/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg ([email protected]). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* ppc 32-bit arch dependent functions. */
static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
{
if (imm <= SIMM_MAX && imm >= SIMM_MIN)
return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
if (!(imm & ~0xffff))
return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
}
/* Simplified mnemonics: clrlwi. */
#define INS_CLEAR_LEFT(dst, src, from) \
(RLWINM | S(src) | A(dst) | RLWI_MBE(from, 31))
static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
{
sljit_u32 imm;
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
case SLJIT_MOV_P:
SLJIT_ASSERT(src1 == TMP_REG1);
if (dst != src2)
return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
return SLJIT_SUCCESS;
case SLJIT_MOV_U8:
case SLJIT_MOV_S8:
SLJIT_ASSERT(src1 == TMP_REG1);
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_S8)
return push_inst(compiler, EXTSB | S(src2) | A(dst));
return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
}
else if ((flags & REG_DEST) && op == SLJIT_MOV_S8)
return push_inst(compiler, EXTSB | S(src2) | A(dst));
else {
SLJIT_ASSERT(dst == src2);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_U16:
case SLJIT_MOV_S16:
SLJIT_ASSERT(src1 == TMP_REG1);
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_S16)
return push_inst(compiler, EXTSH | S(src2) | A(dst));
return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
}
else {
SLJIT_ASSERT(dst == src2);
}
return SLJIT_SUCCESS;
case SLJIT_CLZ:
SLJIT_ASSERT(src1 == TMP_REG1);
return push_inst(compiler, CNTLZW | S(src2) | A(dst));
case SLJIT_CTZ:
SLJIT_ASSERT(src1 == TMP_REG1);
FAIL_IF(push_inst(compiler, NEG | D(TMP_REG1) | A(src2)));
FAIL_IF(push_inst(compiler, AND | S(src2) | A(dst) | B(TMP_REG1)));
FAIL_IF(push_inst(compiler, CNTLZW | S(dst) | A(dst)));
FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG1) | A(dst) | IMM(-32)));
/* The highest bits are set, if dst < 32, zero otherwise. */
FAIL_IF(push_inst(compiler, SRWI(27) | S(TMP_REG1) | A(TMP_REG1)));
return push_inst(compiler, XOR | S(dst) | A(dst) | B(TMP_REG1));
case SLJIT_ADD:
if (flags & ALT_FORM1) {
/* Setting XER SO is not enough, CR SO is also needed. */
return push_inst(compiler, ADD | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
}
if (flags & ALT_FORM2) {
/* Flags does not set: BIN_IMM_EXTS unnecessary. */
SLJIT_ASSERT(src2 == TMP_REG2);
if (flags & ALT_FORM3)
return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
imm = compiler->imm;
if (flags & ALT_FORM4) {
FAIL_IF(push_inst(compiler, ADDIS | D(dst) | A(src1) | (((imm >> 16) & 0xffff) + ((imm >> 15) & 0x1))));
src1 = dst;
}
return push_inst(compiler, ADDI | D(dst) | A(src1) | (imm & 0xffff));
}
if (flags & ALT_FORM3) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
}
SLJIT_ASSERT(!(flags & ALT_FORM4));
if (!(flags & ALT_SET_FLAGS))
return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
if (flags & ALT_FORM5)
return push_inst(compiler, ADDC | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
return push_inst(compiler, ADD | RC(flags) | D(dst) | A(src1) | B(src2));
case SLJIT_ADDC:
return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
case SLJIT_SUB:
if (flags & ALT_FORM1) {
if (flags & ALT_FORM2) {
FAIL_IF(push_inst(compiler, CMPLI | CRD(0) | A(src1) | compiler->imm));
if (!(flags & ALT_FORM3))
return SLJIT_SUCCESS;
return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
}
FAIL_IF(push_inst(compiler, CMPL | CRD(0) | A(src1) | B(src2)));
if (!(flags & ALT_FORM3))
return SLJIT_SUCCESS;
return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
}
if (flags & ALT_FORM2) {
if (flags & ALT_FORM3) {
FAIL_IF(push_inst(compiler, CMPI | CRD(0) | A(src1) | compiler->imm));
if (!(flags & ALT_FORM4))
return SLJIT_SUCCESS;
return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
}
FAIL_IF(push_inst(compiler, CMP | CRD(0) | A(src1) | B(src2)));
if (!(flags & ALT_FORM4))
return SLJIT_SUCCESS;
return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
}
if (flags & ALT_FORM3) {
/* Setting XER SO is not enough, CR SO is also needed. */
if (src1 != TMP_ZERO)
return push_inst(compiler, SUBF | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
return push_inst(compiler, NEG | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2));
}
if (flags & ALT_FORM4) {
/* Flags does not set: BIN_IMM_EXTS unnecessary. */
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
}
if (!(flags & ALT_SET_FLAGS)) {
SLJIT_ASSERT(src1 != TMP_ZERO);
return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
}
if (flags & ALT_FORM5)
return push_inst(compiler, SUBFC | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
if (src1 != TMP_ZERO)
return push_inst(compiler, SUBF | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
return push_inst(compiler, NEG | RC(ALT_SET_FLAGS) | D(dst) | A(src2));
case SLJIT_SUBC:
return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
case SLJIT_MUL:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
}
return push_inst(compiler, MULLW | OE(flags) | RC(flags) | D(dst) | A(src2) | B(src1));
case SLJIT_AND:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM2) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
}
return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_OR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM2) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM3) {
SLJIT_ASSERT(src2 == TMP_REG2);
imm = compiler->imm;
FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(imm)));
return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(imm >> 16));
}
return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_XOR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM2) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM3) {
SLJIT_ASSERT(src2 == TMP_REG2);
imm = compiler->imm;
FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(imm)));
return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(imm >> 16));
}
if (flags & ALT_FORM4) {
SLJIT_ASSERT(src1 == TMP_REG1);
return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
}
return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_SHL:
case SLJIT_MSHL:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
imm = compiler->imm & 0x1f;
return push_inst(compiler, SLWI(imm) | RC(flags) | S(src1) | A(dst));
}
if (op == SLJIT_MSHL) {
FAIL_IF(push_inst(compiler, ANDI | S(src2) | A(TMP_REG2) | 0x1f));
src2 = TMP_REG2;
}
return push_inst(compiler, SLW | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_LSHR:
case SLJIT_MLSHR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
imm = compiler->imm & 0x1f;
/* Since imm can be 0, SRWI() cannot be used. */
return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | RLWI_SH((32 - imm) & 0x1f) | RLWI_MBE(imm, 31));
}
if (op == SLJIT_MLSHR) {
FAIL_IF(push_inst(compiler, ANDI | S(src2) | A(TMP_REG2) | 0x1f));
src2 = TMP_REG2;
}
return push_inst(compiler, SRW | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_ASHR:
case SLJIT_MASHR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
imm = compiler->imm & 0x1f;
return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (imm << 11));
}
if (op == SLJIT_MASHR) {
FAIL_IF(push_inst(compiler, ANDI | S(src2) | A(TMP_REG2) | 0x1f));
src2 = TMP_REG2;
}
return push_inst(compiler, SRAW | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_ROTL:
case SLJIT_ROTR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
imm = compiler->imm;
if (op == SLJIT_ROTR)
imm = (sljit_u32)(-(sljit_s32)imm);
imm &= 0x1f;
return push_inst(compiler, RLWINM | S(src1) | A(dst) | RLWI_SH(imm) | RLWI_MBE(0, 31));
}
if (op == SLJIT_ROTR) {
FAIL_IF(push_inst(compiler, SUBFIC | D(TMP_REG2) | A(src2) | 0));
src2 = TMP_REG2;
}
return push_inst(compiler, RLWNM | S(src1) | A(dst) | B(src2) | RLWI_MBE(0, 31));
}
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value)
{
FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 16)));
return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
sljit_s32 invert_sign = 1;
if (src == SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw ^ (sljit_sw)0x80000000));
src = TMP_REG1;
invert_sign = 0;
} else if (!FAST_IS_REG(src)) {
FAIL_IF(emit_op_mem(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
}
/* First, a special double precision floating point value is constructed:
(2^53 + (src xor (2^31)))
The upper 32 bits of this number is a constant, and the lower 32 bits
is simply the value of the source argument. The xor 2^31 operation adds
0x80000000 to the source argument, which moves it into the 0 - 0xffffffff
range. Finally we substract 2^53 + 2^31 to get the converted value. */
FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330));
if (invert_sign)
FAIL_IF(push_inst(compiler, XORIS | S(src) | A(TMP_REG1) | 0x8000));
FAIL_IF(push_inst(compiler, STW | S(TMP_REG2) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI));
FAIL_IF(push_inst(compiler, STW | S(TMP_REG1) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG1) | A(0) | 0x8000));
FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG1) | A(SLJIT_SP) | TMP_MEM_OFFSET));
FAIL_IF(push_inst(compiler, STW | S(TMP_REG1) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG2) | A(SLJIT_SP) | TMP_MEM_OFFSET));
FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2)));
if (op & SLJIT_32)
FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r)));
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, TMP_REG1);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_uw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src == SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
} else if (!FAST_IS_REG(src)) {
FAIL_IF(emit_op_mem(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
}
/* First, a special double precision floating point value is constructed:
(2^53 + src)
The upper 32 bits of this number is a constant, and the lower 32 bits
is simply the value of the source argument. Finally we substract 2^53
to get the converted value. */
FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330));
FAIL_IF(push_inst(compiler, STW | S(src) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
FAIL_IF(push_inst(compiler, STW | S(TMP_REG2) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI));
FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG1) | A(SLJIT_SP) | TMP_MEM_OFFSET));
FAIL_IF(push_inst(compiler, STW | S(TMP_ZERO) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG2) | A(SLJIT_SP) | TMP_MEM_OFFSET));
FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2)));
if (op & SLJIT_32)
FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r)));
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, TMP_REG1);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler,
sljit_s32 freg, sljit_f64 value)
{
union {
sljit_s32 imm[2];
sljit_f64 value;
} u;
CHECK_ERROR();
CHECK(check_sljit_emit_fset64(compiler, freg, value));
u.value = value;
if (u.imm[0] != 0)
FAIL_IF(load_immediate(compiler, TMP_REG1, u.imm[0]));
if (u.imm[1] != 0)
FAIL_IF(load_immediate(compiler, TMP_REG2, u.imm[1]));
/* Saved in the same endianness. */
FAIL_IF(push_inst(compiler, STW | S(u.imm[0] != 0 ? TMP_REG1 : TMP_ZERO) | A(SLJIT_SP) | TMP_MEM_OFFSET));
FAIL_IF(push_inst(compiler, STW | S(u.imm[1] != 0 ? TMP_REG2 : TMP_ZERO) | A(SLJIT_SP) | (TMP_MEM_OFFSET + sizeof(sljit_s32))));
return push_inst(compiler, LFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 freg, sljit_s32 reg)
{
sljit_s32 reg2 = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_fcopy(compiler, op, freg, reg));
if (op & SLJIT_32) {
if (op == SLJIT_COPY32_TO_F32) {
FAIL_IF(push_inst(compiler, STW | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET));
return push_inst(compiler, LFS | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
}
FAIL_IF(push_inst(compiler, STFS | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET));
return push_inst(compiler, LWZ | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
}
if (reg & REG_PAIR_MASK) {
reg2 = REG_PAIR_SECOND(reg);
reg = REG_PAIR_FIRST(reg);
}
if (op == SLJIT_COPY_TO_F64) {
FAIL_IF(push_inst(compiler, STW | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI));
if (reg2 != 0)
FAIL_IF(push_inst(compiler, STW | S(reg2) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
else
FAIL_IF(push_inst(compiler, STFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
return push_inst(compiler, LFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
}
FAIL_IF(push_inst(compiler, STFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET));
if (reg2 != 0)
FAIL_IF(push_inst(compiler, LWZ | S(reg2) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
return push_inst(compiler, LWZ | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
sljit_ins *inst = (sljit_ins *)addr;
SLJIT_UNUSED_ARG(executable_offset);
SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 0);
SLJIT_ASSERT((inst[0] & 0xfc1f0000) == ADDIS && (inst[1] & 0xfc000000) == ORI);
inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 16) & 0xffff);
inst[1] = (inst[1] & 0xffff0000) | (new_target & 0xffff);
SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 1);
inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}