// // Copyright (C) 2016 Google, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // The SPIR-V spec requires code blocks to appear in an order satisfying the // dominator-tree direction (ie, dominator before the dominated). This is, // actually, easy to achieve: any pre-order CFG traversal algorithm will do it. // Because such algorithms visit a block only after traversing some path to it // from the root, they necessarily visit the block's idom first. // // But not every graph-traversal algorithm outputs blocks in an order that // appears logical to human readers. The problem is that unrelated branches may // be interspersed with each other, and merge blocks may come before some of the // branches being merged. // // A good, human-readable order of blocks may be achieved by performing // depth-first search but delaying merge nodes until after all their branches // have been visited. This is implemented below by the inReadableOrder() // function. #include "spvIR.h" #include <cassert> #include <unordered_set> Block; Id; namespace { // Traverses CFG in a readable order, invoking a pre-set callback on each block. // Use by calling visit() on the root block. class ReadableOrderTraverser { … }; } void spv::inReadableOrder(Block* root, std::function<void(Block*, spv::ReachReason, Block*)> callback) { … }