([=]() {
						statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;");
					});
				}
				else if (msl_options.view_index_from_device_index)
				{
					// In this case, we take the view index from that of the device we're running on.
					entry_func.fixup_hooks_in.push_back([=]() {
						statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
						          msl_options.device_index, ";");
					});
					// We actually don't want to set the render_target_array_index here.
					// Since every physical device is rendering a different view,
					// there's no need for layered rendering here.
				}
				else if (!msl_options.multiview_layered_rendering)
				{
					// In this case, the views are rendered one at a time. The view index, then,
					// is just the first part of the "view mask".
					entry_func.fixup_hooks_in.push_back([=]() {
						statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
						          to_expression(view_mask_buffer_id), "[0];");
					});
				}
				else if (get_execution_model() == ExecutionModelFragment)
				{
					// Because we adjusted the view index in the vertex shader, we have to
					// adjust it back here.
					entry_func.fixup_hooks_in.push_back([=]() {
						statement(to_expression(var_id), " += ", to_expression(view_mask_buffer_id), "[0];");
					});
				}
				else if (get_execution_model() == ExecutionModelVertex)
				{
					// Metal provides no special support for multiview, so we smuggle
					// the view index in the instance index.
					entry_func.fixup_hooks_in.push_back([=]() {
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
						          to_expression(view_mask_buffer_id), "[0] + (", to_expression(builtin_instance_idx_id),
						          " - ", to_expression(builtin_base_instance_id), ") % ",
						          to_expression(view_mask_buffer_id), "[1];");
						statement(to_expression(builtin_instance_idx_id), " = (",
						          to_expression(builtin_instance_idx_id), " - ",
						          to_expression(builtin_base_instance_id), ") / ", to_expression(view_mask_buffer_id),
						          "[1] + ", to_expression(builtin_base_instance_id), ";");
					});
					// In addition to setting the variable itself, we also need to
					// set the render_target_array_index with it on output. We have to
					// offset this by the base view index, because Metal isn't in on
					// our little game here.
					entry_func.fixup_hooks_out.push_back([=]() {
						statement(to_expression(builtin_layer_id), " = ", to_expression(var_id), " - ",
						          to_expression(view_mask_buffer_id), "[0];");
					});
				}
				break;
			case BuiltInDeviceIndex:
				// Metal pipelines belong to the devices which create them, so we'll
				// need to create a MTLPipelineState for every MTLDevice in a grouped
				// VkDevice. We can assume, then, that the device index is constant.
				entry_func.fixup_hooks_in.push_back([=]() {
					statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
					          msl_options.device_index, ";");
				});
				break;
			case BuiltInWorkgroupId:
				if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInWorkgroupId))
					break;

				// The vkCmdDispatchBase() command lets the client set the base value
				// of WorkgroupId. Metal has no direct equivalent; we must make this
				// adjustment ourselves.
				entry_func.fixup_hooks_in.push_back([=]() {
					statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), ";");
				});
				break;
			case BuiltInGlobalInvocationId:
				if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInGlobalInvocationId))
					break;

				// GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize.
				// This needs to be adjusted too.
				entry_func.fixup_hooks_in.push_back([=]() {
					auto &execution = this->get_entry_point();
					uint32_t workgroup_size_id = execution.workgroup_size.constant;
					if (workgroup_size_id)
						statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
						          " * ", to_expression(workgroup_size_id), ";");
					else
						statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
						          " * uint3(", execution.workgroup_size.x, ", ", execution.workgroup_size.y, ", ",
						          execution.workgroup_size.z, ");");
				});
				break;
			case BuiltInVertexId:
			case BuiltInVertexIndex:
				// This is direct-mapped normally.
				if (!msl_options.vertex_for_tessellation)
					break;

				entry_func.fixup_hooks_in.push_back([=]() {
					builtin_declaration = true;
					switch (msl_options.vertex_index_type)
					{
					case Options::IndexType::None:
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
						          to_expression(builtin_invocation_id_id), ".x + ",
						          to_expression(builtin_dispatch_base_id), ".x;");
						break;
					case Options::IndexType::UInt16:
					case Options::IndexType::UInt32:
						statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", index_buffer_var_name,
						          "[", to_expression(builtin_invocation_id_id), ".x] + ",
						          to_expression(builtin_dispatch_base_id), ".x;");
						break;
					}
					builtin_declaration = false;
				});
				break;
			case BuiltInBaseVertex:
				// This is direct-mapped normally.
				if (!msl_options.vertex_for_tessellation)
					break;

				entry_func.fixup_hooks_in.push_back([=]() {
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
					          to_expression(builtin_dispatch_base_id), ".x;");
				});
				break;
			case BuiltInInstanceId:
			case BuiltInInstanceIndex:
				// This is direct-mapped normally.
				if (!msl_options.vertex_for_tessellation)
					break;

				entry_func.fixup_hooks_in.push_back([=]() {
					builtin_declaration = true;
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
					          to_expression(builtin_invocation_id_id), ".y + ", to_expression(builtin_dispatch_base_id),
					          ".y;");
					builtin_declaration = false;
				});
				break;
			case BuiltInBaseInstance:
				// This is direct-mapped normally.
				if (!msl_options.vertex_for_tessellation)
					break;

				entry_func.fixup_hooks_in.push_back([=]() {
					statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
					          to_expression(builtin_dispatch_base_id), ".y;");
				});
				break;
			default:
				break;
			}
		}
		else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment &&
				 is_builtin_variable(var) && active_output_builtins.get(bi_type))
		{
			switch (bi_type)
			{
			case BuiltInSampleMask:
				if (has_additional_fixed_sample_mask())
				{
					// If the additional fixed sample mask was set, we need to adjust the sample_mask
					// output to reflect that. If the shader outputs the sample_mask itself too, we need
					// to AND the two masks to get the final one.
					string op_str = does_shader_write_sample_mask ? " &= " : " = ";
					entry_func.fixup_hooks_out.push_back([=]() {
						statement(to_expression(builtin_sample_mask_id), op_str, additional_fixed_sample_mask_str(), ";");
					});
				}
				break;
			case BuiltInFragDepth:
				if (msl_options.input_attachment_is_ds_attachment && !writes_to_depth)
				{
					entry_func.fixup_hooks_out.push_back([=]() {
						statement(to_expression(builtin_frag_depth_id), " = ", to_expression(builtin_frag_coord_id), ".z;");
					});
				}
				break;
			default:
				break;
			}
		}
	});
}

// Returns the Metal index of the resource of the specified type as used by the specified variable.
uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane)
{
	auto &execution = get_entry_point();
	auto &var_dec = ir.meta[var.self].decoration;
	auto &var_type = get<SPIRType>(var.basetype);
	uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
	uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;

	// If a matching binding has been specified, find and use it.
	auto itr = resource_bindings.find({ execution.model, var_desc_set, var_binding });

	// Atomic helper buffers for image atomics need to use secondary bindings as well.
	bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) ||
	                             basetype == SPIRType::AtomicCounter;

	auto resource_decoration =
	    use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary;

	if (plane == 1)
		resource_decoration = SPIRVCrossDecorationResourceIndexTertiary;
	if (plane == 2)
		resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary;

	if (itr != end(resource_bindings))
	{
		auto &remap = itr->second;
		remap.second = true;
		switch (basetype)
		{
		case SPIRType::Image:
			set_extended_decoration(var.self, resource_decoration, remap.first.msl_texture + plane);
			return remap.first.msl_texture + plane;
		case SPIRType::Sampler:
			set_extended_decoration(var.self, resource_decoration, remap.first.msl_sampler);
			return remap.first.msl_sampler;
		default:
			set_extended_decoration(var.self, resource_decoration, remap.first.msl_buffer);
			return remap.first.msl_buffer;
		}
	}

	// If we have already allocated an index, keep using it.
	if (has_extended_decoration(var.self, resource_decoration))
		return get_extended_decoration(var.self, resource_decoration);

	auto &type = get<SPIRType>(var.basetype);

	if (type_is_msl_framebuffer_fetch(type))
	{
		// Frame-buffer fetch gets its fallback resource index from the input attachment index,
		// which is then treated as color index.
		return get_decoration(var.self, DecorationInputAttachmentIndex);
	}
	else if (msl_options.enable_decoration_binding)
	{
		// Allow user to enable decoration binding.
		// If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback.
		if (has_decoration(var.self, DecorationBinding))
		{
			var_binding = get_decoration(var.self, DecorationBinding);
			// Avoid emitting sentinel bindings.
			if (var_binding < 0x80000000u)
				return var_binding;
		}
	}

	// If we did not explicitly remap, allocate bindings on demand.
	// We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different.

	bool allocate_argument_buffer_ids = false;

	if (var.storage != StorageClassPushConstant)
		allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(var_desc_set);

	uint32_t binding_stride = 1;
	for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
		binding_stride *= to_array_size_literal(type, i);

	// If a binding has not been specified, revert to incrementing resource indices.
	uint32_t resource_index;

	if (allocate_argument_buffer_ids)
	{
		// Allocate from a flat ID binding space.
		resource_index = next_metal_resource_ids[var_desc_set];
		next_metal_resource_ids[var_desc_set] += binding_stride;
	}
	else
	{
		if (is_var_runtime_size_array(var))
		{
			basetype = SPIRType::Struct;
			binding_stride = 1;
		}
		// Allocate from plain bindings which are allocated per resource type.
		switch (basetype)
		{
		case SPIRType::Image:
			resource_index = next_metal_resource_index_texture;
			next_metal_resource_index_texture += binding_stride;
			break;
		case SPIRType::Sampler:
			resource_index = next_metal_resource_index_sampler;
			next_metal_resource_index_sampler += binding_stride;
			break;
		default:
			resource_index = next_metal_resource_index_buffer;
			next_metal_resource_index_buffer += binding_stride;
			break;
		}
	}

	set_extended_decoration(var.self, resource_decoration, resource_index);
	return resource_index;
}

bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const
{
	return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
	       msl_options.use_framebuffer_fetch_subpasses;
}

const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const
{
	if (msl_options.argument_buffers)
	{
		bool storage_class_is_descriptor = storage == StorageClassUniform ||
		                                   storage == StorageClassStorageBuffer ||
		                                   storage == StorageClassUniformConstant;

		uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
		if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set))
		{
			// An awkward case where we need to emit *more* address space declarations (yay!).
			// An example is where we pass down an array of buffer pointers to leaf functions.
			// It's a constant array containing pointers to constants.
			// The pointer array is always constant however. E.g.
			// device SSBO * constant (&array)[N].
			// const device SSBO * constant (&array)[N].
			// constant SSBO * constant (&array)[N].
			// However, this only matters for argument buffers, since for MSL 1.0 style codegen,
			// we emit the buffer array on stack instead, and that seems to work just fine apparently.

			// If the argument was marked as being in device address space, any pointer to member would
			// be const device, not constant.
			if (argument_buffer_device_storage_mask & (1u << desc_set))
				return "const device";
			else
				return "constant";
		}
	}

	return plain_address_space;
}

string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
{
	auto &var = get<SPIRVariable>(arg.id);
	auto &type = get_variable_data_type(var);
	auto &var_type = get<SPIRType>(arg.type);
	StorageClass type_storage = var_type.storage;

	// If we need to modify the name of the variable, make sure we use the original variable.
	// Our alias is just a shadow variable.
	uint32_t name_id = var.self;
	if (arg.alias_global_variable && var.basevariable)
		name_id = var.basevariable;

	bool constref = !arg.alias_global_variable && is_pointer(var_type) && arg.write_count == 0;
	// Framebuffer fetch is plain value, const looks out of place, but it is not wrong.
	if (type_is_msl_framebuffer_fetch(type))
		constref = false;
	else if (type_storage == StorageClassUniformConstant)
		constref = true;

	bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
	                     type.basetype == SPIRType::Sampler;
	bool type_is_tlas = type.basetype == SPIRType::AccelerationStructure;

	// For opaque types we handle const later due to descriptor address spaces.
	const char *cv_qualifier = (constref && !type_is_image) ? "const " : "";
	string decl;

	// If this is a combined image-sampler for a 2D image with floating-point type,
	// we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter
	// for a global, then we need to emit a "dynamic" combined image-sampler.
	// Unfortunately, this is necessary to properly support passing around
	// combined image-samplers with Y'CbCr conversions on them.
	bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage &&
	                              type.image.dim == Dim2D && type_is_floating_point(get<SPIRType>(type.image.type)) &&
	                              spv_function_implementations.count(SPVFuncImplDynamicImageSampler);

	// Allow Metal to use the array<T> template to make arrays a value type
	string address_space = get_argument_address_space(var);
	bool builtin = has_decoration(var.self, DecorationBuiltIn);
	auto builtin_type = BuiltIn(get_decoration(arg.id, DecorationBuiltIn));

	if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id))
		decl = join(cv_qualifier, type_to_glsl(type, arg.id));
	else if (builtin)
	{
		// Only use templated array for Clip/Cull distance when feasible.
		// In other scenarios, we need need to override array length for tess levels (if used as outputs),
		// or we need to emit the expected type for builtins (uint vs int).
		auto storage = get<SPIRType>(var.basetype).storage;

		if (storage == StorageClassInput &&
		    (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
		{
			is_using_builtin_array = false;
		}
		else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance)
		{
			is_using_builtin_array = true;
		}

		if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) &&
		    !is_stage_output_builtin_masked(builtin_type))
			is_using_builtin_array = true;

		if (is_using_builtin_array)
			decl = join(cv_qualifier, builtin_type_decl(builtin_type, arg.id));
		else
			decl = join(cv_qualifier, type_to_glsl(type, arg.id));
	}
	else if (is_var_runtime_size_array(var))
	{
		const auto *parent_type = &get<SPIRType>(type.parent_type);
		auto type_name = type_to_glsl(*parent_type, arg.id);
		if (type.basetype == SPIRType::AccelerationStructure)
			decl = join("spvDescriptorArray<", type_name, ">");
		else if (type_is_image)
			decl = join("spvDescriptorArray<", cv_qualifier, type_name, ">");
		else
			decl = join("spvDescriptorArray<", address_space, " ", type_name, "*>");
		address_space = "const";
	}
	else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type))
	{
		is_using_builtin_array = true;
		decl += join(cv_qualifier, type_to_glsl(type, arg.id), "*");
	}
	else if (is_dynamic_img_sampler)
	{
		decl = join(cv_qualifier, "spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">");
		// Mark the variable so that we can handle passing it to another function.
		set_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
	}
	else
	{
		// The type is a pointer type we need to emit cv_qualifier late.
		if (is_pointer(type))
		{
			decl = type_to_glsl(type, arg.id);
			if (*cv_qualifier != '\0')
				decl += join(" ", cv_qualifier);
		}
		else
		{
			decl = join(cv_qualifier, type_to_glsl(type, arg.id));
		}
	}

	if (!builtin && !is_pointer(var_type) &&
	    (type_storage == StorageClassFunction || type_storage == StorageClassGeneric))
	{
		// If the argument is a pure value and not an opaque type, we will pass by value.
		if (msl_options.force_native_arrays && is_array(type))
		{
			// We are receiving an array by value. This is problematic.
			// We cannot be sure of the target address space since we are supposed to receive a copy,
			// but this is not possible with MSL without some extra work.
			// We will have to assume we're getting a reference in thread address space.
			// If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
			// Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
			// non-constant arrays, but we can create thread const from constant.
			decl = string("thread const ") + decl;
			decl += " (&";
			const char *restrict_kw = to_restrict(name_id, true);
			if (*restrict_kw)
			{
				decl += " ";
				decl += restrict_kw;
			}
			decl += to_expression(name_id);
			decl += ")";
			decl += type_to_array_glsl(type, name_id);
		}
		else
		{
			if (!address_space.empty())
				decl = join(address_space, " ", decl);
			decl += " ";
			decl += to_expression(name_id);
		}
	}
	else if (is_array(type) && !type_is_image)
	{
		// Arrays of opaque types are special cased.
		if (!address_space.empty())
			decl = join(address_space, " ", decl);

		// spvDescriptorArray absorbs the address space inside the template.
		if (!is_var_runtime_size_array(var))
		{
			const char *argument_buffer_space = descriptor_address_space(name_id, type_storage, nullptr);
			if (argument_buffer_space)
			{
				decl += " ";
				decl += argument_buffer_space;
			}
		}

		// Special case, need to override the array size here if we're using tess level as an argument.
		if (is_tesc_shader() && builtin &&
		    (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
		{
			uint32_t array_size = get_physical_tess_level_array_size(builtin_type);
			if (array_size == 1)
			{
				decl += " &";
				decl += to_expression(name_id);
			}
			else
			{
				decl += " (&";
				decl += to_expression(name_id);
				decl += ")";
				decl += join("[", array_size, "]");
			}
		}
		else if (is_var_runtime_size_array(var))
		{
			decl += " " + to_expression(name_id);
		}
		else
		{
			auto array_size_decl = type_to_array_glsl(type, name_id);
			if (array_size_decl.empty())
				decl += "& ";
			else
				decl += " (&";

			const char *restrict_kw = to_restrict(name_id, true);
			if (*restrict_kw)
			{
				decl += " ";
				decl += restrict_kw;
			}
			decl += to_expression(name_id);

			if (!array_size_decl.empty())
			{
				decl += ")";
				decl += array_size_decl;
			}
		}
	}
	else if (!type_is_image && !type_is_tlas &&
	         (!pull_model_inputs.count(var.basevariable) || type.basetype == SPIRType::Struct))
	{
		// If this is going to be a reference to a variable pointer, the address space
		// for the reference has to go before the '&', but after the '*'.
		if (!address_space.empty())
		{
			if (is_pointer(type))
			{
				if (*cv_qualifier == '\0')
					decl += ' ';
				decl += join(address_space, " ");
			}
			else
				decl = join(address_space, " ", decl);
		}
		decl += "&";
		decl += " ";
		decl += to_restrict(name_id, true);
		decl += to_expression(name_id);
	}
	else if (type_is_image || type_is_tlas)
	{
		if (is_var_runtime_size_array(var))
		{
			decl = address_space + " " + decl + " " + to_expression(name_id);
		}
		else if (type.array.empty())
		{
			// For non-arrayed types we can just pass opaque descriptors by value.
			// This fixes problems if descriptors are passed by value from argument buffers and plain descriptors
			// in same shader.
			// There is no address space we can actually use, but value will work.
			// This will break if applications attempt to pass down descriptor arrays as arguments, but
			// fortunately that is extremely unlikely ...
			decl += " ";
			decl += to_expression(name_id);
		}
		else
		{
			const char *img_address_space = descriptor_address_space(name_id, type_storage, "thread const");
			decl = join(img_address_space, " ", decl);
			decl += "& ";
			decl += to_expression(name_id);
		}
	}
	else
	{
		if (!address_space.empty())
			decl = join(address_space, " ", decl);
		decl += " ";
		decl += to_expression(name_id);
	}

	// Emulate texture2D atomic operations
	auto *backing_var = maybe_get_backing_variable(name_id);
	if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
	{
		auto &flags = ir.get_decoration_bitset(backing_var->self);
		const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
		decl += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(var_type.image.type), 0));
		decl += "* " + to_expression(name_id) + "_atomic";
	}

	is_using_builtin_array = false;

	return decl;
}

// If we're currently in the entry point function, and the object
// has a qualified name, use it, otherwise use the standard name.
string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
{
	if (current_function && (current_function->self == ir.default_entry_point))
	{
		auto *m = ir.find_meta(id);
		if (m && !m->decoration.qualified_alias_explicit_override && !m->decoration.qualified_alias.empty())
			return m->decoration.qualified_alias;
	}
	return Compiler::to_name(id, allow_alias);
}

// Appends the name of the member to the variable qualifier string, except for Builtins.
string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index)
{
	// Don't qualify Builtin names because they are unique and are treated as such when building expressions
	BuiltIn builtin = BuiltInMax;
	if (is_member_builtin(type, index, &builtin))
		return builtin_to_glsl(builtin, type.storage);

	// Strip any underscore prefix from member name
	string mbr_name = to_member_name(type, index);
	size_t startPos = mbr_name.find_first_not_of("_");
	mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
	return join(qualifier, "_", mbr_name);
}

// Ensures that the specified name is permanently usable by prepending a prefix
// if the first chars are _ and a digit, which indicate a transient name.
string CompilerMSL::ensure_valid_name(string name, string pfx)
{
	return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
}

const std::unordered_set<std::string> &CompilerMSL::get_reserved_keyword_set()
{
	static const unordered_set<string> keywords = {
		"kernel",
		"vertex",
		"fragment",
		"compute",
		"constant",
		"device",
		"bias",
		"level",
		"gradient2d",
		"gradientcube",
		"gradient3d",
		"min_lod_clamp",
		"assert",
		"VARIABLE_TRACEPOINT",
		"STATIC_DATA_TRACEPOINT",
		"STATIC_DATA_TRACEPOINT_V",
		"METAL_ALIGN",
		"METAL_ASM",
		"METAL_CONST",
		"METAL_DEPRECATED",
		"METAL_ENABLE_IF",
		"METAL_FUNC",
		"METAL_INTERNAL",
		"METAL_NON_NULL_RETURN",
		"METAL_NORETURN",
		"METAL_NOTHROW",
		"METAL_PURE",
		"METAL_UNAVAILABLE",
		"METAL_IMPLICIT",
		"METAL_EXPLICIT",
		"METAL_CONST_ARG",
		"METAL_ARG_UNIFORM",
		"METAL_ZERO_ARG",
		"METAL_VALID_LOD_ARG",
		"METAL_VALID_LEVEL_ARG",
		"METAL_VALID_STORE_ORDER",
		"METAL_VALID_LOAD_ORDER",
		"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
		"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
		"METAL_VALID_RENDER_TARGET",
		"is_function_constant_defined",
		"CHAR_BIT",
		"SCHAR_MAX",
		"SCHAR_MIN",
		"UCHAR_MAX",
		"CHAR_MAX",
		"CHAR_MIN",
		"USHRT_MAX",
		"SHRT_MAX",
		"SHRT_MIN",
		"UINT_MAX",
		"INT_MAX",
		"INT_MIN",
		"FLT_DIG",
		"FLT_MANT_DIG",
		"FLT_MAX_10_EXP",
		"FLT_MAX_EXP",
		"FLT_MIN_10_EXP",
		"FLT_MIN_EXP",
		"FLT_RADIX",
		"FLT_MAX",
		"FLT_MIN",
		"FLT_EPSILON",
		"FP_ILOGB0",
		"FP_ILOGBNAN",
		"MAXFLOAT",
		"HUGE_VALF",
		"INFINITY",
		"NAN",
		"M_E_F",
		"M_LOG2E_F",
		"M_LOG10E_F",
		"M_LN2_F",
		"M_LN10_F",
		"M_PI_F",
		"M_PI_2_F",
		"M_PI_4_F",
		"M_1_PI_F",
		"M_2_PI_F",
		"M_2_SQRTPI_F",
		"M_SQRT2_F",
		"M_SQRT1_2_F",
		"HALF_DIG",
		"HALF_MANT_DIG",
		"HALF_MAX_10_EXP",
		"HALF_MAX_EXP",
		"HALF_MIN_10_EXP",
		"HALF_MIN_EXP",
		"HALF_RADIX",
		"HALF_MAX",
		"HALF_MIN",
		"HALF_EPSILON",
		"MAXHALF",
		"HUGE_VALH",
		"M_E_H",
		"M_LOG2E_H",
		"M_LOG10E_H",
		"M_LN2_H",
		"M_LN10_H",
		"M_PI_H",
		"M_PI_2_H",
		"M_PI_4_H",
		"M_1_PI_H",
		"M_2_PI_H",
		"M_2_SQRTPI_H",
		"M_SQRT2_H",
		"M_SQRT1_2_H",
		"DBL_DIG",
		"DBL_MANT_DIG",
		"DBL_MAX_10_EXP",
		"DBL_MAX_EXP",
		"DBL_MIN_10_EXP",
		"DBL_MIN_EXP",
		"DBL_RADIX",
		"DBL_MAX",
		"DBL_MIN",
		"DBL_EPSILON",
		"HUGE_VAL",
		"M_E",
		"M_LOG2E",
		"M_LOG10E",
		"M_LN2",
		"M_LN10",
		"M_PI",
		"M_PI_2",
		"M_PI_4",
		"M_1_PI",
		"M_2_PI",
		"M_2_SQRTPI",
		"M_SQRT2",
		"M_SQRT1_2",
		"quad_broadcast",
		"thread",
		"threadgroup",
	};

	return keywords;
}

const std::unordered_set<std::string> &CompilerMSL::get_illegal_func_names()
{
	static const unordered_set<string> illegal_func_names = {
		"main",
		"saturate",
		"assert",
		"fmin3",
		"fmax3",
		"divide",
		"median3",
		"VARIABLE_TRACEPOINT",
		"STATIC_DATA_TRACEPOINT",
		"STATIC_DATA_TRACEPOINT_V",
		"METAL_ALIGN",
		"METAL_ASM",
		"METAL_CONST",
		"METAL_DEPRECATED",
		"METAL_ENABLE_IF",
		"METAL_FUNC",
		"METAL_INTERNAL",
		"METAL_NON_NULL_RETURN",
		"METAL_NORETURN",
		"METAL_NOTHROW",
		"METAL_PURE",
		"METAL_UNAVAILABLE",
		"METAL_IMPLICIT",
		"METAL_EXPLICIT",
		"METAL_CONST_ARG",
		"METAL_ARG_UNIFORM",
		"METAL_ZERO_ARG",
		"METAL_VALID_LOD_ARG",
		"METAL_VALID_LEVEL_ARG",
		"METAL_VALID_STORE_ORDER",
		"METAL_VALID_LOAD_ORDER",
		"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
		"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
		"METAL_VALID_RENDER_TARGET",
		"is_function_constant_defined",
		"CHAR_BIT",
		"SCHAR_MAX",
		"SCHAR_MIN",
		"UCHAR_MAX",
		"CHAR_MAX",
		"CHAR_MIN",
		"USHRT_MAX",
		"SHRT_MAX",
		"SHRT_MIN",
		"UINT_MAX",
		"INT_MAX",
		"INT_MIN",
		"FLT_DIG",
		"FLT_MANT_DIG",
		"FLT_MAX_10_EXP",
		"FLT_MAX_EXP",
		"FLT_MIN_10_EXP",
		"FLT_MIN_EXP",
		"FLT_RADIX",
		"FLT_MAX",
		"FLT_MIN",
		"FLT_EPSILON",
		"FP_ILOGB0",
		"FP_ILOGBNAN",
		"MAXFLOAT",
		"HUGE_VALF",
		"INFINITY",
		"NAN",
		"M_E_F",
		"M_LOG2E_F",
		"M_LOG10E_F",
		"M_LN2_F",
		"M_LN10_F",
		"M_PI_F",
		"M_PI_2_F",
		"M_PI_4_F",
		"M_1_PI_F",
		"M_2_PI_F",
		"M_2_SQRTPI_F",
		"M_SQRT2_F",
		"M_SQRT1_2_F",
		"HALF_DIG",
		"HALF_MANT_DIG",
		"HALF_MAX_10_EXP",
		"HALF_MAX_EXP",
		"HALF_MIN_10_EXP",
		"HALF_MIN_EXP",
		"HALF_RADIX",
		"HALF_MAX",
		"HALF_MIN",
		"HALF_EPSILON",
		"MAXHALF",
		"HUGE_VALH",
		"M_E_H",
		"M_LOG2E_H",
		"M_LOG10E_H",
		"M_LN2_H",
		"M_LN10_H",
		"M_PI_H",
		"M_PI_2_H",
		"M_PI_4_H",
		"M_1_PI_H",
		"M_2_PI_H",
		"M_2_SQRTPI_H",
		"M_SQRT2_H",
		"M_SQRT1_2_H",
		"DBL_DIG",
		"DBL_MANT_DIG",
		"DBL_MAX_10_EXP",
		"DBL_MAX_EXP",
		"DBL_MIN_10_EXP",
		"DBL_MIN_EXP",
		"DBL_RADIX",
		"DBL_MAX",
		"DBL_MIN",
		"DBL_EPSILON",
		"HUGE_VAL",
		"M_E",
		"M_LOG2E",
		"M_LOG10E",
		"M_LN2",
		"M_LN10",
		"M_PI",
		"M_PI_2",
		"M_PI_4",
		"M_1_PI",
		"M_2_PI",
		"M_2_SQRTPI",
		"M_SQRT2",
		"M_SQRT1_2",
	};

	return illegal_func_names;
}

// Replace all names that match MSL keywords or Metal Standard Library functions.
void CompilerMSL::replace_illegal_names()
{
	// FIXME: MSL and GLSL are doing two different things here.
	// Agree on convention and remove this override.
	auto &keywords = get_reserved_keyword_set();
	auto &illegal_func_names = get_illegal_func_names();

	ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
		auto *meta = ir.find_meta(self);
		if (!meta)
			return;

		auto &dec = meta->decoration;
		if (keywords.find(dec.alias) != end(keywords))
			dec.alias += "0";
	});

	ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
		auto *meta = ir.find_meta(self);
		if (!meta)
			return;

		auto &dec = meta->decoration;
		if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
			dec.alias += "0";
	});

	ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
		auto *meta = ir.find_meta(self);
		if (!meta)
			return;

		for (auto &mbr_dec : meta->members)
			if (keywords.find(mbr_dec.alias) != end(keywords))
				mbr_dec.alias += "0";
	});

	CompilerGLSL::replace_illegal_names();
}

void CompilerMSL::replace_illegal_entry_point_names()
{
	auto &illegal_func_names = get_illegal_func_names();

	// It is important to this before we fixup identifiers,
	// since if ep_name is reserved, we will need to fix that up,
	// and then copy alias back into entry.name after the fixup.
	for (auto &entry : ir.entry_points)
	{
		// Change both the entry point name and the alias, to keep them synced.
		string &ep_name = entry.second.name;
		if (illegal_func_names.find(ep_name) != end(illegal_func_names))
			ep_name += "0";

		ir.meta[entry.first].decoration.alias = ep_name;
	}
}

void CompilerMSL::sync_entry_point_aliases_and_names()
{
	for (auto &entry : ir.entry_points)
		entry.second.name = ir.meta[entry.first].decoration.alias;
}

string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved)
{
	auto *var = maybe_get_backing_variable(base);
	// If this is a buffer array, we have to dereference the buffer pointers.
	// Otherwise, if this is a pointer expression, dereference it.

	bool declared_as_pointer = false;

	if (var)
	{
		// Only allow -> dereference for block types. This is so we get expressions like
		// buffer[i]->first_member.second_member, rather than buffer[i]->first->second.
		const bool is_block =
		    has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);

		bool is_buffer_variable =
		    is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer);
		declared_as_pointer = is_buffer_variable && is_array(get_pointee_type(var->basetype));
	}

	if (declared_as_pointer || (!ptr_chain_is_resolved && should_dereference(base)))
		return join("->", to_member_name(type, index));
	else
		return join(".", to_member_name(type, index));
}

string CompilerMSL::to_qualifiers_glsl(uint32_t id)
{
	string quals;

	auto *var = maybe_get<SPIRVariable>(id);
	auto &type = expression_type(id);

	if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(*var, StorageClassWorkgroup)))
		quals += "threadgroup ";

	return quals;
}

// The optional id parameter indicates the object whose type we are trying
// to find the description for. It is optional. Most type descriptions do not
// depend on a specific object's use of that type.
string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id, bool member)
{
	string type_name;

	// Pointer?
	if (is_pointer(type) || type_is_array_of_pointers(type))
	{
		assert(type.pointer_depth > 0);

		const char *restrict_kw;

		auto type_address_space = get_type_address_space(type, id);
		const auto *p_parent_type = &get<SPIRType>(type.parent_type);

		// If we're wrapping buffer descriptors in a spvDescriptorArray, we'll have to handle it as a special case.
		if (member && id)
		{
			auto &var = get<SPIRVariable>(id);
			if (is_var_runtime_size_array(var) && is_runtime_size_array(*p_parent_type))
			{
				const bool ssbo = has_decoration(p_parent_type->self, DecorationBufferBlock);
				bool buffer_desc =
						(var.storage == StorageClassStorageBuffer || ssbo) &&
						msl_options.runtime_array_rich_descriptor;

				const char *wrapper_type = buffer_desc ? "spvBufferDescriptor" : "spvDescriptor";
				add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
				add_spv_func_and_recompile(buffer_desc ? SPVFuncImplVariableSizedDescriptor : SPVFuncImplVariableDescriptor);

				type_name = join(wrapper_type, "<", type_address_space, " ", type_to_glsl(*p_parent_type, id), " *>");
				return type_name;
			}
		}

		// Work around C pointer qualifier rules. If glsl_type is a pointer type as well
		// we'll need to emit the address space to the right.
		// We could always go this route, but it makes the code unnatural.
		// Prefer emitting thread T *foo over T thread* foo since it's more readable,
		// but we'll have to emit thread T * thread * T constant bar; for example.
		if (is_pointer(type) && is_pointer(*p_parent_type))
			type_name = join(type_to_glsl(*p_parent_type, id), " ", type_address_space, " ");
		else
		{
			// Since this is not a pointer-to-pointer, ensure we've dug down to the base type.
			// Some situations chain pointers even though they are not formally pointers-of-pointers.
			while (is_pointer(*p_parent_type))
				p_parent_type = &get<SPIRType>(p_parent_type->parent_type);

			// If we're emitting BDA, just use the templated type.
			// Emitting builtin arrays need a lot of cooperation with other code to ensure
			// the C-style nesting works right.
			// FIXME: This is somewhat of a hack.
			bool old_is_using_builtin_array = is_using_builtin_array;
			if (is_physical_pointer(type))
				is_using_builtin_array = false;

			type_name = join(type_address_space, " ", type_to_glsl(*p_parent_type, id));

			is_using_builtin_array = old_is_using_builtin_array;
		}

		switch (type.basetype)
		{
		case SPIRType::Image:
		case SPIRType::SampledImage:
		case SPIRType::Sampler:
			// These are handles.
			break;
		default:
			// Anything else can be a raw pointer.
			type_name += "*";
			restrict_kw = to_restrict(id, false);
			if (*restrict_kw)
			{
				type_name += " ";
				type_name += restrict_kw;
			}
			break;
		}
		return type_name;
	}

	switch (type.basetype)
	{
	case SPIRType::Struct:
		// Need OpName lookup here to get a "sensible" name for a struct.
		// Allow Metal to use the array<T> template to make arrays a value type
		type_name = to_name(type.self);
		break;

	case SPIRType::Image:
	case SPIRType::SampledImage:
		return image_type_glsl(type, id, member);

	case SPIRType::Sampler:
		return sampler_type(type, id, member);

	case SPIRType::Void:
		return "void";

	case SPIRType::AtomicCounter:
		return "atomic_uint";

	case SPIRType::ControlPointArray:
		return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");

	case SPIRType::Interpolant:
		return join("interpolant<", type_to_glsl(get<SPIRType>(type.parent_type), id), ", interpolation::",
		            has_decoration(type.self, DecorationNoPerspective) ? "no_perspective" : "perspective", ">");

	// Scalars
	case SPIRType::Boolean:
	{
		auto *var = maybe_get_backing_variable(id);
		if (var && var->basevariable)
			var = &get<SPIRVariable>(var->basevariable);

		// Need to special-case threadgroup booleans. They are supposed to be logical
		// storage, but MSL compilers will sometimes crash if you use threadgroup bool.
		// Workaround this by using 16-bit types instead and fixup on load-store to this data.
		if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup || member)
			type_name = "short";
		else
			type_name = "bool";
		break;
	}

	case SPIRType::Char:
	case SPIRType::SByte:
		type_name = "char";
		break;
	case SPIRType::UByte:
		type_name = "uchar";
		break;
	case SPIRType::Short:
		type_name = "short";
		break;
	case SPIRType::UShort:
		type_name = "ushort";
		break;
	case SPIRType::Int:
		type_name = "int";
		break;
	case SPIRType::UInt:
		type_name = "uint";
		break;
	case SPIRType::Int64:
		if (!msl_options.supports_msl_version(2, 2))
			SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
		type_name = "long";
		break;
	case SPIRType::UInt64:
		if (!msl_options.supports_msl_version(2, 2))
			SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
		type_name = "ulong";
		break;
	case SPIRType::Half:
		type_name = "half";
		break;
	case SPIRType::Float:
		type_name = "float";
		break;
	case SPIRType::Double:
		type_name = "double"; // Currently unsupported
		break;
	case SPIRType::AccelerationStructure:
		if (msl_options.supports_msl_version(2, 4))
			type_name = "raytracing::acceleration_structure<raytracing::instancing>";
		else if (msl_options.supports_msl_version(2, 3))
			type_name = "raytracing::instance_acceleration_structure";
		else
			SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above.");
		break;
	case SPIRType::RayQuery:
		return "raytracing::intersection_query<raytracing::instancing, raytracing::triangle_data>";

	default:
		return "unknown_type";
	}

	// Matrix?
	if (type.columns > 1)
	{
		auto *var = maybe_get_backing_variable(id);
		if (var && var->basevariable)
			var = &get<SPIRVariable>(var->basevariable);

		// Need to special-case threadgroup matrices. Due to an oversight, Metal's
		// matrix struct prior to Metal 3 lacks constructors in the threadgroup AS,
		// preventing us from default-constructing or initializing matrices in threadgroup storage.
		// Work around this by using our own type as storage.
		if (((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup) &&
		    !msl_options.supports_msl_version(3, 0))
		{
			add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
			type_name = "spvStorage_" + type_name;
		}

		type_name += to_string(type.columns) + "x";
	}

	// Vector or Matrix?
	if (type.vecsize > 1)
		type_name += to_string(type.vecsize);

	if (type.array.empty() || using_builtin_array())
	{
		return type_name;
	}
	else
	{
		// Allow Metal to use the array<T> template to make arrays a value type
		add_spv_func_and_recompile(SPVFuncImplUnsafeArray);
		string res;
		string sizes;

		for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
		{
			res += "spvUnsafeArray<";
			sizes += ", ";
			sizes += to_array_size(type, i);
			sizes += ">";
		}

		res += type_name + sizes;
		return res;
	}
}

string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
{
	return type_to_glsl(type, id, false);
}

string CompilerMSL::type_to_array_glsl(const SPIRType &type, uint32_t variable_id)
{
	// Allow Metal to use the array<T> template to make arrays a value type
	switch (type.basetype)
	{
	case SPIRType::AtomicCounter:
	case SPIRType::ControlPointArray:
	case SPIRType::RayQuery:
		return CompilerGLSL::type_to_array_glsl(type, variable_id);

	default:
		if (type_is_array_of_pointers(type) || using_builtin_array())
		{
			const SPIRVariable *var = variable_id ? &get<SPIRVariable>(variable_id) : nullptr;
			if (var && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer) &&
			    is_array(get_variable_data_type(*var)))
			{
				return join("[", get_resource_array_size(type, variable_id), "]");
			}
			else
				return CompilerGLSL::type_to_array_glsl(type, variable_id);
		}
		else
			return "";
	}
}

string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop)
{
	switch (cop.opcode)
	{
	case OpQuantizeToF16:
		add_spv_func_and_recompile(SPVFuncImplQuantizeToF16);
		return join("spvQuantizeToF16(", to_expression(cop.arguments[0]), ")");
	default:
		return CompilerGLSL::constant_op_expression(cop);
	}
}

bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const
{
	if (variable.storage == storage)
		return true;

	if (storage == StorageClassWorkgroup)
	{
		// Specially masked IO block variable.
		// Normally, we will never access IO blocks directly here.
		// The only scenario which that should occur is with a masked IO block.
		if (is_tesc_shader() && variable.storage == StorageClassOutput &&
		    has_decoration(get<SPIRType>(variable.basetype).self, DecorationBlock))
		{
			return true;
		}

		return variable.storage == StorageClassOutput && is_tesc_shader() && is_stage_output_variable_masked(variable);
	}
	else if (storage == StorageClassStorageBuffer)
	{
		// These builtins are passed directly; we don't want to use remapping
		// for them.
		auto builtin = (BuiltIn)get_decoration(variable.self, DecorationBuiltIn);
		if (is_tese_shader() && is_builtin_variable(variable) && (builtin == BuiltInTessCoord || builtin == BuiltInPrimitiveId))
			return false;

		// We won't be able to catch writes to control point outputs here since variable
		// refers to a function local pointer.
		// This is fine, as there cannot be concurrent writers to that memory anyways,
		// so we just ignore that case.

		return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) &&
		       !variable_storage_requires_stage_io(variable.storage) &&
		       (variable.storage != StorageClassOutput || !is_stage_output_variable_masked(variable));
	}
	else
	{
		return false;
	}
}

// GCC workaround of lambdas calling protected funcs
std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id)
{
	return CompilerGLSL::variable_decl(type, name, id);
}

std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id, bool member)
{
	auto *var = maybe_get<SPIRVariable>(id);
	if (var && var->basevariable)
	{
		// Check against the base variable, and not a fake ID which might have been generated for this variable.
		id = var->basevariable;
	}

	if (!type.array.empty())
	{
		if (!msl_options.supports_msl_version(2))
			SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");

		if (type.array.size() > 1)
			SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");

		// Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
		// If we have a runtime array, it could be a variable-count descriptor set binding.
		auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
		uint32_t array_size = get_resource_array_size(type, id);

		if (array_size == 0)
		{
			add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
			add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);

			const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
			if (member)
				descriptor_wrapper = "spvDescriptor";
			return join(descriptor_wrapper, "<", sampler_type(parent, id, false), ">",
			            processing_entry_point ? "*" : "");
		}
		else
		{
			return join("array<", sampler_type(parent, id, false), ", ", array_size, ">");
		}
	}
	else
		return "sampler";
}

// Returns an MSL string describing the SPIR-V image type
string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id, bool member)
{
	auto *var = maybe_get<SPIRVariable>(id);
	if (var && var->basevariable)
	{
		// For comparison images, check against the base variable,
		// and not the fake ID which might have been generated for this variable.
		id = var->basevariable;
	}

	if (!type.array.empty())
	{
		uint32_t major = 2, minor = 0;
		if (msl_options.is_ios())
		{
			major = 1;
			minor = 2;
		}
		if (!msl_options.supports_msl_version(major, minor))
		{
			if (msl_options.is_ios())
				SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
			else
				SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
		}

		if (type.array.size() > 1)
			SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");

		// Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
		// If we have a runtime array, it could be a variable-count descriptor set binding.
		auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
		uint32_t array_size = get_resource_array_size(type, id);

		if (array_size == 0)
		{
			add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
			add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
			const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
			if (member)
			{
				descriptor_wrapper = "spvDescriptor";
				// This requires a specialized wrapper type that packs image and sampler side by side.
				// It is possible in theory.
				if (type.basetype == SPIRType::SampledImage)
					SPIRV_CROSS_THROW("Argument buffer runtime array currently not supported for combined image sampler.");
			}
			return join(descriptor_wrapper, "<", image_type_glsl(parent, id, false), ">",
			            processing_entry_point ? "*" : "");
		}
		else
		{
			return join("array<", image_type_glsl(parent, id, false), ", ", array_size, ">");
		}
	}

	string img_type_name;

	auto &img_type = type.image;

	if (is_depth_image(type, id))
	{
		switch (img_type.dim)
		{
		case Dim1D:
		case Dim2D:
			if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
			{
				// Use a native Metal 1D texture
				img_type_name += "depth1d_unsupported_by_metal";
				break;
			}

			if (img_type.ms && img_type.arrayed)
			{
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
				img_type_name += "depth2d_ms_array";
			}
			else if (img_type.ms)
				img_type_name += "depth2d_ms";
			else if (img_type.arrayed)
				img_type_name += "depth2d_array";
			else
				img_type_name += "depth2d";
			break;
		case Dim3D:
			img_type_name += "depth3d_unsupported_by_metal";
			break;
		case DimCube:
			if (!msl_options.emulate_cube_array)
				img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
			else
				img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube");
			break;
		default:
			img_type_name += "unknown_depth_texture_type";
			break;
		}
	}
	else
	{
		switch (img_type.dim)
		{
		case DimBuffer:
			if (img_type.ms || img_type.arrayed)
				SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");

			if (msl_options.texture_buffer_native)
			{
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
				img_type_name = "texture_buffer";
			}
			else
				img_type_name += "texture2d";
			break;
		case Dim1D:
		case Dim2D:
		case DimSubpassData:
		{
			bool subpass_array =
			    img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input);
			if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
			{
				// Use a native Metal 1D texture
				img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
				break;
			}

			// Use Metal's native frame-buffer fetch API for subpass inputs.
			if (type_is_msl_framebuffer_fetch(type))
			{
				auto img_type_4 = get<SPIRType>(img_type.type);
				img_type_4.vecsize = 4;
				return type_to_glsl(img_type_4);
			}
			if (img_type.ms && (img_type.arrayed || subpass_array))
			{
				if (!msl_options.supports_msl_version(2, 1))
					SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
				img_type_name += "texture2d_ms_array";
			}
			else if (img_type.ms)
				img_type_name += "texture2d_ms";
			else if (img_type.arrayed || subpass_array)
				img_type_name += "texture2d_array";
			else
				img_type_name += "texture2d";
			break;
		}
		case Dim3D:
			img_type_name += "texture3d";
			break;
		case DimCube:
			if (!msl_options.emulate_cube_array)
				img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
			else
				img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube");
			break;
		default:
			img_type_name += "unknown_texture_type";
			break;
		}
	}

	// Append the pixel type
	img_type_name += "<";
	img_type_name += type_to_glsl(get<SPIRType>(img_type.type));

	// For unsampled images, append the sample/read/write access qualifier.
	// For kernel images, the access qualifier my be supplied directly by SPIR-V.
	// Otherwise it may be set based on whether the image is read from or written to within the shader.
	if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
	{
		switch (img_type.access)
		{
		case AccessQualifierReadOnly:
			img_type_name += ", access::read";
			break;

		case AccessQualifierWriteOnly:
			img_type_name += ", access::write";
			break;

		case AccessQualifierReadWrite:
			img_type_name += ", access::read_write";
			break;

		default:
		{
			auto *p_var = maybe_get_backing_variable(id);
			if (p_var && p_var->basevariable)
				p_var = maybe_get<SPIRVariable>(p_var->basevariable);
			if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
			{
				img_type_name += ", access::";

				if (!has_decoration(p_var->self, DecorationNonReadable))
					img_type_name += "read_";

				img_type_name += "write";
			}
			break;
		}
		}
	}

	img_type_name += ">";

	return img_type_name;
}

void CompilerMSL::emit_subgroup_op(const Instruction &i)
{
	const uint32_t *ops = stream(i);
	auto op = static_cast<Op>(i.op);

	if (msl_options.emulate_subgroups)
	{
		// In this mode, only the GroupNonUniform cap is supported. The only op
		// we need to handle, then, is OpGroupNonUniformElect.
		if (op != OpGroupNonUniformElect)
			SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect.");
		// In this mode, the subgroup size is assumed to be one, so every invocation
		// is elected.
		emit_op(ops[0], ops[1], "true", true);
		return;
	}

	// Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with
	// full support in 13.0 (2.2). macOS only supports broadcast and shuffle on
	// 10.13 (2.0), with full support in 10.14 (2.1).
	// Note that Apple GPUs before A13 make no distinction between a quad-group
	// and a SIMD-group; all SIMD-groups are quad-groups on those.
	if (!msl_options.supports_msl_version(2))
		SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up.");

	// If we need to do implicit bitcasts, make sure we do it with the correct type.
	uint32_t integer_width = get_integer_width_for_instruction(i);
	auto int_type = to_signed_basetype(integer_width);
	auto uint_type = to_unsigned_basetype(integer_width);

	if (msl_options.is_ios() && (!msl_options.supports_msl_version(2, 3) || !msl_options.ios_use_simdgroup_functions))
	{
		switch (op)
		{
		default:
			SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up.");
		case OpGroupNonUniformBroadcastFirst:
			if (!msl_options.supports_msl_version(2, 2))
				SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up.");
			break;
		case OpGroupNonUniformElect:
			if (!msl_options.supports_msl_version(2, 2))
				SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up.");
			break;
		case OpGroupNonUniformAny:
		case OpGroupNonUniformAll:
		case OpGroupNonUniformAllEqual:
		case OpGroupNonUniformBallot:
		case OpGroupNonUniformInverseBallot:
		case OpGroupNonUniformBallotBitExtract:
		case OpGroupNonUniformBallotFindLSB:
		case OpGroupNonUniformBallotFindMSB:
		case OpGroupNonUniformBallotBitCount:
		case OpSubgroupBallotKHR:
		case OpSubgroupAllKHR:
		case OpSubgroupAnyKHR:
		case OpSubgroupAllEqualKHR:
			if (!msl_options.supports_msl_version(2, 2))
				SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up.");
			break;
		case OpGroupNonUniformBroadcast:
		case OpGroupNonUniformShuffle:
		case OpGroupNonUniformShuffleXor:
		case OpGroupNonUniformShuffleUp:
		case OpGroupNonUniformShuffleDown:
		case OpGroupNonUniformQuadSwap:
		case OpGroupNonUniformQuadBroadcast:
		case OpSubgroupReadInvocationKHR:
			break;
		}
	}

	if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
	{
		switch (op)
		{
		default:
			SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up.");
		case OpGroupNonUniformBroadcast:
		case OpGroupNonUniformShuffle:
		case OpGroupNonUniformShuffleXor:
		case OpGroupNonUniformShuffleUp:
		case OpGroupNonUniformShuffleDown:
		case OpSubgroupReadInvocationKHR:
			break;
		}
	}

	uint32_t op_idx = 0;
	uint32_t result_type = ops[op_idx++];
	uint32_t id = ops[op_idx++];

	Scope scope;
	switch (op)
	{
	case OpSubgroupBallotKHR:
	case OpSubgroupFirstInvocationKHR:
	case OpSubgroupReadInvocationKHR:
	case OpSubgroupAllKHR:
	case OpSubgroupAnyKHR:
	case OpSubgroupAllEqualKHR:
		// These earlier instructions don't have the scope operand.
		scope = ScopeSubgroup;
		break;
	default:
		scope = static_cast<Scope>(evaluate_constant_u32(ops[op_idx++]));
		break;
	}
	if (scope != ScopeSubgroup)
		SPIRV_CROSS_THROW("Only subgroup scope is supported.");

	switch (op)
	{
	case OpGroupNonUniformElect:
		if (msl_options.use_quadgroup_operation())
			emit_op(result_type, id, "quad_is_first()", false);
		else
			emit_op(result_type, id, "simd_is_first()", false);
		break;

	case OpGroupNonUniformBroadcast:
	case OpSubgroupReadInvocationKHR:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBroadcast");
		break;

	case OpGroupNonUniformBroadcastFirst:
	case OpSubgroupFirstInvocationKHR:
		emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBroadcastFirst");
		break;

	case OpGroupNonUniformBallot:
	case OpSubgroupBallotKHR:
		emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBallot");
		break;

	case OpGroupNonUniformInverseBallot:
		emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, "spvSubgroupBallotBitExtract");
		break;

	case OpGroupNonUniformBallotBitExtract:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBallotBitExtract");
		break;

	case OpGroupNonUniformBallotFindLSB:
		emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindLSB");
		break;

	case OpGroupNonUniformBallotFindMSB:
		emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindMSB");
		break;

	case OpGroupNonUniformBallotBitCount:
	{
		auto operation = static_cast<GroupOperation>(ops[op_idx++]);
		switch (operation)
		{
		case GroupOperationReduce:
			emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotBitCount");
			break;
		case GroupOperationInclusiveScan:
			emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
			                    "spvSubgroupBallotInclusiveBitCount");
			break;
		case GroupOperationExclusiveScan:
			emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
			                    "spvSubgroupBallotExclusiveBitCount");
			break;
		default:
			SPIRV_CROSS_THROW("Invalid BitCount operation.");
		}
		break;
	}

	case OpGroupNonUniformShuffle:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffle");
		break;

	case OpGroupNonUniformShuffleXor:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleXor");
		break;

	case OpGroupNonUniformShuffleUp:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleUp");
		break;

	case OpGroupNonUniformShuffleDown:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleDown");
		break;

	case OpGroupNonUniformAll:
	case OpSubgroupAllKHR:
		if (msl_options.use_quadgroup_operation())
			emit_unary_func_op(result_type, id, ops[op_idx], "quad_all");
		else
			emit_unary_func_op(result_type, id, ops[op_idx], "simd_all");
		break;

	case OpGroupNonUniformAny:
	case OpSubgroupAnyKHR:
		if (msl_options.use_quadgroup_operation())
			emit_unary_func_op(result_type, id, ops[op_idx], "quad_any");
		else
			emit_unary_func_op(result_type, id, ops[op_idx], "simd_any");
		break;

	case OpGroupNonUniformAllEqual:
	case OpSubgroupAllEqualKHR:
		emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupAllEqual");
		break;

		// clang-format off
#define MSL_GROUP_OP(op, msl_op) \
case OpGroupNonUniform##op: \
	{ \
		auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
		if (operation == GroupOperationReduce) \
			emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
		else if (operation == GroupOperationInclusiveScan) \
			emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_inclusive_" #msl_op); \
		else if (operation == GroupOperationExclusiveScan) \
			emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_exclusive_" #msl_op); \
		else if (operation == GroupOperationClusteredReduce) \
		{ \
			/* Only cluster sizes of 4 are supported. */ \
			uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
			if (cluster_size != 4) \
				SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
			emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
		} \
		else \
			SPIRV_CROSS_THROW("Invalid group operation."); \
		break; \
	}
	MSL_GROUP_OP(FAdd, sum)
	MSL_GROUP_OP(FMul, product)
	MSL_GROUP_OP(IAdd, sum)
	MSL_GROUP_OP(IMul, product)
#undef MSL_GROUP_OP
	// The others, unfortunately, don't support InclusiveScan or ExclusiveScan.

#define MSL_GROUP_OP(op, msl_op) \
case OpGroupNonUniform##op: \
	{ \
		auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
		if (operation == GroupOperationReduce) \
			emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
		else if (operation == GroupOperationInclusiveScan) \
			SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
		else if (operation == GroupOperationExclusiveScan) \
			SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
		else if (operation == GroupOperationClusteredReduce) \
		{ \
			/* Only cluster sizes of 4 are supported. */ \
			uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
			if (cluster_size != 4) \
				SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
			emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
		} \
		else \
			SPIRV_CROSS_THROW("Invalid group operation."); \
		break; \
	}

#define MSL_GROUP_OP_CAST(op, msl_op, type) \
case OpGroupNonUniform##op: \
	{ \
		auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
		if (operation == GroupOperationReduce) \
			emit_unary_func_op_cast(result_type, id, ops[op_idx], "simd_" #msl_op, type, type); \
		else if (operation == GroupOperationInclusiveScan) \
			SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
		else if (operation == GroupOperationExclusiveScan) \
			SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
		else if (operation == GroupOperationClusteredReduce) \
		{ \
			/* Only cluster sizes of 4 are supported. */ \
			uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
			if (cluster_size != 4) \
				SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
			emit_unary_func_op_cast(result_type, id, ops[op_idx], "quad_" #msl_op, type, type); \
		} \
		else \
			SPIRV_CROSS_THROW("Invalid group operation."); \
		break; \
	}

	MSL_GROUP_OP(FMin, min)
	MSL_GROUP_OP(FMax, max)
	MSL_GROUP_OP_CAST(SMin, min, int_type)
	MSL_GROUP_OP_CAST(SMax, max, int_type)
	MSL_GROUP_OP_CAST(UMin, min, uint_type)
	MSL_GROUP_OP_CAST(UMax, max, uint_type)
	MSL_GROUP_OP(BitwiseAnd, and)
	MSL_GROUP_OP(BitwiseOr, or)
	MSL_GROUP_OP(BitwiseXor, xor)
	MSL_GROUP_OP(LogicalAnd, and)
	MSL_GROUP_OP(LogicalOr, or)
	MSL_GROUP_OP(LogicalXor, xor)
		// clang-format on
#undef MSL_GROUP_OP
#undef MSL_GROUP_OP_CAST

	case OpGroupNonUniformQuadSwap:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadSwap");
		break;

	case OpGroupNonUniformQuadBroadcast:
		emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadBroadcast");
		break;

	default:
		SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
	}

	register_control_dependent_expression(id);
}

string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
{
	if (out_type.basetype == in_type.basetype)
		return "";

	assert(out_type.basetype != SPIRType::Boolean);
	assert(in_type.basetype != SPIRType::Boolean);

	bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type) && (out_type.vecsize == in_type.vecsize);
	bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize);

	// Bitcasting can only be used between types of the same overall size.
	// And always formally cast between integers, because it's trivial, and also
	// because Metal can internally cast the results of some integer ops to a larger
	// size (eg. short shift right becomes int), which means chaining integer ops
	// together may introduce size variations that SPIR-V doesn't know about.
	if (same_size_cast && !integral_cast)
		return "as_type<" + type_to_glsl(out_type) + ">";
	else
		return type_to_glsl(out_type);
}

bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t)
{
	// This is handled from the outside where we deal with PtrToU/UToPtr and friends.
	return false;
}

// Returns an MSL string identifying the name of a SPIR-V builtin.
// Output builtins are qualified with the name of the stage out structure.
string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
{
	switch (builtin)
	{
	// Handle HLSL-style 0-based vertex/instance index.
	// Override GLSL compiler strictness
	case BuiltInVertexId:
		ensure_builtin(StorageClassInput, BuiltInVertexId);
		if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
		    (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
		{
			if (builtin_declaration)
			{
				if (needs_base_vertex_arg != TriState::No)
					needs_base_vertex_arg = TriState::Yes;
				return "gl_VertexID";
			}
			else
			{
				ensure_builtin(StorageClassInput, BuiltInBaseVertex);
				return "(gl_VertexID - gl_BaseVertex)";
			}
		}
		else
		{
			return "gl_VertexID";
		}
	case BuiltInInstanceId:
		ensure_builtin(StorageClassInput, BuiltInInstanceId);
		if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
		    (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
		{
			if (builtin_declaration)
			{
				if (needs_base_instance_arg != TriState::No)
					needs_base_instance_arg = TriState::Yes;
				return "gl_InstanceID";
			}
			else
			{
				ensure_builtin(StorageClassInput, BuiltInBaseInstance);
				return "(gl_InstanceID - gl_BaseInstance)";
			}
		}
		else
		{
			return "gl_InstanceID";
		}
	case BuiltInVertexIndex:
		ensure_builtin(StorageClassInput, BuiltInVertexIndex);
		if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
		    (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
		{
			if (builtin_declaration)
			{
				if (needs_base_vertex_arg != TriState::No)
					needs_base_vertex_arg = TriState::Yes;
				return "gl_VertexIndex";
			}
			else
			{
				ensure_builtin(StorageClassInput, BuiltInBaseVertex);
				return "(gl_VertexIndex - gl_BaseVertex)";
			}
		}
		else
		{
			return "gl_VertexIndex";
		}
	case BuiltInInstanceIndex:
		ensure_builtin(StorageClassInput, BuiltInInstanceIndex);
		if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
		    (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
		{
			if (builtin_declaration)
			{
				if (needs_base_instance_arg != TriState::No)
					needs_base_instance_arg = TriState::Yes;
				return "gl_InstanceIndex";
			}
			else
			{
				ensure_builtin(StorageClassInput, BuiltInBaseInstance);
				return "(gl_InstanceIndex - gl_BaseInstance)";
			}
		}
		else
		{
			return "gl_InstanceIndex";
		}
	case BuiltInBaseVertex:
		if (msl_options.supports_msl_version(1, 1) &&
		    (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
		{
			needs_base_vertex_arg = TriState::No;
			return "gl_BaseVertex";
		}
		else
		{
			SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware.");
		}
	case BuiltInBaseInstance:
		if (msl_options.supports_msl_version(1, 1) &&
		    (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
		{
			needs_base_instance_arg = TriState::No;
			return "gl_BaseInstance";
		}
		else
		{
			SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware.");
		}
	case BuiltInDrawIndex:
		SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");

	// When used in the entry function, output builtins are qualified with output struct name.
	// Test storage class as NOT Input, as output builtins might be part of generic type.
	// Also don't do this for tessellation control shaders.
	case BuiltInViewportIndex:
		if (!msl_options.supports_msl_version(2, 0))
			SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
		/* fallthrough */
	case BuiltInFragDepth:
	case BuiltInFragStencilRefEXT:
		if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) ||
		    (builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin))
			break;
		/* fallthrough */
	case BuiltInPosition:
	case BuiltInPointSize:
	case BuiltInClipDistance:
	case BuiltInCullDistance:
	case BuiltInLayer:
		if (is_tesc_shader())
			break;
		if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
		    !is_stage_output_builtin_masked(builtin))
			return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
		break;

	case BuiltInSampleMask:
		if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
			(has_additional_fixed_sample_mask() || needs_sample_id))
		{
			string samp_mask_in;
			samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage);
			if (has_additional_fixed_sample_mask())
				samp_mask_in += " & " + additional_fixed_sample_mask_str();
			if (needs_sample_id)
				samp_mask_in += " & (1 << gl_SampleID)";
			samp_mask_in += ")";
			return samp_mask_in;
		}
		if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
		    !is_stage_output_builtin_masked(builtin))
			return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
		break;

	case BuiltInBaryCoordKHR:
	case BuiltInBaryCoordNoPerspKHR:
		if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
			return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
		break;

	case BuiltInTessLevelOuter:
		if (is_tesc_shader() && storage != StorageClassInput && current_function &&
		    (current_function->self == ir.default_entry_point))
		{
			return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
			            "].edgeTessellationFactor");
		}
		break;

	case BuiltInTessLevelInner:
		if (is_tesc_shader() && storage != StorageClassInput && current_function &&
		    (current_function->self == ir.default_entry_point))
		{
			return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
			            "].insideTessellationFactor");
		}
		break;

	case BuiltInHelperInvocation:
		if (needs_manual_helper_invocation_updates())
			break;
		if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
		else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
			SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
		// In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early.
		return "simd_is_helper_thread()";

	default:
		break;
	}

	return CompilerGLSL::builtin_to_glsl(builtin, storage);
}

// Returns an MSL string attribute qualifer for a SPIR-V builtin
string CompilerMSL::builtin_qualifier(BuiltIn builtin)
{
	auto &execution = get_entry_point();

	switch (builtin)
	{
	// Vertex function in
	case BuiltInVertexId:
		return "vertex_id";
	case BuiltInVertexIndex:
		return "vertex_id";
	case BuiltInBaseVertex:
		return "base_vertex";
	case BuiltInInstanceId:
		return "instance_id";
	case BuiltInInstanceIndex:
		return "instance_id";
	case BuiltInBaseInstance:
		return "base_instance";
	case BuiltInDrawIndex:
		SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");

	// Vertex function out
	case BuiltInClipDistance:
		return "clip_distance";
	case BuiltInPointSize:
		return "point_size";
	case BuiltInPosition:
		if (position_invariant)
		{
			if (!msl_options.supports_msl_version(2, 1))
				SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up.");
			return "position, invariant";
		}
		else
			return "position";
	case BuiltInLayer:
		return "render_target_array_index";
	case BuiltInViewportIndex:
		if (!msl_options.supports_msl_version(2, 0))
			SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
		return "viewport_array_index";

	// Tess. control function in
	case BuiltInInvocationId:
		if (msl_options.multi_patch_workgroup)
		{
			// Shouldn't be reached.
			SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL.");
		}
		return "thread_index_in_threadgroup";
	case BuiltInPatchVertices:
		// Shouldn't be reached.
		SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
	case BuiltInPrimitiveId:
		switch (execution.model)
		{
		case ExecutionModelTessellationControl:
			if (msl_options.multi_patch_workgroup)
			{
				// Shouldn't be reached.
				SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL.");
			}
			return "threadgroup_position_in_grid";
		case ExecutionModelTessellationEvaluation:
			return "patch_id";
		case ExecutionModelFragment:
			if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
				SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3.");
			else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 2))
				SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2.");
			return "primitive_id";
		default:
			SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
		}

	// Tess. control function out
	case BuiltInTessLevelOuter:
	case BuiltInTessLevelInner:
		// Shouldn't be reached.
		SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");

	// Tess. evaluation function in
	case BuiltInTessCoord:
		return "position_in_patch";

	// Fragment function in
	case BuiltInFrontFacing:
		return "front_facing";
	case BuiltInPointCoord:
		return "point_coord";
	case BuiltInFragCoord:
		return "position";
	case BuiltInSampleId:
		return "sample_id";
	case BuiltInSampleMask:
		return "sample_mask";
	case BuiltInSamplePosition:
		// Shouldn't be reached.
		SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
	case BuiltInViewIndex:
		if (execution.model != ExecutionModelFragment)
			SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders.");
		// The ViewIndex was implicitly used in the prior stages to set the render_target_array_index,
		// so we can get it from there.
		return "render_target_array_index";

	// Fragment function out
	case BuiltInFragDepth:
		if (execution.flags.get(ExecutionModeDepthGreater))
			return "depth(greater)";
		else if (execution.flags.get(ExecutionModeDepthLess))
			return "depth(less)";
		else
			return "depth(any)";

	case BuiltInFragStencilRefEXT:
		return "stencil";

	// Compute function in
	case BuiltInGlobalInvocationId:
		return "thread_position_in_grid";

	case BuiltInWorkgroupId:
		return "threadgroup_position_in_grid";

	case BuiltInNumWorkgroups:
		return "threadgroups_per_grid";

	case BuiltInLocalInvocationId:
		return "thread_position_in_threadgroup";

	case BuiltInLocalInvocationIndex:
		return "thread_index_in_threadgroup";

	case BuiltInSubgroupSize:
		if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0)
			// Shouldn't be reached.
			SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??");
		if (execution.model == ExecutionModelFragment)
		{
			if (!msl_options.supports_msl_version(2, 2))
				SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders.");
			return "threads_per_simdgroup";
		}
		else
		{
			// thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0,
			// but not in fragment.
			return "thread_execution_width";
		}

	case BuiltInNumSubgroups:
		if (msl_options.emulate_subgroups)
			// Shouldn't be reached.
			SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation.");
		if (!msl_options.supports_msl_version(2))
			SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
		return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup";

	case BuiltInSubgroupId:
		if (msl_options.emulate_subgroups)
			// Shouldn't be reached.
			SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation.");
		if (!msl_options.supports_msl_version(2))
			SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
		return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup";

	case BuiltInSubgroupLocalInvocationId:
		if (msl_options.emulate_subgroups)
			// Shouldn't be reached.
			SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation.");
		if (execution.model == ExecutionModelFragment)
		{
			if (!msl_options.supports_msl_version(2, 2))
				SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders.");
			return "thread_index_in_simdgroup";
		}
		else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute ||
		         execution.model == ExecutionModelTessellationControl ||
		         (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation))
		{
			// We are generating a Metal kernel function.
			if (!msl_options.supports_msl_version(2))
				SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0.");
			return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup";
		}
		else
			SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function.");

	case BuiltInSubgroupEqMask:
	case BuiltInSubgroupGeMask:
	case BuiltInSubgroupGtMask:
	case BuiltInSubgroupLeMask:
	case BuiltInSubgroupLtMask:
		// Shouldn't be reached.
		SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL.");

	case BuiltInBaryCoordKHR:
		if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
		else if (!msl_options.supports_msl_version(2, 2))
			SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
		return "barycentric_coord, center_perspective";

	case BuiltInBaryCoordNoPerspKHR:
		if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
		else if (!msl_options.supports_msl_version(2, 2))
			SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
		return "barycentric_coord, center_no_perspective";

	default:
		return "unsupported-built-in";
	}
}

// Returns an MSL string type declaration for a SPIR-V builtin
string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id)
{
	switch (builtin)
	{
	// Vertex function in
	case BuiltInVertexId:
		return "uint";
	case BuiltInVertexIndex:
		return "uint";
	case BuiltInBaseVertex:
		return "uint";
	case BuiltInInstanceId:
		return "uint";
	case BuiltInInstanceIndex:
		return "uint";
	case BuiltInBaseInstance:
		return "uint";
	case BuiltInDrawIndex:
		SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");

	// Vertex function out
	case BuiltInClipDistance:
	case BuiltInCullDistance:
		return "float";
	case BuiltInPointSize:
		return "float";
	case BuiltInPosition:
		return "float4";
	case BuiltInLayer:
		return "uint";
	case BuiltInViewportIndex:
		if (!msl_options.supports_msl_version(2, 0))
			SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
		return "uint";

	// Tess. control function in
	case BuiltInInvocationId:
		return "uint";
	case BuiltInPatchVertices:
		return "uint";
	case BuiltInPrimitiveId:
		return "uint";

	// Tess. control function out
	case BuiltInTessLevelInner:
		if (is_tese_shader())
			return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float2";
		return "half";
	case BuiltInTessLevelOuter:
		if (is_tese_shader())
			return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float4";
		return "half";

	// Tess. evaluation function in
	case BuiltInTessCoord:
		return "float3";

	// Fragment function in
	case BuiltInFrontFacing:
		return "bool";
	case BuiltInPointCoord:
		return "float2";
	case BuiltInFragCoord:
		return "float4";
	case BuiltInSampleId:
		return "uint";
	case BuiltInSampleMask:
		return "uint";
	case BuiltInSamplePosition:
		return "float2";
	case BuiltInViewIndex:
		return "uint";

	case BuiltInHelperInvocation:
		return "bool";

	case BuiltInBaryCoordKHR:
	case BuiltInBaryCoordNoPerspKHR:
		// Use the type as declared, can be 1, 2 or 3 components.
		return type_to_glsl(get_variable_data_type(get<SPIRVariable>(id)));

	// Fragment function out
	case BuiltInFragDepth:
		return "float";

	case BuiltInFragStencilRefEXT:
		return "uint";

	// Compute function in
	case BuiltInGlobalInvocationId:
	case BuiltInLocalInvocationId:
	case BuiltInNumWorkgroups:
	case BuiltInWorkgroupId:
		return "uint3";
	case BuiltInLocalInvocationIndex:
	case BuiltInNumSubgroups:
	case BuiltInSubgroupId:
	case BuiltInSubgroupSize:
	case BuiltInSubgroupLocalInvocationId:
		return "uint";
	case BuiltInSubgroupEqMask:
	case BuiltInSubgroupGeMask:
	case BuiltInSubgroupGtMask:
	case BuiltInSubgroupLeMask:
	case BuiltInSubgroupLtMask:
		return "uint4";

	case BuiltInDeviceIndex:
		return "int";

	default:
		return "unsupported-built-in-type";
	}
}

// Returns the declaration of a built-in argument to a function
string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
{
	string bi_arg;
	if (prefix_comma)
		bi_arg += ", ";

	// Handle HLSL-style 0-based vertex/instance index.
	builtin_declaration = true;
	bi_arg += builtin_type_decl(builtin);
	bi_arg += string(" ") + builtin_to_glsl(builtin, StorageClassInput);
	bi_arg += string(" [[") + builtin_qualifier(builtin) + string("]]");
	builtin_declaration = false;

	return bi_arg;
}

const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const
{
	if (member_is_remapped_physical_type(type, index))
		return get<SPIRType>(get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID));
	else
		return get<SPIRType>(type.member_types[index]);
}

SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const
{
	SPIRType type = get_physical_member_type(ib_type, index);
	uint32_t loc = get_member_decoration(ib_type.self, index, DecorationLocation);
	uint32_t cmp = get_member_decoration(ib_type.self, index, DecorationComponent);
	auto p_va = inputs_by_location.find({loc, cmp});
	if (p_va != end(inputs_by_location) && p_va->second.vecsize > type.vecsize)
		type.vecsize = p_va->second.vecsize;

	return type;
}

uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const
{
	// Array stride in MSL is always size * array_size. sizeof(float3) == 16,
	// unlike GLSL and HLSL where array stride would be 16 and size 12.

	// We could use parent type here and recurse, but that makes creating physical type remappings
	// far more complicated. We'd rather just create the final type, and ignore having to create the entire type
	// hierarchy in order to compute this value, so make a temporary type on the stack.

	auto basic_type = type;
	basic_type.array.clear();
	basic_type.array_size_literal.clear();
	uint32_t value_size = get_declared_type_size_msl(basic_type, is_packed, row_major);

	uint32_t dimensions = uint32_t(type.array.size());
	assert(dimensions > 0);
	dimensions--;

	// Multiply together every dimension, except the last one.
	for (uint32_t dim = 0; dim < dimensions; dim++)
	{
		uint32_t array_size = to_array_size_literal(type, dim);
		value_size *= max<uint32_t>(array_size, 1u);
	}

	return value_size;
}

uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_array_stride_msl(get_physical_member_type(type, index),
	                                          member_is_packed_physical_type(type, index),
	                                          has_member_decoration(type.self, index, DecorationRowMajor));
}

uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_array_stride_msl(get_presumed_input_type(type, index), false,
	                                          has_member_decoration(type.self, index, DecorationRowMajor));
}

uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const
{
	// For packed matrices, we just use the size of the vector type.
	// Otherwise, MatrixStride == alignment, which is the size of the underlying vector type.
	if (packed)
		return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize);
	else
		return get_declared_type_alignment_msl(type, false, row_major);
}

uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_matrix_stride_msl(get_physical_member_type(type, index),
	                                           member_is_packed_physical_type(type, index),
	                                           has_member_decoration(type.self, index, DecorationRowMajor));
}

uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_matrix_stride_msl(get_presumed_input_type(type, index), false,
	                                           has_member_decoration(type.self, index, DecorationRowMajor));
}

uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment,
                                                   bool ignore_padding) const
{
	// If we have a target size, that is the declared size as well.
	if (!ignore_padding && has_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget))
		return get_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget);

	if (struct_type.member_types.empty())
		return 0;

	uint32_t mbr_cnt = uint32_t(struct_type.member_types.size());

	// In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
	uint32_t alignment = 1;

	if (!ignore_alignment)
	{
		for (uint32_t i = 0; i < mbr_cnt; i++)
		{
			uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, i);
			alignment = max(alignment, mbr_alignment);
		}
	}

	// Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends
	// on physical size in MSL, and the size of the struct itself is then aligned to struct alignment.
	uint32_t spirv_offset = type_struct_member_offset(struct_type, mbr_cnt - 1);
	uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, mbr_cnt - 1);
	msl_size = (msl_size + alignment - 1) & ~(alignment - 1);
	return msl_size;
}

uint32_t CompilerMSL::get_physical_type_stride(const SPIRType &type) const
{
	// This should only be relevant for plain types such as scalars and vectors?
	// If we're pointing to a struct, it will recursively pick up packed/row-major state.
	return get_declared_type_size_msl(type, false, false);
}

// Returns the byte size of a struct member.
uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const
{
	// Pointers take 8 bytes each
	// Match both pointer and array-of-pointer here.
	if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
	{
		uint32_t type_size = 8;

		// Work our way through potentially layered arrays,
		// stopping when we hit a pointer that is not also an array.
		int32_t dim_idx = (int32_t)type.array.size() - 1;
		auto *p_type = &type;
		while (!is_pointer(*p_type) && dim_idx >= 0)
		{
			type_size *= to_array_size_literal(*p_type, dim_idx);
			p_type = &get<SPIRType>(p_type->parent_type);
			dim_idx--;
		}

		return type_size;
	}

	switch (type.basetype)
	{
	case SPIRType::Unknown:
	case SPIRType::Void:
	case SPIRType::AtomicCounter:
	case SPIRType::Image:
	case SPIRType::SampledImage:
	case SPIRType::Sampler:
		SPIRV_CROSS_THROW("Querying size of opaque object.");

	default:
	{
		if (!type.array.empty())
		{
			uint32_t array_size = to_array_size_literal(type);
			return get_declared_type_array_stride_msl(type, is_packed, row_major) * max<uint32_t>(array_size, 1u);
		}

		if (type.basetype == SPIRType::Struct)
			return get_declared_struct_size_msl(type);

		if (is_packed)
		{
			return type.vecsize * type.columns * (type.width / 8);
		}
		else
		{
			// An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
			uint32_t vecsize = type.vecsize;
			uint32_t columns = type.columns;

			if (row_major && columns > 1)
				swap(vecsize, columns);

			if (vecsize == 3)
				vecsize = 4;

			return vecsize * columns * (type.width / 8);
		}
	}
	}
}

uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_size_msl(get_physical_member_type(type, index),
	                                  member_is_packed_physical_type(type, index),
	                                  has_member_decoration(type.self, index, DecorationRowMajor));
}

uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_size_msl(get_presumed_input_type(type, index), false,
	                                  has_member_decoration(type.self, index, DecorationRowMajor));
}

// Returns the byte alignment of a type.
uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const
{
	// Pointers align on multiples of 8 bytes.
	// Deliberately ignore array-ness here. It's not relevant for alignment.
	if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
		return 8;

	switch (type.basetype)
	{
	case SPIRType::Unknown:
	case SPIRType::Void:
	case SPIRType::AtomicCounter:
	case SPIRType::Image:
	case SPIRType::SampledImage:
	case SPIRType::Sampler:
		SPIRV_CROSS_THROW("Querying alignment of opaque object.");

	case SPIRType::Double:
		SPIRV_CROSS_THROW("double types are not supported in buffers in MSL.");

	case SPIRType::Struct:
	{
		// In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
		uint32_t alignment = 1;
		for (uint32_t i = 0; i < type.member_types.size(); i++)
			alignment = max(alignment, uint32_t(get_declared_struct_member_alignment_msl(type, i)));
		return alignment;
	}

	default:
	{
		if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above.");
		if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(2, 3))
			SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above.");
		// Alignment of packed type is the same as the underlying component or column size.
		// Alignment of unpacked type is the same as the vector size.
		// Alignment of 3-elements vector is the same as 4-elements (including packed using column).
		if (is_packed)
		{
			// If we have packed_T and friends, the alignment is always scalar.
			return type.width / 8;
		}
		else
		{
			// This is the general rule for MSL. Size == alignment.
			uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize;
			return (type.width / 8) * (vecsize == 3 ? 4 : vecsize);
		}
	}
	}
}

uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_alignment_msl(get_physical_member_type(type, index),
	                                       member_is_packed_physical_type(type, index),
	                                       has_member_decoration(type.self, index, DecorationRowMajor));
}

uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const
{
	return get_declared_type_alignment_msl(get_presumed_input_type(type, index), false,
	                                       has_member_decoration(type.self, index, DecorationRowMajor));
}

bool CompilerMSL::skip_argument(uint32_t) const
{
	return false;
}

void CompilerMSL::analyze_sampled_image_usage()
{
	if (msl_options.swizzle_texture_samples)
	{
		SampledImageScanner scanner(*this);
		traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
	}
}

bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
{
	switch (opcode)
	{
	case OpLoad:
	case OpImage:
	case OpSampledImage:
	{
		if (length < 3)
			return false;

		uint32_t result_type = args[0];
		auto &type = compiler.get<SPIRType>(result_type);
		if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
			return true;

		uint32_t id = args[1];
		compiler.set<SPIRExpression>(id, "", result_type, true);
		break;
	}
	case OpImageSampleExplicitLod:
	case OpImageSampleProjExplicitLod:
	case OpImageSampleDrefExplicitLod:
	case OpImageSampleProjDrefExplicitLod:
	case OpImageSampleImplicitLod:
	case OpImageSampleProjImplicitLod:
	case OpImageSampleDrefImplicitLod:
	case OpImageSampleProjDrefImplicitLod:
	case OpImageFetch:
	case OpImageGather:
	case OpImageDrefGather:
		compiler.has_sampled_images =
		    compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
		compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images;
		break;
	default:
		break;
	}
	return true;
}

// If a needed custom function wasn't added before, add it and force a recompile.
void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func)
{
	if (spv_function_implementations.count(spv_func) == 0)
	{
		spv_function_implementations.insert(spv_func);
		suppress_missing_prototypes = true;
		force_recompile();
	}
}

bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
{
	// Since MSL exists in a single execution scope, function prototype declarations are not
	// needed, and clutter the output. If secondary functions are output (either as a SPIR-V
	// function implementation or as indicated by the presence of OpFunctionCall), then set
	// suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.

	// Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
	SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
	if (spv_func != SPVFuncImplNone)
	{
		compiler.spv_function_implementations.insert(spv_func);
		suppress_missing_prototypes = true;
	}

	switch (opcode)
	{

	case OpFunctionCall:
		suppress_missing_prototypes = true;
		break;

	case OpDemoteToHelperInvocationEXT:
		uses_discard = true;
		break;

	// Emulate texture2D atomic operations
	case OpImageTexelPointer:
	{
		if (!compiler.msl_options.supports_msl_version(3, 1))
		{
			auto *var = compiler.maybe_get_backing_variable(args[2]);
			image_pointers_emulated[args[1]] = var ? var->self : ID(0);
		}
		break;
	}

	case OpImageWrite:
		uses_image_write = true;
		break;

	case OpStore:
		check_resource_write(args[0]);
		break;

	// Emulate texture2D atomic operations
	case OpAtomicExchange:
	case OpAtomicCompareExchange:
	case OpAtomicCompareExchangeWeak:
	case OpAtomicIIncrement:
	case OpAtomicIDecrement:
	case OpAtomicIAdd:
	case OpAtomicFAddEXT:
	case OpAtomicISub:
	case OpAtomicSMin:
	case OpAtomicUMin:
	case OpAtomicSMax:
	case OpAtomicUMax:
	case OpAtomicAnd:
	case OpAtomicOr:
	case OpAtomicXor:
	{
		uses_atomics = true;
		auto it = image_pointers_emulated.find(args[2]);
		if (it != image_pointers_emulated.end())
		{
			uses_image_write = true;
			compiler.atomic_image_vars_emulated.insert(it->second);
		}
		else
			check_resource_write(args[2]);
		break;
	}

	case OpAtomicStore:
	{
		uses_atomics = true;
		auto it = image_pointers_emulated.find(args[0]);
		if (it != image_pointers_emulated.end())
		{
			compiler.atomic_image_vars_emulated.insert(it->second);
			uses_image_write = true;
		}
		else
			check_resource_write(args[0]);
		break;
	}

	case OpAtomicLoad:
	{
		uses_atomics = true;
		auto it = image_pointers_emulated.find(args[2]);
		if (it != image_pointers_emulated.end())
		{
			compiler.atomic_image_vars_emulated.insert(it->second);
		}
		break;
	}

	case OpGroupNonUniformInverseBallot:
		needs_subgroup_invocation_id = true;
		break;

	case OpGroupNonUniformBallotFindLSB:
	case OpGroupNonUniformBallotFindMSB:
		needs_subgroup_size = true;
		break;

	case OpGroupNonUniformBallotBitCount:
		if (args[3] == GroupOperationReduce)
			needs_subgroup_size = true;
		else
			needs_subgroup_invocation_id = true;
		break;

	case OpArrayLength:
	{
		auto *var = compiler.maybe_get_backing_variable(args[2]);
		if (var != nullptr)
		{
			if (!compiler.is_var_runtime_size_array(*var))
				compiler.buffers_requiring_array_length.insert(var->self);
		}
		break;
	}

	case OpInBoundsAccessChain:
	case OpAccessChain:
	case OpPtrAccessChain:
	{
		// OpArrayLength might want to know if taking ArrayLength of an array of SSBOs.
		uint32_t result_type = args[0];
		uint32_t id = args[1];
		uint32_t ptr = args[2];

		compiler.set<SPIRExpression>(id, "", result_type, true);
		compiler.register_read(id, ptr, true);
		compiler.ir.ids[id].set_allow_type_rewrite();
		break;
	}

	case OpExtInst:
	{
		uint32_t extension_set = args[2];
		if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
		{
			auto op_450 = static_cast<GLSLstd450>(args[3]);
			switch (op_450)
			{
			case GLSLstd450InterpolateAtCentroid:
			case GLSLstd450InterpolateAtSample:
			case GLSLstd450InterpolateAtOffset:
			{
				if (!compiler.msl_options.supports_msl_version(2, 3))
					SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3.");
				// Fragment varyings used with pull-model interpolation need special handling,
				// due to the way pull-model interpolation works in Metal.
				auto *var = compiler.maybe_get_backing_variable(args[4]);
				if (var)
				{
					compiler.pull_model_inputs.insert(var->self);
					auto &var_type = compiler.get_variable_element_type(*var);
					// In addition, if this variable has a 'Sample' decoration, we need the sample ID
					// in order to do default interpolation.
					if (compiler.has_decoration(var->self, DecorationSample))
					{
						needs_sample_id = true;
					}
					else if (var_type.basetype == SPIRType::Struct)
					{
						// Now we need to check each member and see if it has this decoration.
						for (uint32_t i = 0; i < var_type.member_types.size(); ++i)
						{
							if (compiler.has_member_decoration(var_type.self, i, DecorationSample))
							{
								needs_sample_id = true;
								break;
							}
						}
					}
				}
				break;
			}
			default:
				break;
			}
		}
		break;
	}

	case OpIsHelperInvocationEXT:
		if (compiler.needs_manual_helper_invocation_updates())
			needs_helper_invocation = true;
		break;

	default:
		break;
	}

	// If it has one, keep track of the instruction's result type, mapped by ID
	uint32_t result_type, result_id;
	if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
		result_types[result_id] = result_type;

	return true;
}

// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
{
	auto *p_var = compiler.maybe_get_backing_variable(var_id);
	StorageClass sc = p_var ? p_var->storage : StorageClassMax;
	if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
		uses_buffer_write = true;
}

// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
{
	switch (opcode)
	{
	case OpFMod:
		return SPVFuncImplMod;

	case OpFAdd:
	case OpFSub:
		if (compiler.msl_options.invariant_float_math ||
		    compiler.has_decoration(args[1], DecorationNoContraction))
		{
			return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub;
		}
		break;

	case OpFMul:
	case OpOuterProduct:
	case OpMatrixTimesVector:
	case OpVectorTimesMatrix:
	case OpMatrixTimesMatrix:
		if (compiler.msl_options.invariant_float_math ||
		    compiler.has_decoration(args[1], DecorationNoContraction))
		{
			return SPVFuncImplFMul;
		}
		break;

	case OpQuantizeToF16:
		return SPVFuncImplQuantizeToF16;

	case OpTypeArray:
	{
		// Allow Metal to use the array<T> template to make arrays a value type
		return SPVFuncImplUnsafeArray;
	}

	// Emulate texture2D atomic operations
	case OpAtomicExchange:
	case OpAtomicCompareExchange:
	case OpAtomicCompareExchangeWeak:
	case OpAtomicIIncrement:
	case OpAtomicIDecrement:
	case OpAtomicIAdd:
	case OpAtomicFAddEXT:
	case OpAtomicISub:
	case OpAtomicSMin:
	case OpAtomicUMin:
	case OpAtomicSMax:
	case OpAtomicUMax:
	case OpAtomicAnd:
	case OpAtomicOr:
	case OpAtomicXor:
	case OpAtomicLoad:
	case OpAtomicStore:
	{
		auto it = image_pointers_emulated.find(args[opcode == OpAtomicStore ? 0 : 2]);
		if (it != image_pointers_emulated.end())
		{
			uint32_t tid = compiler.get<SPIRVariable>(it->second).basetype;
			if (tid && compiler.get<SPIRType>(tid).image.dim == Dim2D)
				return SPVFuncImplImage2DAtomicCoords;
		}
		break;
	}

	case OpImageFetch:
	case OpImageRead:
	case OpImageWrite:
	{
		// Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
		uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
		if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
			return SPVFuncImplTexelBufferCoords;
		break;
	}

	case OpExtInst:
	{
		uint32_t extension_set = args[2];
		if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
		{
			auto op_450 = static_cast<GLSLstd450>(args[3]);
			switch (op_450)
			{
			case GLSLstd450Radians:
				return SPVFuncImplRadians;
			case GLSLstd450Degrees:
				return SPVFuncImplDegrees;
			case GLSLstd450FindILsb:
				return SPVFuncImplFindILsb;
			case GLSLstd450FindSMsb:
				return SPVFuncImplFindSMsb;
			case GLSLstd450FindUMsb:
				return SPVFuncImplFindUMsb;
			case GLSLstd450SSign:
				return SPVFuncImplSSign;
			case GLSLstd450Reflect:
			{
				auto &type = compiler.get<SPIRType>(args[0]);
				if (type.vecsize == 1)
					return SPVFuncImplReflectScalar;
				break;
			}
			case GLSLstd450Refract:
			{
				auto &type = compiler.get<SPIRType>(args[0]);
				if (type.vecsize == 1)
					return SPVFuncImplRefractScalar;
				break;
			}
			case GLSLstd450FaceForward:
			{
				auto &type = compiler.get<SPIRType>(args[0]);
				if (type.vecsize == 1)
					return SPVFuncImplFaceForwardScalar;
				break;
			}
			case GLSLstd450MatrixInverse:
			{
				auto &mat_type = compiler.get<SPIRType>(args[0]);
				switch (mat_type.columns)
				{
				case 2:
					return SPVFuncImplInverse2x2;
				case 3:
					return SPVFuncImplInverse3x3;
				case 4:
					return SPVFuncImplInverse4x4;
				default:
					break;
				}
				break;
			}
			default:
				break;
			}
		}
		break;
	}

	case OpGroupNonUniformBroadcast:
	case OpSubgroupReadInvocationKHR:
		return SPVFuncImplSubgroupBroadcast;

	case OpGroupNonUniformBroadcastFirst:
	case OpSubgroupFirstInvocationKHR:
		return SPVFuncImplSubgroupBroadcastFirst;

	case OpGroupNonUniformBallot:
	case OpSubgroupBallotKHR:
		return SPVFuncImplSubgroupBallot;

	case OpGroupNonUniformInverseBallot:
	case OpGroupNonUniformBallotBitExtract:
		return SPVFuncImplSubgroupBallotBitExtract;

	case OpGroupNonUniformBallotFindLSB:
		return SPVFuncImplSubgroupBallotFindLSB;

	case OpGroupNonUniformBallotFindMSB:
		return SPVFuncImplSubgroupBallotFindMSB;

	case OpGroupNonUniformBallotBitCount:
		return SPVFuncImplSubgroupBallotBitCount;

	case OpGroupNonUniformAllEqual:
	case OpSubgroupAllEqualKHR:
		return SPVFuncImplSubgroupAllEqual;

	case OpGroupNonUniformShuffle:
		return SPVFuncImplSubgroupShuffle;

	case OpGroupNonUniformShuffleXor:
		return SPVFuncImplSubgroupShuffleXor;

	case OpGroupNonUniformShuffleUp:
		return SPVFuncImplSubgroupShuffleUp;

	case OpGroupNonUniformShuffleDown:
		return SPVFuncImplSubgroupShuffleDown;

	case OpGroupNonUniformQuadBroadcast:
		return SPVFuncImplQuadBroadcast;

	case OpGroupNonUniformQuadSwap:
		return SPVFuncImplQuadSwap;

	case OpSDot:
	case OpUDot:
	case OpSUDot:
	case OpSDotAccSat:
	case OpUDotAccSat:
	case OpSUDotAccSat:
		return SPVFuncImplReduceAdd;

	default:
		break;
	}
	return SPVFuncImplNone;
}

// Sort both type and meta member content based on builtin status (put builtins at end),
// then by the required sorting aspect.
void CompilerMSL::MemberSorter::sort()
{
	// Create a temporary array of consecutive member indices and sort it based on how
	// the members should be reordered, based on builtin and sorting aspect meta info.
	size_t mbr_cnt = type.member_types.size();
	SmallVector<uint32_t> mbr_idxs(mbr_cnt);
	std::iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
	std::stable_sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect

	bool sort_is_identity = true;
	for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
	{
		if (mbr_idx != mbr_idxs[mbr_idx])
		{
			sort_is_identity = false;
			break;
		}
	}

	if (sort_is_identity)
		return;

	if (meta.members.size() < type.member_types.size())
	{
		// This should never trigger in normal circumstances, but to be safe.
		meta.members.resize(type.member_types.size());
	}

	// Move type and meta member info to the order defined by the sorted member indices.
	// This is done by creating temporary copies of both member types and meta, and then
	// copying back to the original content at the sorted indices.
	auto mbr_types_cpy = type.member_types;
	auto mbr_meta_cpy = meta.members;
	for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
	{
		type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
		meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
	}

	// If we're sorting by Offset, this might affect user code which accesses a buffer block.
	// We will need to redirect member indices from defined index to sorted index using reverse lookup.
	if (sort_aspect == SortAspect::Offset)
	{
		type.member_type_index_redirection.resize(mbr_cnt);
		for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++)
			type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx;
	}
}

bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
{
	auto &mbr_meta1 = meta.members[mbr_idx1];
	auto &mbr_meta2 = meta.members[mbr_idx2];

	if (sort_aspect == LocationThenBuiltInType)
	{
		// Sort first by builtin status (put builtins at end), then by the sorting aspect.
		if (mbr_meta1.builtin != mbr_meta2.builtin)
			return mbr_meta2.builtin;
		else if (mbr_meta1.builtin)
			return mbr_meta1.builtin_type < mbr_meta2.builtin_type;
		else if (mbr_meta1.location == mbr_meta2.location)
			return mbr_meta1.component < mbr_meta2.component;
		else
			return mbr_meta1.location < mbr_meta2.location;
	}
	else
		return mbr_meta1.offset < mbr_meta2.offset;
}

CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
    : type(t)
    , meta(m)
    , sort_aspect(sa)
{
	// Ensure enough meta info is available
	meta.members.resize(max(type.member_types.size(), meta.members.size()));
}

void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler)
{
	auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
	if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
		SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
	if (!type.array.empty())
		SPIRV_CROSS_THROW("Can not remap array of samplers.");
	constexpr_samplers_by_id[id] = sampler;
}

void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding,
                                                     const MSLConstexprSampler &sampler)
{
	constexpr_samplers_by_binding[{ desc_set, binding }] = sampler;
}

void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
{
	bool is_packed = has_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypePacked);
	auto *source_expr = maybe_get<SPIRExpression>(source_id);
	auto *var = maybe_get_backing_variable(source_id);
	const SPIRType *var_type = nullptr, *phys_type = nullptr;

	if (uint32_t phys_id = get_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypeID))
		phys_type = &get<SPIRType>(phys_id);
	else
		phys_type = &expr_type;

	if (var)
	{
		source_id = var->self;
		var_type = &get_variable_data_type(*var);
	}

	bool rewrite_boolean_load =
	    expr_type.basetype == SPIRType::Boolean &&
	    (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));

	// Type fixups for workgroup variables if they are booleans.
	if (rewrite_boolean_load)
	{
		if (is_array(expr_type))
			expr = to_rerolled_array_expression(expr_type, expr, expr_type);
		else
			expr = join(type_to_glsl(expr_type), "(", expr, ")");
	}

	// Type fixups for workgroup variables if they are matrices.
	// Don't do fixup for packed types; those are handled specially.
	// FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
	if (!msl_options.supports_msl_version(3, 0) && var &&
	    (var->storage == StorageClassWorkgroup ||
	     (var_type->basetype == SPIRType::Struct &&
	      has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
	    expr_type.columns > 1)
	{
		SPIRType matrix_type = *phys_type;
		if (source_expr && source_expr->need_transpose)
			swap(matrix_type.vecsize, matrix_type.columns);
		matrix_type.array.clear();
		matrix_type.array_size_literal.clear();
		expr = join(type_to_glsl(matrix_type), "(", expr, ")");
	}

	// Only interested in standalone builtin variables in the switch below.
	if (!has_decoration(source_id, DecorationBuiltIn))
	{
		// If the backing variable does not match our expected sign, we can fix it up here.
		// See ensure_correct_input_type().
		if (var && var->storage == StorageClassInput)
		{
			auto &base_type = get<SPIRType>(var->basetype);
			if (base_type.basetype != SPIRType::Struct && expr_type.basetype != base_type.basetype)
				expr = join(type_to_glsl(expr_type), "(", expr, ")");
		}
		return;
	}

	auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
	auto expected_type = expr_type.basetype;
	auto expected_width = expr_type.width;
	switch (builtin)
	{
	case BuiltInGlobalInvocationId:
	case BuiltInLocalInvocationId:
	case BuiltInWorkgroupId:
	case BuiltInLocalInvocationIndex:
	case BuiltInWorkgroupSize:
	case BuiltInNumWorkgroups:
	case BuiltInLayer:
	case BuiltInViewportIndex:
	case BuiltInFragStencilRefEXT:
	case BuiltInPrimitiveId:
	case BuiltInSubgroupSize:
	case BuiltInSubgroupLocalInvocationId:
	case BuiltInViewIndex:
	case BuiltInVertexIndex:
	case BuiltInInstanceIndex:
	case BuiltInBaseInstance:
	case BuiltInBaseVertex:
	case BuiltInSampleMask:
		expected_type = SPIRType::UInt;
		expected_width = 32;
		break;

	case BuiltInTessLevelInner:
	case BuiltInTessLevelOuter:
		if (is_tesc_shader())
		{
			expected_type = SPIRType::Half;
			expected_width = 16;
		}
		break;

	default:
		break;
	}

	if (is_array(expr_type) && builtin == BuiltInSampleMask)
	{
		// Needs special handling.
		auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
		wrap_expr += join(type_to_glsl(get<SPIRType>(expr_type.parent_type)), "(", expr, ")");
		wrap_expr += " })";
		expr = std::move(wrap_expr);
	}
	else if (expected_type != expr_type.basetype)
	{
		if (is_array(expr_type) && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
		{
			// Triggers when loading TessLevel directly as an array.
			// Need explicit padding + cast.
			auto wrap_expr = join(type_to_glsl(expr_type), "({ ");

			uint32_t array_size = get_physical_tess_level_array_size(builtin);
			for (uint32_t i = 0; i < array_size; i++)
			{
				if (array_size > 1)
					wrap_expr += join("float(", expr, "[", i, "])");
				else
					wrap_expr += join("float(", expr, ")");
				if (i + 1 < array_size)
					wrap_expr += ", ";
			}

			if (is_tessellating_triangles())
				wrap_expr += ", 0.0";

			wrap_expr += " })";
			expr = std::move(wrap_expr);
		}
		else
		{
			// These are of different widths, so we cannot do a straight bitcast.
			if (expected_width != expr_type.width)
				expr = join(type_to_glsl(expr_type), "(", expr, ")");
			else
				expr = bitcast_expression(expr_type, expected_type, expr);
		}
	}
}

void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
{
	bool is_packed = has_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypePacked);
	auto *target_expr = maybe_get<SPIRExpression>(target_id);
	auto *var = maybe_get_backing_variable(target_id);
	const SPIRType *var_type = nullptr, *phys_type = nullptr;

	if (uint32_t phys_id = get_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypeID))
		phys_type = &get<SPIRType>(phys_id);
	else
		phys_type = &expr_type;

	if (var)
	{
		target_id = var->self;
		var_type = &get_variable_data_type(*var);
	}

	bool rewrite_boolean_store =
		expr_type.basetype == SPIRType::Boolean &&
		(var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));

	// Type fixups for workgroup variables or struct members if they are booleans.
	if (rewrite_boolean_store)
	{
		if (is_array(expr_type))
		{
			expr = to_rerolled_array_expression(*var_type, expr, expr_type);
		}
		else
		{
			auto short_type = expr_type;
			short_type.basetype = SPIRType::Short;
			expr = join(type_to_glsl(short_type), "(", expr, ")");
		}
	}

	// Type fixups for workgroup variables if they are matrices.
	// Don't do fixup for packed types; those are handled specially.
	// FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
	if (!msl_options.supports_msl_version(3, 0) && var &&
	    (var->storage == StorageClassWorkgroup ||
	     (var_type->basetype == SPIRType::Struct &&
	      has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
	    expr_type.columns > 1)
	{
		SPIRType matrix_type = *phys_type;
		if (target_expr && target_expr->need_transpose)
			swap(matrix_type.vecsize, matrix_type.columns);
		expr = join("spvStorage_", type_to_glsl(matrix_type), "(", expr, ")");
	}

	// Only interested in standalone builtin variables.
	if (!has_decoration(target_id, DecorationBuiltIn))
		return;

	auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
	auto expected_type = expr_type.basetype;
	auto expected_width = expr_type.width;
	switch (builtin)
	{
	case BuiltInLayer:
	case BuiltInViewportIndex:
	case BuiltInFragStencilRefEXT:
	case BuiltInPrimitiveId:
	case BuiltInViewIndex:
		expected_type = SPIRType::UInt;
		expected_width = 32;
		break;

	case BuiltInTessLevelInner:
	case BuiltInTessLevelOuter:
		expected_type = SPIRType::Half;
		expected_width = 16;
		break;

	default:
		break;
	}

	if (expected_type != expr_type.basetype)
	{
		if (expected_width != expr_type.width)
		{
			// These are of different widths, so we cannot do a straight bitcast.
			auto type = expr_type;
			type.basetype = expected_type;
			type.width = expected_width;
			expr = join(type_to_glsl(type), "(", expr, ")");
		}
		else
		{
			auto type = expr_type;
			type.basetype = expected_type;
			expr = bitcast_expression(type, expr_type.basetype, expr);
		}
	}
}

string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
{
	// We risk getting an array initializer here with MSL. If we have an array.
	// FIXME: We cannot handle non-constant arrays being initialized.
	// We will need to inject spvArrayCopy here somehow ...
	auto &type = get<SPIRType>(var.basetype);
	string expr;
	if (ir.ids[var.initializer].get_type() == TypeConstant &&
	    (!type.array.empty() || type.basetype == SPIRType::Struct))
		expr = constant_expression(get<SPIRConstant>(var.initializer));
	else
		expr = CompilerGLSL::to_initializer_expression(var);
	// If the initializer has more vector components than the variable, add a swizzle.
	// FIXME: This can't handle arrays or structs.
	auto &init_type = expression_type(var.initializer);
	if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize)
		expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0));
	return expr;
}

string CompilerMSL::to_zero_initialized_expression(uint32_t)
{
	return "{}";
}

bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
{
	if (!msl_options.argument_buffers)
		return false;
	if (desc_set >= kMaxArgumentBuffers)
		return false;

	return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
}

bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const
{
	// iOS Tier 1 argument buffers do not support writable images.
	// When the argument buffer is encoded, we don't know whether this image will have a
	// NonWritable decoration, so just use discrete arguments for all storage images on iOS.
	bool is_supported_type = !(type.basetype == SPIRType::Image &&
							   type.image.sampled == 2 &&
							   msl_options.is_ios() &&
							   msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1);
	return is_supported_type && !type_is_msl_framebuffer_fetch(type);
}

void CompilerMSL::emit_argument_buffer_aliased_descriptor(const SPIRVariable &aliased_var,
                                                          const SPIRVariable &base_var)
{
	// To deal with buffer <-> image aliasing, we need to perform an unholy UB ritual.
	// A texture type in Metal 3.0 is a pointer. However, we cannot simply cast a pointer to texture.
	// What we *can* do is to cast pointer-to-pointer to pointer-to-texture.

	// We need to explicitly reach into the descriptor buffer lvalue, not any spvDescriptorArray wrapper.
	auto *var_meta = ir.find_meta(base_var.self);
	bool old_explicit_qualifier = var_meta && var_meta->decoration.qualified_alias_explicit_override;
	if (var_meta)
		var_meta->decoration.qualified_alias_explicit_override = false;
	auto unqualified_name = to_name(base_var.self, false);
	if (var_meta)
		var_meta->decoration.qualified_alias_explicit_override = old_explicit_qualifier;

	// For non-arrayed buffers, we have already performed a de-reference.
	// We need a proper lvalue to cast, so strip away the de-reference.
	if (unqualified_name.size() > 2 && unqualified_name[0] == '(' && unqualified_name[1] == '*')
	{
		unqualified_name.erase(unqualified_name.begin(), unqualified_name.begin() + 2);
		unqualified_name.pop_back();
	}

	string name;

	auto &var_type = get<SPIRType>(aliased_var.basetype);
	auto &data_type = get_variable_data_type(aliased_var);
	string descriptor_storage = descriptor_address_space(aliased_var.self, aliased_var.storage, "");

	if (aliased_var.storage == StorageClassUniformConstant)
	{
		if (is_var_runtime_size_array(aliased_var))
		{
			// This becomes a plain pointer to spvDescriptor.
			name = join("reinterpret_cast<", descriptor_storage, " ",
			            type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), ">(&",
			            unqualified_name, ")");
		}
		else
		{
			name = join("reinterpret_cast<", descriptor_storage, " ",
			            type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), " &>(",
			            unqualified_name, ");");
		}
	}
	else
	{
		// Buffer types.
		bool old_is_using_builtin_array = is_using_builtin_array;
		is_using_builtin_array = true;

		bool needs_post_cast_deref = !is_array(data_type);
		string ref_type = needs_post_cast_deref ? "&" : join("(&)", type_to_array_glsl(var_type, aliased_var.self));

		if (is_var_runtime_size_array(aliased_var))
		{
			name = join("reinterpret_cast<",
			            type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " *>(&",
			            unqualified_name, ")");
		}
		else
		{
			name = join(needs_post_cast_deref ? "*" : "", "reinterpret_cast<",
			            type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " ",
			            ref_type,
			            ">(", unqualified_name, ");");
		}

		if (needs_post_cast_deref)
			descriptor_storage = get_type_address_space(var_type, aliased_var.self, false);

		// These kinds of ridiculous casts trigger warnings in compiler. Just ignore them.
		if (!suppress_incompatible_pointer_types_discard_qualifiers)
		{
			suppress_incompatible_pointer_types_discard_qualifiers = true;
			force_recompile_guarantee_forward_progress();
		}

		is_using_builtin_array = old_is_using_builtin_array;
	}

	if (!is_var_runtime_size_array(aliased_var))
	{
		// Lower to temporary, so drop the qualification.
		set_qualified_name(aliased_var.self, "");
		statement(descriptor_storage, " auto &", to_name(aliased_var.self), " = ", name);
	}
	else
	{
		// This alias may have already been used to emit an entry point declaration. If there is a mismatch, we need a recompile.
		// Moving this code to be run earlier will also conflict,
		// because we need the qualified alias for the base resource,
		// so forcing recompile until things sync up is the least invasive method for now.
		if (ir.meta[aliased_var.self].decoration.qualified_alias != name)
			force_recompile();

		// This will get wrapped in a separate temporary when a spvDescriptorArray wrapper is emitted.
		set_qualified_name(aliased_var.self, name);
	}
}

void CompilerMSL::analyze_argument_buffers()
{
	// Gather all used resources and sort them out into argument buffers.
	// Each argument buffer corresponds to a descriptor set in SPIR-V.
	// The [[id(N)]] values used correspond to the resource mapping we have for MSL.
	// Otherwise, the binding number is used, but this is generally not safe some types like
	// combined image samplers and arrays of resources. Metal needs different indices here,
	// while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
	// you will need to use the remapping from the API.
	for (auto &id : argument_buffer_ids)
		id = 0;

	// Output resources, sorted by resource index & type.
	struct Resource
	{
		SPIRVariable *var;
		string name;
		SPIRType::BaseType basetype;
		uint32_t index;
		uint32_t plane_count;
		uint32_t plane;
		uint32_t overlapping_var_id;
	};
	SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
	SmallVector<uint32_t> inline_block_vars;

	bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {};
	bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {};
	bool needs_buffer_sizes = false;

	ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
		if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
		     var.storage == StorageClassStorageBuffer) &&
		    !is_hidden_variable(var))
		{
			uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
			// Ignore if it's part of a push descriptor set.
			if (!descriptor_set_is_argument_buffer(desc_set))
				return;

			uint32_t var_id = var.self;
			auto &type = get_variable_data_type(var);

			if (desc_set >= kMaxArgumentBuffers)
				SPIRV_CROSS_THROW("Descriptor set index is out of range.");

			const MSLConstexprSampler *constexpr_sampler = nullptr;
			if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
			{
				constexpr_sampler = find_constexpr_sampler(var_id);
				if (constexpr_sampler)
				{
					// Mark this ID as a constexpr sampler for later in case it came from set/bindings.
					constexpr_samplers_by_id[var_id] = *constexpr_sampler;
				}
			}

			uint32_t binding = get_decoration(var_id, DecorationBinding);
			if (type.basetype == SPIRType::SampledImage)
			{
				add_resource_name(var_id);

				uint32_t plane_count = 1;
				if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
					plane_count = constexpr_sampler->planes;

				for (uint32_t i = 0; i < plane_count; i++)
				{
					uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image, i);
					resources_in_set[desc_set].push_back(
					    { &var, to_name(var_id), SPIRType::Image, image_resource_index, plane_count, i, 0 });
				}

				if (type.image.dim != DimBuffer && !constexpr_sampler)
				{
					uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
					resources_in_set[desc_set].push_back(
					    { &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index, 1, 0, 0 });
				}
			}
			else if (inline_uniform_blocks.count(SetBindingPair{ desc_set, binding }))
			{
				inline_block_vars.push_back(var_id);
			}
			else if (!constexpr_sampler && is_supported_argument_buffer_type(type))
			{
				// constexpr samplers are not declared as resources.
				// Inline uniform blocks are always emitted at the end.
				add_resource_name(var_id);

				uint32_t resource_index = get_metal_resource_index(var, type.basetype);

				resources_in_set[desc_set].push_back(
					{ &var, to_name(var_id), type.basetype, resource_index, 1, 0, 0 });

				// Emulate texture2D atomic operations
				if (atomic_image_vars_emulated.count(var.self))
				{
					uint32_t buffer_resource_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
					resources_in_set[desc_set].push_back(
						{ &var, to_name(var_id) + "_atomic", SPIRType::Struct, buffer_resource_index, 1, 0, 0 });
				}
			}

			// Check if this descriptor set needs a swizzle buffer.
			if (needs_swizzle_buffer_def && is_sampled_image_type(type))
				set_needs_swizzle_buffer[desc_set] = true;
			else if (buffer_requires_array_length(var_id))
			{
				set_needs_buffer_sizes[desc_set] = true;
				needs_buffer_sizes = true;
			}
		}
	});

	if (needs_swizzle_buffer_def || needs_buffer_sizes)
	{
		uint32_t uint_ptr_type_id = 0;

		// We might have to add a swizzle buffer resource to the set.
		for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
		{
			if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set])
				continue;

			if (uint_ptr_type_id == 0)
			{
				uint_ptr_type_id = ir.increase_bound_by(1);

				// Create a buffer to hold extra data, including the swizzle constants.
				SPIRType uint_type_pointer = get_uint_type();
				uint_type_pointer.op = OpTypePointer;
				uint_type_pointer.pointer = true;
				uint_type_pointer.pointer_depth++;
				uint_type_pointer.parent_type = get_uint_type_id();
				uint_type_pointer.storage = StorageClassUniform;
				set<SPIRType>(uint_ptr_type_id, uint_type_pointer);
				set_decoration(uint_ptr_type_id, DecorationArrayStride, 4);
			}

			if (set_needs_swizzle_buffer[desc_set])
			{
				uint32_t var_id = ir.increase_bound_by(1);
				auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
				set_name(var_id, "spvSwizzleConstants");
				set_decoration(var_id, DecorationDescriptorSet, desc_set);
				set_decoration(var_id, DecorationBinding, kSwizzleBufferBinding);
				resources_in_set[desc_set].push_back(
				    { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 });
			}

			if (set_needs_buffer_sizes[desc_set])
			{
				uint32_t var_id = ir.increase_bound_by(1);
				auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
				set_name(var_id, "spvBufferSizeConstants");
				set_decoration(var_id, DecorationDescriptorSet, desc_set);
				set_decoration(var_id, DecorationBinding, kBufferSizeBufferBinding);
				resources_in_set[desc_set].push_back(
				    { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 });
			}
		}
	}

	// Now add inline uniform blocks.
	for (uint32_t var_id : inline_block_vars)
	{
		auto &var = get<SPIRVariable>(var_id);
		uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
		add_resource_name(var_id);
		resources_in_set[desc_set].push_back(
		    { &var, to_name(var_id), SPIRType::Struct, get_metal_resource_index(var, SPIRType::Struct), 1, 0, 0 });
	}

	for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
	{
		auto &resources = resources_in_set[desc_set];
		if (resources.empty())
			continue;

		assert(descriptor_set_is_argument_buffer(desc_set));

		uint32_t next_id = ir.increase_bound_by(3);
		uint32_t type_id = next_id + 1;
		uint32_t ptr_type_id = next_id + 2;
		argument_buffer_ids[desc_set] = next_id;

		auto &buffer_type = set<SPIRType>(type_id, OpTypeStruct);

		buffer_type.basetype = SPIRType::Struct;

		if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0)
		{
			buffer_type.storage = StorageClassStorageBuffer;
			// Make sure the argument buffer gets marked as const device.
			set_decoration(next_id, DecorationNonWritable);
			// Need to mark the type as a Block to enable this.
			set_decoration(type_id, DecorationBlock);
		}
		else
			buffer_type.storage = StorageClassUniform;

		auto buffer_type_name = join("spvDescriptorSetBuffer", desc_set);
		set_name(type_id, buffer_type_name);

		auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
		ptr_type = buffer_type;
		ptr_type.op = spv::OpTypePointer;
		ptr_type.pointer = true;
		ptr_type.pointer_depth++;
		ptr_type.parent_type = type_id;

		uint32_t buffer_variable_id = next_id;
		auto &buffer_var = set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
		auto buffer_name = join("spvDescriptorSet", desc_set);
		set_name(buffer_variable_id, buffer_name);

		// Ids must be emitted in ID order.
		stable_sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
			return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
		});

		for (size_t i = 0; i < resources.size() - 1; i++)
		{
			auto &r1 = resources[i];
			auto &r2 = resources[i + 1];

			if (r1.index == r2.index)
			{
				if (r1.overlapping_var_id)
					r2.overlapping_var_id = r1.overlapping_var_id;
				else
					r2.overlapping_var_id = r1.var->self;

				set_extended_decoration(r2.var->self, SPIRVCrossDecorationOverlappingBinding, r2.overlapping_var_id);
			}
		}

		uint32_t member_index = 0;
		uint32_t next_arg_buff_index = 0;
		for (auto &resource : resources)
		{
			auto &var = *resource.var;
			auto &type = get_variable_data_type(var);

			if (is_var_runtime_size_array(var) && (argument_buffer_device_storage_mask & (1u << desc_set)) == 0)
				SPIRV_CROSS_THROW("Runtime sized variables must be in device storage argument buffers.");

			// If needed, synthesize and add padding members.
			// member_index and next_arg_buff_index are incremented when padding members are added.
			if (msl_options.pad_argument_buffer_resources && resource.plane == 0 && resource.overlapping_var_id == 0)
			{
				auto rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
				while (resource.index > next_arg_buff_index)
				{
					switch (rez_bind.basetype)
					{
					case SPIRType::Void:
					case SPIRType::Boolean:
					case SPIRType::SByte:
					case SPIRType::UByte:
					case SPIRType::Short:
					case SPIRType::UShort:
					case SPIRType::Int:
					case SPIRType::UInt:
					case SPIRType::Int64:
					case SPIRType::UInt64:
					case SPIRType::AtomicCounter:
					case SPIRType::Half:
					case SPIRType::Float:
					case SPIRType::Double:
						add_argument_buffer_padding_buffer_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
						break;
					case SPIRType::Image:
						add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
						break;
					case SPIRType::Sampler:
						add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
						break;
					case SPIRType::SampledImage:
						if (next_arg_buff_index == rez_bind.msl_sampler)
							add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
						else
							add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
						break;
					default:
						break;
					}

					// After padding, retrieve the resource again. It will either be more padding, or the actual resource.
					rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
				}

				// Adjust the number of slots consumed by current member itself.
				// Use the count value from the app, instead of the shader, in case the
				// shader is only accessing part, or even one element, of the array.
				next_arg_buff_index += resource.plane_count * rez_bind.count;
			}

			string mbr_name = ensure_valid_name(resource.name, "m");
			if (resource.plane > 0)
				mbr_name += join(plane_name_suffix, resource.plane);
			set_member_name(buffer_type.self, member_index, mbr_name);

			if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
			{
				// Have to synthesize a sampler type here.

				bool type_is_array = !type.array.empty();
				uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
				auto &new_sampler_type = set<SPIRType>(sampler_type_id, OpTypeSampler);
				new_sampler_type.basetype = SPIRType::Sampler;
				new_sampler_type.storage = StorageClassUniformConstant;

				if (type_is_array)
				{
					uint32_t sampler_type_array_id = sampler_type_id + 1;
					auto &sampler_type_array = set<SPIRType>(sampler_type_array_id, OpTypeArray);
					sampler_type_array = new_sampler_type;
					sampler_type_array.array = type.array;
					sampler_type_array.array_size_literal = type.array_size_literal;
					sampler_type_array.parent_type = sampler_type_id;
					buffer_type.member_types.push_back(sampler_type_array_id);
				}
				else
					buffer_type.member_types.push_back(sampler_type_id);
			}
			else
			{
				uint32_t binding = get_decoration(var.self, DecorationBinding);
				SetBindingPair pair = { desc_set, binding };

				if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
				    resource.basetype == SPIRType::SampledImage)
				{
					// Drop pointer information when we emit the resources into a struct.
					buffer_type.member_types.push_back(get_variable_data_type_id(var));
					if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
					{
						if (!msl_options.supports_msl_version(3, 0))
							SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+.");

						auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
						entry_func.fixup_hooks_in.push_back([this, resource]() {
							emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id));
						});
					}
					else if (resource.plane == 0)
					{
						set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
					}
				}
				else if (buffers_requiring_dynamic_offset.count(pair))
				{
					// Don't set the qualified name here; we'll define a variable holding the corrected buffer address later.
					buffer_type.member_types.push_back(var.basetype);
					buffers_requiring_dynamic_offset[pair].second = var.self;
				}
				else if (inline_uniform_blocks.count(pair))
				{
					// Put the buffer block itself into the argument buffer.
					buffer_type.member_types.push_back(get_variable_data_type_id(var));
					set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
				}
				else if (atomic_image_vars_emulated.count(var.self))
				{
					// Emulate texture2D atomic operations.
					// Don't set the qualified name: it's already set for this variable,
					// and the code that references the buffer manually appends "_atomic"
					// to the name.
					uint32_t offset = ir.increase_bound_by(2);
					uint32_t atomic_type_id = offset;
					uint32_t type_ptr_id = offset + 1;

					SPIRType atomic_type { OpTypeInt };
					atomic_type.basetype = SPIRType::AtomicCounter;
					atomic_type.width = 32;
					atomic_type.vecsize = 1;
					set<SPIRType>(atomic_type_id, atomic_type);

					atomic_type.op = OpTypePointer;
					atomic_type.pointer = true;
					atomic_type.pointer_depth++;
					atomic_type.parent_type = atomic_type_id;
					atomic_type.storage = StorageClassStorageBuffer;
					auto &atomic_ptr_type = set<SPIRType>(type_ptr_id, atomic_type);
					atomic_ptr_type.self = atomic_type_id;

					buffer_type.member_types.push_back(type_ptr_id);
				}
				else
				{
					buffer_type.member_types.push_back(var.basetype);
					if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
					{
						// Casting raw pointers is fine since their ABI is fixed, but anything opaque is deeply questionable on Metal 2.
						if (get<SPIRVariable>(resource.overlapping_var_id).storage == StorageClassUniformConstant &&
						    !msl_options.supports_msl_version(3, 0))
						{
							SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+.");
						}

						auto &entry_func = get<SPIRFunction>(ir.default_entry_point);

						entry_func.fixup_hooks_in.push_back([this, resource]() {
							emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id));
						});
					}
					else if (type.array.empty())
						set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
					else
						set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
				}
			}

			set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationResourceIndexPrimary,
			                               resource.index);
			set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
			                               var.self);
			if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
				set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationOverlappingBinding);
			member_index++;
		}
		
		if (msl_options.replace_recursive_inputs && type_contains_recursion(buffer_type))
		{
			recursive_inputs.insert(type_id);
			auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
			auto addr_space = get_argument_address_space(buffer_var);
			entry_func.fixup_hooks_in.push_back([this, addr_space, buffer_name, buffer_type_name]() {
				statement(addr_space, " auto& ", buffer_name, " = *(", addr_space, " ", buffer_type_name, "*)", buffer_name, "_vp;");
			});
		}
	}
}

// Return the resource type of the app-provided resources for the descriptor set,
// that matches the resource index of the argument buffer index.
// This is a two-step lookup, first lookup the resource binding number from the argument buffer index,
// then lookup the resource binding using the binding number.
const MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx) const
{
	auto stage = get_entry_point().model;
	StageSetBinding arg_idx_tuple = { stage, desc_set, arg_idx };
	auto arg_itr = resource_arg_buff_idx_to_binding_number.find(arg_idx_tuple);
	if (arg_itr != end(resource_arg_buff_idx_to_binding_number))
	{
		StageSetBinding bind_tuple = { stage, desc_set, arg_itr->second };
		auto bind_itr = resource_bindings.find(bind_tuple);
		if (bind_itr != end(resource_bindings))
			return bind_itr->second.first;
	}
	SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer "
	                  "elements, all descriptor set resources must be supplied with a base type by the app.");
}

// Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index.
// Metal does not support arrays of buffers, so these are emitted as multiple struct members.
void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx,
                                                          uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
{
	if (!argument_buffer_padding_buffer_type_id)
	{
		uint32_t buff_type_id = ir.increase_bound_by(2);
		auto &buff_type = set<SPIRType>(buff_type_id, OpNop);
		buff_type.basetype = rez_bind.basetype;
		buff_type.storage = StorageClassUniformConstant;

		uint32_t ptr_type_id = buff_type_id + 1;
		auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
		ptr_type = buff_type;
		ptr_type.op = spv::OpTypePointer;
		ptr_type.pointer = true;
		ptr_type.pointer_depth++;
		ptr_type.parent_type = buff_type_id;

		argument_buffer_padding_buffer_type_id = ptr_type_id;
	}

	add_argument_buffer_padding_type(argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
}

// Adds an argument buffer padding argument image type as a member of the struct type at the member index.
void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx,
                                                         uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
{
	if (!argument_buffer_padding_image_type_id)
	{
		uint32_t base_type_id = ir.increase_bound_by(2);
		auto &base_type = set<SPIRType>(base_type_id, OpTypeFloat);
		base_type.basetype = SPIRType::Float;
		base_type.width = 32;

		uint32_t img_type_id = base_type_id + 1;
		auto &img_type = set<SPIRType>(img_type_id, OpTypeImage);
		img_type.basetype = SPIRType::Image;
		img_type.storage = StorageClassUniformConstant;

		img_type.image.type = base_type_id;
		img_type.image.dim = Dim2D;
		img_type.image.depth = false;
		img_type.image.arrayed = false;
		img_type.image.ms = false;
		img_type.image.sampled = 1;
		img_type.image.format = ImageFormatUnknown;
		img_type.image.access = AccessQualifierMax;

		argument_buffer_padding_image_type_id = img_type_id;
	}

	add_argument_buffer_padding_type(argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
}

// Adds an argument buffer padding argument sampler type as a member of the struct type at the member index.
void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx,
                                                           uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
{
	if (!argument_buffer_padding_sampler_type_id)
	{
		uint32_t samp_type_id = ir.increase_bound_by(1);
		auto &samp_type = set<SPIRType>(samp_type_id, OpTypeSampler);
		samp_type.basetype = SPIRType::Sampler;
		samp_type.storage = StorageClassUniformConstant;

		argument_buffer_padding_sampler_type_id = samp_type_id;
	}

	add_argument_buffer_padding_type(argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
}

// Adds the argument buffer padding argument type as a member of the struct type at the member index.
// Advances both arg_buff_index and mbr_idx to next argument slots.
void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx,
                                                   uint32_t &arg_buff_index, uint32_t count)
{
	uint32_t type_id = mbr_type_id;
	if (count > 1)
	{
		uint32_t ary_type_id = ir.increase_bound_by(1);
		auto &ary_type = set<SPIRType>(ary_type_id, get<SPIRType>(type_id));
		ary_type.op = OpTypeArray;
		ary_type.array.push_back(count);
		ary_type.array_size_literal.push_back(true);
		ary_type.parent_type = type_id;
		type_id = ary_type_id;
	}

	set_member_name(struct_type.self, mbr_idx, join("_m", arg_buff_index, "_pad"));
	set_extended_member_decoration(struct_type.self, mbr_idx, SPIRVCrossDecorationResourceIndexPrimary, arg_buff_index);
	struct_type.member_types.push_back(type_id);

	arg_buff_index += count;
	mbr_idx++;
}

void CompilerMSL::activate_argument_buffer_resources()
{
	// For ABI compatibility, force-enable all resources which are part of argument buffers.
	ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, const SPIRVariable &) {
		if (!has_decoration(self, DecorationDescriptorSet))
			return;

		uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
		if (descriptor_set_is_argument_buffer(desc_set))
			add_active_interface_variable(self);
	});
}

bool CompilerMSL::using_builtin_array() const
{
	return msl_options.force_native_arrays || is_using_builtin_array;
}

void CompilerMSL::set_combined_sampler_suffix(const char *suffix)
{
	sampler_name_suffix = suffix;
}

const char *CompilerMSL::get_combined_sampler_suffix() const
{
	return sampler_name_suffix.c_str();
}

void CompilerMSL::emit_block_hints(const SPIRBlock &)
{
}

string CompilerMSL::additional_fixed_sample_mask_str() const
{
	char print_buffer[32];
#ifdef _MSC_VER
	// snprintf does not exist or is buggy on older MSVC versions, some of
	// them being used by MinGW. Use sprintf instead and disable
	// corresponding warning.
#pragma warning(push)
#pragma warning(disable : 4996)
#endif
#if _WIN32
	sprintf(print_buffer, "0x%x", msl_options.additional_fixed_sample_mask);
#else
	snprintf(print_buffer, sizeof(print_buffer), "0x%x", msl_options.additional_fixed_sample_mask);
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
	return print_buffer;
}