/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg ([email protected]). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
{
return "ARM-64" SLJIT_CPUINFO;
}
/* Length of an instruction word */
typedef sljit_u32 sljit_ins;
#define TMP_ZERO (0)
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_LR (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_FP (SLJIT_NUMBER_OF_REGISTERS + 5)
#define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
#define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2)
/* r18 - platform register, currently not used */
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 8] = {
31, 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 8, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 31, 9, 10, 30, 29
};
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3] = {
0, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 15, 14, 13, 12, 11, 10, 9, 8, 30, 31
};
#define W_OP ((sljit_ins)1 << 31)
#define RD(rd) ((sljit_ins)reg_map[rd])
#define RT(rt) ((sljit_ins)reg_map[rt])
#define RN(rn) ((sljit_ins)reg_map[rn] << 5)
#define RT2(rt2) ((sljit_ins)reg_map[rt2] << 10)
#define RM(rm) ((sljit_ins)reg_map[rm] << 16)
#define VD(vd) ((sljit_ins)freg_map[vd])
#define VT(vt) ((sljit_ins)freg_map[vt])
#define VT2(vt) ((sljit_ins)freg_map[vt] << 10)
#define VN(vn) ((sljit_ins)freg_map[vn] << 5)
#define VM(vm) ((sljit_ins)freg_map[vm] << 16)
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define ADC 0x9a000000
#define ADD 0x8b000000
#define ADDE 0x8b200000
#define ADDI 0x91000000
#define AND 0x8a000000
#define ANDI 0x92000000
#define AND_v 0x0e201c00
#define ASRV 0x9ac02800
#define B 0x14000000
#define B_CC 0x54000000
#define BL 0x94000000
#define BLR 0xd63f0000
#define BR 0xd61f0000
#define BRK 0xd4200000
#define CAS 0xc8a07c00
#define CASB 0x08a07c00
#define CASH 0x48a07c00
#define CBZ 0xb4000000
#define CCMPI 0xfa400800
#define CLZ 0xdac01000
#define CSEL 0x9a800000
#define CSINC 0x9a800400
#define DUP_e 0x0e000400
#define DUP_g 0x0e000c00
#define EOR 0xca000000
#define EOR_v 0x2e201c00
#define EORI 0xd2000000
#define EXTR 0x93c00000
#define FABS 0x1e60c000
#define FADD 0x1e602800
#define FCMP 0x1e602000
#define FCSEL 0x1e600c00
#define FCVT 0x1e224000
#define FCVTL 0x0e217800
#define FCVTZS 0x9e780000
#define FDIV 0x1e601800
#define FMOV 0x1e604000
#define FMOV_R 0x9e660000
#define FMOV_I 0x1e601000
#define FMUL 0x1e600800
#define FNEG 0x1e614000
#define FSUB 0x1e603800
#define INS 0x4e001c00
#define INS_e 0x6e000400
#define LD1 0x0c407000
#define LD1_s 0x0d400000
#define LD1R 0x0d40c000
#define LDRI 0xf9400000
#define LDRI_F64 0xfd400000
#define LDRI_POST 0xf8400400
#define LDP 0xa9400000
#define LDP_F64 0x6d400000
#define LDP_POST 0xa8c00000
#define LDR_PRE 0xf8400c00
#define LDXR 0xc85f7c00
#define LDXRB 0x085f7c00
#define LDXRH 0x485f7c00
#define LSLV 0x9ac02000
#define LSRV 0x9ac02400
#define MADD 0x9b000000
#define MOVI 0x0f000400
#define MOVK 0xf2800000
#define MOVN 0x92800000
#define MOVZ 0xd2800000
#define NOP 0xd503201f
#define ORN 0xaa200000
#define ORR 0xaa000000
#define ORR_v 0x0ea01c00
#define ORRI 0xb2000000
#define RBIT 0xdac00000
#define RET 0xd65f0000
#define REV 0xdac00c00
#define REV16 0xdac00400
#define RORV 0x9ac02c00
#define SBC 0xda000000
#define SBFM 0x93400000
#define SCVTF 0x9e620000
#define SDIV 0x9ac00c00
#define SMADDL 0x9b200000
#define SMOV 0x0e002c00
#define SMULH 0x9b403c00
#define SSHLL 0x0f00a400
#define ST1 0x0c007000
#define ST1_s 0x0d000000
#define STP 0xa9000000
#define STP_F64 0x6d000000
#define STP_PRE 0xa9800000
#define STRB 0x38206800
#define STRBI 0x39000000
#define STRI 0xf9000000
#define STRI_F64 0xfd000000
#define STR_FI 0x3d000000
#define STR_FR 0x3c206800
#define STUR_FI 0x3c000000
#define STURBI 0x38000000
#define STXR 0xc8007c00
#define STXRB 0x8007c00
#define STXRH 0x48007c00
#define SUB 0xcb000000
#define SUBI 0xd1000000
#define SUBS 0xeb000000
#define TBZ 0x36000000
#define UBFM 0xd3400000
#define UCVTF 0x9e630000
#define UDIV 0x9ac00800
#define UMOV 0x0e003c00
#define UMULH 0x9bc03c00
#define USHLL 0x2f00a400
#define USHR 0x2f000400
#define USRA 0x2f001400
#define XTN 0x0e212800
#define CSET (CSINC | RM(TMP_ZERO) | RN(TMP_ZERO))
#define LDR (STRI | (1 << 22))
#define LDRB (STRBI | (1 << 22))
#define LDRH (LDRB | (1 << 30))
#define MOV (ORR | RN(TMP_ZERO))
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_imm64_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_uw imm)
{
FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((sljit_ins)(imm & 0xffff) << 5)));
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((sljit_ins)(imm >> 16) & 0xffff) << 5) | (1 << 21)));
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((sljit_ins)(imm >> 32) & 0xffff) << 5) | (2 << 21)));
return push_inst(compiler, MOVK | RD(dst) | ((sljit_ins)(imm >> 48) << 5) | (3 << 21));
}
static SLJIT_INLINE sljit_sw detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code, sljit_sw executable_offset)
{
sljit_sw diff;
sljit_uw target_addr;
if (jump->flags & SLJIT_REWRITABLE_JUMP) {
jump->flags |= PATCH_ABS64;
return 0;
}
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size) + (sljit_uw)executable_offset;
}
diff = (sljit_sw)target_addr - (sljit_sw)(code_ptr - 4) - executable_offset;
if (jump->flags & IS_COND) {
diff += SSIZE_OF(ins);
if (diff <= 0xfffff && diff >= -0x100000) {
code_ptr[-5] ^= (jump->flags & IS_CBZ) ? (0x1 << 24) : 0x1;
jump->addr -= sizeof(sljit_ins);
jump->flags |= PATCH_COND;
return 5;
}
diff -= SSIZE_OF(ins);
}
if (diff <= 0x7ffffff && diff >= -0x8000000) {
jump->flags |= PATCH_B;
return 4;
}
if (target_addr < 0x100000000l) {
if (jump->flags & IS_COND)
code_ptr[-5] -= (2 << 5);
code_ptr[-2] = code_ptr[0];
return 2;
}
if (target_addr < 0x1000000000000l) {
if (jump->flags & IS_COND)
code_ptr[-5] -= (1 << 5);
jump->flags |= PATCH_ABS48;
code_ptr[-1] = code_ptr[0];
return 1;
}
jump->flags |= PATCH_ABS64;
return 0;
}
static SLJIT_INLINE sljit_sw put_label_get_length(struct sljit_put_label *put_label, sljit_uw max_label)
{
if (max_label < 0x100000000l) {
put_label->flags = 0;
return 2;
}
if (max_label < 0x1000000000000l) {
put_label->flags = 1;
return 1;
}
put_label->flags = 2;
return 0;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw next_addr;
sljit_sw executable_offset;
sljit_sw addr;
sljit_u32 dst;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
struct sljit_put_label *put_label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins), compiler->exec_allocator_data);
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
next_addr = 0;
executable_offset = SLJIT_EXEC_OFFSET(code);
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
put_label = compiler->put_labels;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
if (next_addr == word_count) {
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
SLJIT_ASSERT(!put_label || put_label->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
label->size = (sljit_uw)(code_ptr - code);
label = label->next;
}
if (jump && jump->addr == word_count) {
jump->addr = (sljit_uw)(code_ptr - 4);
code_ptr -= detect_jump_type(jump, code_ptr, code, executable_offset);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
if (put_label && put_label->addr == word_count) {
SLJIT_ASSERT(put_label->label);
put_label->addr = (sljit_uw)(code_ptr - 3);
code_ptr -= put_label_get_length(put_label, (sljit_uw)(SLJIT_ADD_EXEC_OFFSET(code, executable_offset) + put_label->label->size));
put_label = put_label->next;
}
next_addr = compute_next_addr(label, jump, const_, put_label);
}
code_ptr++;
word_count++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
label->size = (sljit_uw)(code_ptr - code);
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(!put_label);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
addr = (sljit_sw)((jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target);
buf_ptr = (sljit_ins *)jump->addr;
if (jump->flags & PATCH_B) {
addr = (addr - (sljit_sw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset)) >> 2;
SLJIT_ASSERT(addr <= 0x1ffffff && addr >= -0x2000000);
buf_ptr[0] = ((jump->flags & IS_BL) ? BL : B) | (sljit_ins)(addr & 0x3ffffff);
if (jump->flags & IS_COND)
buf_ptr[-1] -= (4 << 5);
break;
}
if (jump->flags & PATCH_COND) {
addr = (addr - (sljit_sw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset)) >> 2;
SLJIT_ASSERT(addr <= 0x3ffff && addr >= -0x40000);
buf_ptr[0] = (buf_ptr[0] & ~(sljit_ins)0xffffe0) | (sljit_ins)((addr & 0x7ffff) << 5);
break;
}
SLJIT_ASSERT((jump->flags & (PATCH_ABS48 | PATCH_ABS64)) || (sljit_uw)addr <= (sljit_uw)0xffffffff);
SLJIT_ASSERT((jump->flags & PATCH_ABS64) || (sljit_uw)addr <= (sljit_uw)0xffffffffffff);
dst = buf_ptr[0] & 0x1f;
buf_ptr[0] = MOVZ | dst | (((sljit_ins)addr & 0xffff) << 5);
buf_ptr[1] = MOVK | dst | (((sljit_ins)(addr >> 16) & 0xffff) << 5) | (1 << 21);
if (jump->flags & (PATCH_ABS48 | PATCH_ABS64))
buf_ptr[2] = MOVK | dst | (((sljit_ins)(addr >> 32) & 0xffff) << 5) | (2 << 21);
if (jump->flags & PATCH_ABS64)
buf_ptr[3] = MOVK | dst | ((sljit_ins)(addr >> 48) << 5) | (3 << 21);
} while (0);
jump = jump->next;
}
put_label = compiler->put_labels;
while (put_label) {
addr = (sljit_sw)put_label->label->addr;
buf_ptr = (sljit_ins*)put_label->addr;
buf_ptr[0] |= ((sljit_ins)addr & 0xffff) << 5;
buf_ptr[1] |= ((sljit_ins)(addr >> 16) & 0xffff) << 5;
if (put_label->flags >= 1)
buf_ptr[2] |= ((sljit_ins)(addr >> 32) & 0xffff) << 5;
if (put_label->flags >= 2)
buf_ptr[3] |= (sljit_ins)(addr >> 48) << 5;
put_label = put_label->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_offset = executable_offset;
compiler->executable_size = (sljit_uw)(code_ptr - code) * sizeof(sljit_ins);
code = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);
code_ptr = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
SLJIT_CACHE_FLUSH(code, code_ptr);
SLJIT_UPDATE_WX_FLAGS(code, code_ptr, 1);
return code;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type)
{
switch (feature_type) {
case SLJIT_HAS_FPU:
case SLJIT_HAS_SIMD:
#ifdef SLJIT_IS_FPU_AVAILABLE
return (SLJIT_IS_FPU_AVAILABLE) != 0;
#else
/* Available by default. */
return 1;
#endif
case SLJIT_HAS_CLZ:
case SLJIT_HAS_CTZ:
case SLJIT_HAS_REV:
case SLJIT_HAS_ROT:
case SLJIT_HAS_CMOV:
case SLJIT_HAS_PREFETCH:
case SLJIT_HAS_COPY_F32:
case SLJIT_HAS_COPY_F64:
case SLJIT_HAS_ATOMIC:
return 1;
default:
return 0;
}
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type)
{
switch (type) {
case SLJIT_UNORDERED_OR_EQUAL:
case SLJIT_ORDERED_NOT_EQUAL:
return 2;
}
return 0;
}
/* --------------------------------------------------------------------- */
/* Core code generator functions. */
/* --------------------------------------------------------------------- */
#define COUNT_TRAILING_ZERO(value, result) \
result = 0; \
if (!(value & 0xffffffff)) { \
result += 32; \
value >>= 32; \
} \
if (!(value & 0xffff)) { \
result += 16; \
value >>= 16; \
} \
if (!(value & 0xff)) { \
result += 8; \
value >>= 8; \
} \
if (!(value & 0xf)) { \
result += 4; \
value >>= 4; \
} \
if (!(value & 0x3)) { \
result += 2; \
value >>= 2; \
} \
if (!(value & 0x1)) { \
result += 1; \
value >>= 1; \
}
#define LOGICAL_IMM_CHECK (sljit_ins)0x100
static sljit_ins logical_imm(sljit_sw imm, sljit_u32 len)
{
sljit_s32 negated;
sljit_u32 ones, right;
sljit_uw mask, uimm;
sljit_ins ins;
if (len & LOGICAL_IMM_CHECK) {
len &= ~LOGICAL_IMM_CHECK;
if (len == 32 && (imm == 0 || imm == -1))
return 0;
if (len == 16 && ((sljit_s32)imm == 0 || (sljit_s32)imm == -1))
return 0;
}
SLJIT_ASSERT((len == 32 && imm != 0 && imm != -1)
|| (len == 16 && (sljit_s32)imm != 0 && (sljit_s32)imm != -1));
uimm = (sljit_uw)imm;
while (1) {
if (len <= 0) {
SLJIT_UNREACHABLE();
return 0;
}
mask = ((sljit_uw)1 << len) - 1;
if ((uimm & mask) != ((uimm >> len) & mask))
break;
len >>= 1;
}
len <<= 1;
negated = 0;
if (uimm & 0x1) {
negated = 1;
uimm = ~uimm;
}
if (len < 64)
uimm &= ((sljit_uw)1 << len) - 1;
/* Unsigned right shift. */
COUNT_TRAILING_ZERO(uimm, right);
/* Signed shift. We also know that the highest bit is set. */
imm = (sljit_sw)~uimm;
SLJIT_ASSERT(imm < 0);
COUNT_TRAILING_ZERO(imm, ones);
if (~imm)
return 0;
if (len == 64)
ins = 1 << 22;
else
ins = (0x3f - ((len << 1) - 1)) << 10;
if (negated)
return ins | ((len - ones - 1) << 10) | ((len - ones - right) << 16);
return ins | ((ones - 1) << 10) | ((len - right) << 16);
}
#undef COUNT_TRAILING_ZERO
static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw simm)
{
sljit_uw imm = (sljit_uw)simm;
sljit_u32 i, zeros, ones, first;
sljit_ins bitmask;
/* Handling simple immediates first. */
if (imm <= 0xffff)
return push_inst(compiler, MOVZ | RD(dst) | ((sljit_ins)imm << 5));
if (simm < 0 && simm >= -0x10000)
return push_inst(compiler, MOVN | RD(dst) | (((sljit_ins)~imm & 0xffff) << 5));
if (imm <= 0xffffffffl) {
if ((imm & 0xffff) == 0)
return push_inst(compiler, MOVZ | RD(dst) | ((sljit_ins)(imm >> 16) << 5) | (1 << 21));
if ((imm & 0xffff0000l) == 0xffff0000)
return push_inst(compiler, (MOVN ^ W_OP) | RD(dst) | (((sljit_ins)~imm & 0xffff) << 5));
if ((imm & 0xffff) == 0xffff)
return push_inst(compiler, (MOVN ^ W_OP) | RD(dst) | (((sljit_ins)~imm & 0xffff0000u) >> (16 - 5)) | (1 << 21));
bitmask = logical_imm(simm, 16);
if (bitmask != 0)
return push_inst(compiler, (ORRI ^ W_OP) | RD(dst) | RN(TMP_ZERO) | bitmask);
FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | (((sljit_ins)imm & 0xffff) << 5)));
return push_inst(compiler, MOVK | RD(dst) | (((sljit_ins)imm & 0xffff0000u) >> (16 - 5)) | (1 << 21));
}
bitmask = logical_imm(simm, 32);
if (bitmask != 0)
return push_inst(compiler, ORRI | RD(dst) | RN(TMP_ZERO) | bitmask);
if (simm < 0 && simm >= -0x100000000l) {
if ((imm & 0xffff) == 0xffff)
return push_inst(compiler, MOVN | RD(dst) | (((sljit_ins)~imm & 0xffff0000u) >> (16 - 5)) | (1 << 21));
FAIL_IF(push_inst(compiler, MOVN | RD(dst) | (((sljit_ins)~imm & 0xffff) << 5)));
return push_inst(compiler, MOVK | RD(dst) | (((sljit_ins)imm & 0xffff0000u) >> (16 - 5)) | (1 << 21));
}
/* A large amount of number can be constructed from ORR and MOVx, but computing them is costly. */
zeros = 0;
ones = 0;
for (i = 4; i > 0; i--) {
if ((simm & 0xffff) == 0)
zeros++;
if ((simm & 0xffff) == 0xffff)
ones++;
simm >>= 16;
}
simm = (sljit_sw)imm;
first = 1;
if (ones > zeros) {
simm = ~simm;
for (i = 0; i < 4; i++) {
if (!(simm & 0xffff)) {
simm >>= 16;
continue;
}
if (first) {
first = 0;
FAIL_IF(push_inst(compiler, MOVN | RD(dst) | (((sljit_ins)simm & 0xffff) << 5) | (i << 21)));
}
else
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((sljit_ins)~simm & 0xffff) << 5) | (i << 21)));
simm >>= 16;
}
return SLJIT_SUCCESS;
}
for (i = 0; i < 4; i++) {
if (!(simm & 0xffff)) {
simm >>= 16;
continue;
}
if (first) {
first = 0;
FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | (((sljit_ins)simm & 0xffff) << 5) | (i << 21)));
}
else
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((sljit_ins)simm & 0xffff) << 5) | (i << 21)));
simm >>= 16;
}
return SLJIT_SUCCESS;
}
#define ARG1_IMM 0x0010000
#define ARG2_IMM 0x0020000
#define INT_OP 0x0040000
#define SET_FLAGS 0x0080000
#define UNUSED_RETURN 0x0100000
#define CHECK_FLAGS(flag_bits) \
if (flags & SET_FLAGS) { \
inv_bits |= flag_bits; \
if (flags & UNUSED_RETURN) \
dst = TMP_ZERO; \
}
static sljit_s32 emit_op_imm(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 dst, sljit_sw arg1, sljit_sw arg2)
{
/* dst must be register, TMP_REG1
arg1 must be register, TMP_REG1, imm
arg2 must be register, TMP_REG2, imm */
sljit_ins inv_bits = (flags & INT_OP) ? W_OP : 0;
sljit_ins inst_bits;
sljit_s32 op = (flags & 0xffff);
sljit_s32 reg;
sljit_sw imm, nimm;
if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) {
/* Both are immediates. */
flags &= ~ARG1_IMM;
if (arg1 == 0 && op != SLJIT_ADD && op != SLJIT_SUB)
arg1 = TMP_ZERO;
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
arg1 = TMP_REG1;
}
}
if (flags & (ARG1_IMM | ARG2_IMM)) {
reg = (sljit_s32)((flags & ARG2_IMM) ? arg1 : arg2);
imm = (flags & ARG2_IMM) ? arg2 : arg1;
switch (op) {
case SLJIT_MUL:
case SLJIT_CLZ:
case SLJIT_CTZ:
case SLJIT_REV:
case SLJIT_REV_U16:
case SLJIT_REV_S16:
case SLJIT_REV_U32:
case SLJIT_REV_S32:
case SLJIT_ADDC:
case SLJIT_SUBC:
/* No form with immediate operand (except imm 0, which
is represented by a ZERO register). */
break;
case SLJIT_MOV:
SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG1);
return load_immediate(compiler, dst, imm);
case SLJIT_SUB:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB;
if (flags & ARG1_IMM)
break;
imm = -imm;
/* Fall through. */
case SLJIT_ADD:
if (op != SLJIT_SUB)
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD;
if (imm == 0) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, ((op == SLJIT_ADD ? ADDI : SUBI) ^ inv_bits) | RD(dst) | RN(reg));
}
if (imm > 0 && imm <= 0xfff) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | ((sljit_ins)imm << 10));
}
nimm = -imm;
if (nimm > 0 && nimm <= 0xfff) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | ((sljit_ins)nimm << 10));
}
if (imm > 0 && imm <= 0xffffff && !(imm & 0xfff)) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | (((sljit_ins)imm >> 12) << 10) | (1 << 22));
}
if (nimm > 0 && nimm <= 0xffffff && !(nimm & 0xfff)) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | (((sljit_ins)nimm >> 12) << 10) | (1 << 22));
}
if (imm > 0 && imm <= 0xffffff && !(flags & SET_FLAGS)) {
FAIL_IF(push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | (((sljit_ins)imm >> 12) << 10) | (1 << 22)));
return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(dst) | (((sljit_ins)imm & 0xfff) << 10));
}
if (nimm > 0 && nimm <= 0xffffff && !(flags & SET_FLAGS)) {
FAIL_IF(push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | (((sljit_ins)nimm >> 12) << 10) | (1 << 22)));
return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(dst) | (((sljit_ins)nimm & 0xfff) << 10));
}
break;
case SLJIT_AND:
inst_bits = logical_imm(imm, LOGICAL_IMM_CHECK | ((flags & INT_OP) ? 16 : 32));
if (!inst_bits)
break;
CHECK_FLAGS(3 << 29);
return push_inst(compiler, (ANDI ^ inv_bits) | RD(dst) | RN(reg) | inst_bits);
case SLJIT_XOR:
if (imm == -1) {
FAIL_IF(push_inst(compiler, (ORN ^ inv_bits) | RD(dst) | RN(TMP_ZERO) | RM(reg)));
goto set_flags;
}
/* fallthrough */
case SLJIT_OR:
inst_bits = logical_imm(imm, LOGICAL_IMM_CHECK | ((flags & INT_OP) ? 16 : 32));
if (!inst_bits)
break;
if (op == SLJIT_OR)
inst_bits |= ORRI;
else
inst_bits |= EORI;
FAIL_IF(push_inst(compiler, (inst_bits ^ inv_bits) | RD(dst) | RN(reg)));
goto set_flags;
case SLJIT_SHL:
case SLJIT_MSHL:
if (flags & ARG1_IMM)
break;
if (flags & INT_OP) {
imm &= 0x1f;
inst_bits = (((sljit_ins)-imm & 0x1f) << 16) | ((31 - (sljit_ins)imm) << 10);
} else {
imm &= 0x3f;
inst_bits = ((sljit_ins)1 << 22) | (((sljit_ins)-imm & 0x3f) << 16) | ((63 - (sljit_ins)imm) << 10);
}
inv_bits |= inv_bits >> 9;
FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | inst_bits));
goto set_flags;
case SLJIT_LSHR:
case SLJIT_MLSHR:
case SLJIT_ASHR:
case SLJIT_MASHR:
if (flags & ARG1_IMM)
break;
inv_bits |= inv_bits >> 9;
if (op >= SLJIT_ASHR)
inv_bits |= 1 << 30;
if (flags & INT_OP) {
imm &= 0x1f;
inst_bits = ((sljit_ins)imm << 16) | (31 << 10);
} else {
imm &= 0x3f;
inst_bits = ((sljit_ins)1 << 22) | ((sljit_ins)imm << 16) | (63 << 10);
}
FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | inst_bits));
goto set_flags;
case SLJIT_ROTL:
case SLJIT_ROTR:
if (flags & ARG1_IMM)
break;
if (op == SLJIT_ROTL)
imm = -imm;
imm &= (flags & INT_OP) ? 0x1f : 0x3f;
return push_inst(compiler, (EXTR ^ (inv_bits | (inv_bits >> 9))) | RD(dst) | RN(arg1) | RM(arg1) | ((sljit_ins)imm << 10));
default:
SLJIT_UNREACHABLE();
break;
}
if (flags & ARG2_IMM) {
if (arg2 == 0)
arg2 = TMP_ZERO;
else {
FAIL_IF(load_immediate(compiler, TMP_REG2, arg2));
arg2 = TMP_REG2;
}
}
else {
if (arg1 == 0)
arg1 = TMP_ZERO;
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
arg1 = TMP_REG1;
}
}
}
/* Both arguments are registers. */
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (dst == arg2)
return SLJIT_SUCCESS;
return push_inst(compiler, MOV | RD(dst) | RM(arg2));
case SLJIT_MOV_U8:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
inv_bits |= inv_bits >> 9;
return push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg2) | (7 << 10));
case SLJIT_MOV_S8:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
inv_bits |= inv_bits >> 9;
return push_inst(compiler, (SBFM ^ inv_bits) | RD(dst) | RN(arg2) | (7 << 10));
case SLJIT_MOV_U16:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
inv_bits |= inv_bits >> 9;
return push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg2) | (15 << 10));
case SLJIT_MOV_S16:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
inv_bits |= inv_bits >> 9;
return push_inst(compiler, (SBFM ^ inv_bits) | RD(dst) | RN(arg2) | (15 << 10));
case SLJIT_MOV32:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (dst == arg2)
return SLJIT_SUCCESS;
/* fallthrough */
case SLJIT_MOV_U32:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
return push_inst(compiler, (MOV ^ W_OP) | RD(dst) | RM(arg2));
case SLJIT_MOV_S32:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
return push_inst(compiler, SBFM | (1 << 22) | RD(dst) | RN(arg2) | (31 << 10));
case SLJIT_CLZ:
SLJIT_ASSERT(arg1 == TMP_REG1);
return push_inst(compiler, (CLZ ^ inv_bits) | RD(dst) | RN(arg2));
case SLJIT_CTZ:
SLJIT_ASSERT(arg1 == TMP_REG1);
FAIL_IF(push_inst(compiler, (RBIT ^ inv_bits) | RD(dst) | RN(arg2)));
return push_inst(compiler, (CLZ ^ inv_bits) | RD(dst) | RN(dst));
case SLJIT_REV:
SLJIT_ASSERT(arg1 == TMP_REG1);
inv_bits |= inv_bits >> 21;
return push_inst(compiler, (REV ^ inv_bits) | RD(dst) | RN(arg2));
case SLJIT_REV_U16:
case SLJIT_REV_S16:
SLJIT_ASSERT(arg1 == TMP_REG1 && dst != TMP_REG2);
FAIL_IF(push_inst(compiler, (REV16 ^ (sljit_ins)0x80000000) | RD(dst) | RN(arg2)));
if (dst == TMP_REG1 || (arg2 == TMP_REG2 && op == SLJIT_REV_U16))
return SLJIT_SUCCESS;
inv_bits |= inv_bits >> 9;
return push_inst(compiler, ((op == SLJIT_REV_U16 ? UBFM : SBFM) ^ inv_bits) | RD(dst) | RN(dst) | (15 << 10));
case SLJIT_REV_U32:
case SLJIT_REV_S32:
SLJIT_ASSERT(arg1 == TMP_REG1 && dst != TMP_REG2);
FAIL_IF(push_inst(compiler, (REV ^ (sljit_ins)0x80000400) | RD(dst) | RN(arg2)));
if (op == SLJIT_REV_U32 || dst == TMP_REG1)
return SLJIT_SUCCESS;
return push_inst(compiler, SBFM | (1 << 22) | RD(dst) | RN(dst) | (31 << 10));
case SLJIT_ADD:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD;
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADD ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_ADDC:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD;
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADC ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_SUB:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB;
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SUB ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_SUBC:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB;
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SBC ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_MUL:
compiler->status_flags_state = 0;
if (!(flags & SET_FLAGS))
return push_inst(compiler, (MADD ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2) | RT2(TMP_ZERO));
if (flags & INT_OP) {
FAIL_IF(push_inst(compiler, SMADDL | RD(dst) | RN(arg1) | RM(arg2) | (31 << 10)));
FAIL_IF(push_inst(compiler, ADD | RD(TMP_LR) | RN(TMP_ZERO) | RM(dst) | (2 << 22) | (31 << 10)));
return push_inst(compiler, SUBS | RD(TMP_ZERO) | RN(TMP_LR) | RM(dst) | (2 << 22) | (63 << 10));
}
FAIL_IF(push_inst(compiler, SMULH | RD(TMP_LR) | RN(arg1) | RM(arg2)));
FAIL_IF(push_inst(compiler, MADD | RD(dst) | RN(arg1) | RM(arg2) | RT2(TMP_ZERO)));
return push_inst(compiler, SUBS | RD(TMP_ZERO) | RN(TMP_LR) | RM(dst) | (2 << 22) | (63 << 10));
case SLJIT_AND:
CHECK_FLAGS(3 << 29);
return push_inst(compiler, (AND ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_OR:
FAIL_IF(push_inst(compiler, (ORR ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
break; /* Set flags. */
case SLJIT_XOR:
FAIL_IF(push_inst(compiler, (EOR ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
break; /* Set flags. */
case SLJIT_SHL:
case SLJIT_MSHL:
FAIL_IF(push_inst(compiler, (LSLV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
break; /* Set flags. */
case SLJIT_LSHR:
case SLJIT_MLSHR:
FAIL_IF(push_inst(compiler, (LSRV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
break; /* Set flags. */
case SLJIT_ASHR:
case SLJIT_MASHR:
FAIL_IF(push_inst(compiler, (ASRV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
break; /* Set flags. */
case SLJIT_ROTL:
FAIL_IF(push_inst(compiler, (SUB ^ inv_bits) | RD(TMP_REG2) | RN(TMP_ZERO) | RM(arg2)));
arg2 = TMP_REG2;
/* fallthrough */
case SLJIT_ROTR:
return push_inst(compiler, (RORV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
default:
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
set_flags:
if (flags & SET_FLAGS)
return push_inst(compiler, (SUBS ^ inv_bits) | RD(TMP_ZERO) | RN(dst) | RM(TMP_ZERO));
return SLJIT_SUCCESS;
}
#define STORE 0x10
#define SIGNED 0x20
#define BYTE_SIZE 0x0
#define HALF_SIZE 0x1
#define INT_SIZE 0x2
#define WORD_SIZE 0x3
#define MEM_SIZE_SHIFT(flags) ((sljit_ins)(flags) & 0x3)
static sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg,
sljit_s32 arg, sljit_sw argw, sljit_s32 tmp_reg)
{
sljit_u32 shift = MEM_SIZE_SHIFT(flags);
sljit_u32 type = (shift << 30);
if (!(flags & STORE))
type |= (flags & SIGNED) ? 0x00800000 : 0x00400000;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
if (argw == 0 || argw == shift)
return push_inst(compiler, STRB | type | RT(reg)
| RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (argw ? (1 << 12) : 0));
FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | ((sljit_ins)argw << 10)));
return push_inst(compiler, STRBI | type | RT(reg) | RN(tmp_reg));
}
arg &= REG_MASK;
if (!arg) {
FAIL_IF(load_immediate(compiler, tmp_reg, argw & ~(0xfff << shift)));
argw = (argw >> shift) & 0xfff;
return push_inst(compiler, STRBI | type | RT(reg) | RN(tmp_reg) | ((sljit_ins)argw << 10));
}
if ((argw & ((1 << shift) - 1)) == 0) {
if (argw >= 0) {
if ((argw >> shift) <= 0xfff)
return push_inst(compiler, STRBI | type | RT(reg) | RN(arg) | ((sljit_ins)argw << (10 - shift)));
if (argw <= 0xffffff) {
FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(tmp_reg) | RN(arg) | (((sljit_ins)argw >> 12) << 10)));
argw = ((argw & 0xfff) >> shift);
return push_inst(compiler, STRBI | type | RT(reg) | RN(tmp_reg) | ((sljit_ins)argw << 10));
}
} else if (argw < -256 && argw >= -0xfff000) {
FAIL_IF(push_inst(compiler, SUBI | (1 << 22) | RD(tmp_reg) | RN(arg) | (((sljit_ins)(-argw + 0xfff) >> 12) << 10)));
argw = ((0x1000 + argw) & 0xfff) >> shift;
return push_inst(compiler, STRBI | type | RT(reg) | RN(tmp_reg) | ((sljit_ins)argw << 10));
}
}
if (argw <= 0xff && argw >= -0x100)
return push_inst(compiler, STURBI | type | RT(reg) | RN(arg) | (((sljit_ins)argw & 0x1ff) << 12));
if (argw >= 0) {
if (argw <= 0xfff0ff && ((argw + 0x100) & 0xfff) <= 0x1ff) {
FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(tmp_reg) | RN(arg) | (((sljit_ins)argw >> 12) << 10)));
return push_inst(compiler, STURBI | type | RT(reg) | RN(tmp_reg) | (((sljit_ins)argw & 0x1ff) << 12));
}
} else if (argw >= -0xfff100 && ((-argw + 0xff) & 0xfff) <= 0x1ff) {
FAIL_IF(push_inst(compiler, SUBI | (1 << 22) | RD(tmp_reg) | RN(arg) | (((sljit_ins)-argw >> 12) << 10)));
return push_inst(compiler, STURBI | type | RT(reg) | RN(tmp_reg) | (((sljit_ins)argw & 0x1ff) << 12));
}
FAIL_IF(load_immediate(compiler, tmp_reg, argw));
return push_inst(compiler, STRB | type | RT(reg) | RN(arg) | RM(tmp_reg));
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 prev, fprev, saved_regs_size, i, tmp;
sljit_s32 saved_arg_count = SLJIT_KEPT_SAVEDS_COUNT(options);
sljit_ins offs;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds - saved_arg_count, 2);
saved_regs_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, f64);
local_size = (local_size + saved_regs_size + 0xf) & ~0xf;
compiler->local_size = local_size;
if (local_size <= 512) {
FAIL_IF(push_inst(compiler, STP_PRE | RT(TMP_FP) | RT2(TMP_LR)
| RN(SLJIT_SP) | (sljit_ins)((-(local_size >> 3) & 0x7f) << 15)));
offs = (sljit_ins)(local_size - 2 * SSIZE_OF(sw)) << (15 - 3);
local_size = 0;
} else {
saved_regs_size = ((saved_regs_size - 2 * SSIZE_OF(sw)) + 0xf) & ~0xf;
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | ((sljit_ins)saved_regs_size << 10)));
offs = (sljit_ins)(saved_regs_size - 2 * SSIZE_OF(sw)) << (15 - 3);
local_size -= saved_regs_size;
SLJIT_ASSERT(local_size > 0);
}
prev = -1;
tmp = SLJIT_S0 - saveds;
for (i = SLJIT_S0 - saved_arg_count; i > tmp; i--) {
if (prev == -1) {
prev = i;
continue;
}
FAIL_IF(push_inst(compiler, STP | RT(prev) | RT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
prev = -1;
}
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
if (prev == -1) {
prev = i;
continue;
}
FAIL_IF(push_inst(compiler, STP | RT(prev) | RT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
prev = -1;
}
fprev = -1;
tmp = SLJIT_FS0 - fsaveds;
for (i = SLJIT_FS0; i > tmp; i--) {
if (fprev == -1) {
fprev = i;
continue;
}
FAIL_IF(push_inst(compiler, STP_F64 | VT(fprev) | VT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
fprev = -1;
}
for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) {
if (fprev == -1) {
fprev = i;
continue;
}
FAIL_IF(push_inst(compiler, STP_F64 | VT(fprev) | VT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
fprev = -1;
}
if (fprev != -1)
FAIL_IF(push_inst(compiler, STRI_F64 | VT(fprev) | RN(SLJIT_SP) | (offs >> 5) | (1 << 10)));
if (prev != -1)
FAIL_IF(push_inst(compiler, STRI | RT(prev) | RN(SLJIT_SP) | (offs >> 5) | ((fprev == -1) ? (1 << 10) : 0)));
#ifdef _WIN32
if (local_size > 4096)
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 10) | (1 << 22)));
#endif /* _WIN32 */
if (!(options & SLJIT_ENTER_REG_ARG)) {
arg_types >>= SLJIT_ARG_SHIFT;
saved_arg_count = 0;
tmp = SLJIT_R0;
while (arg_types) {
if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) {
if (!(arg_types & SLJIT_ARG_TYPE_SCRATCH_REG)) {
FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S0 - saved_arg_count) | RM(tmp)));
saved_arg_count++;
}
tmp++;
}
arg_types >>= SLJIT_ARG_SHIFT;
}
}
#ifdef _WIN32
if (local_size > 4096) {
if (local_size < 4 * 4096) {
/* No need for a loop. */
if (local_size >= 2 * 4096) {
if (local_size >= 3 * 4096) {
FAIL_IF(push_inst(compiler, LDRI | RT(TMP_ZERO) | RN(SLJIT_SP)));
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 10) | (1 << 22)));
}
FAIL_IF(push_inst(compiler, LDRI | RT(TMP_ZERO) | RN(SLJIT_SP)));
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 10) | (1 << 22)));
}
}
else {
FAIL_IF(push_inst(compiler, MOVZ | RD(TMP_REG1) | ((((sljit_ins)local_size >> 12) - 1) << 5)));
FAIL_IF(push_inst(compiler, LDRI | RT(TMP_ZERO) | RN(SLJIT_SP)));
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 10) | (1 << 22)));
FAIL_IF(push_inst(compiler, SUBI | (1 << 29) | RD(TMP_REG1) | RN(TMP_REG1) | (1 << 10)));
FAIL_IF(push_inst(compiler, B_CC | ((((sljit_ins) -3) & 0x7ffff) << 5) | 0x1 /* not-equal */));
}
local_size &= 0xfff;
if (local_size > 0)
FAIL_IF(push_inst(compiler, LDRI | RT(TMP_ZERO) | RN(SLJIT_SP)));
else
FAIL_IF(push_inst(compiler, STP | RT(TMP_FP) | RT2(TMP_LR) | RN(SLJIT_SP)));
}
if (local_size > 0) {
if (local_size <= 512)
FAIL_IF(push_inst(compiler, STP_PRE | RT(TMP_FP) | RT2(TMP_LR)
| RN(SLJIT_SP) | (sljit_ins)((-(local_size >> 3) & 0x7f) << 15)));
else {
if (local_size >= 4096)
local_size = (1 << (22 - 10));
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | ((sljit_ins)local_size << 10)));
FAIL_IF(push_inst(compiler, STP | RT(TMP_FP) | RT2(TMP_LR) | RN(SLJIT_SP)));
}
}
#else /* !_WIN32 */
/* The local_size does not include saved registers size. */
if (local_size != 0) {
if (local_size > 0xfff) {
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | (((sljit_ins)local_size >> 12) << 10) | (1 << 22)));
local_size &= 0xfff;
}
if (local_size > 512 || local_size == 0) {
if (local_size != 0)
FAIL_IF(push_inst(compiler, SUBI | RD(SLJIT_SP) | RN(SLJIT_SP) | ((sljit_ins)local_size << 10)));
FAIL_IF(push_inst(compiler, STP | RT(TMP_FP) | RT2(TMP_LR) | RN(SLJIT_SP)));
} else
FAIL_IF(push_inst(compiler, STP_PRE | RT(TMP_FP) | RT2(TMP_LR)
| RN(SLJIT_SP) | (sljit_ins)((-(local_size >> 3) & 0x7f) << 15)));
}
#endif /* _WIN32 */
return push_inst(compiler, ADDI | RD(TMP_FP) | RN(SLJIT_SP) | (0 << 10));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 saved_regs_size;
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds - SLJIT_KEPT_SAVEDS_COUNT(options), 2);
saved_regs_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, f64);
compiler->local_size = (local_size + saved_regs_size + 0xf) & ~0xf;
return SLJIT_SUCCESS;
}
static sljit_s32 emit_stack_frame_release(struct sljit_compiler *compiler, sljit_s32 is_return_to)
{
sljit_s32 local_size, prev, fprev, i, tmp;
sljit_ins offs;
local_size = compiler->local_size;
if (!is_return_to) {
if (local_size > 512 && local_size <= 512 + 496) {
FAIL_IF(push_inst(compiler, LDP_POST | RT(TMP_FP) | RT2(TMP_LR)
| RN(SLJIT_SP) | ((sljit_ins)(local_size - 512) << (15 - 3))));
local_size = 512;
} else
FAIL_IF(push_inst(compiler, LDP | RT(TMP_FP) | RT2(TMP_LR) | RN(SLJIT_SP)));
} else {
if (local_size > 512 && local_size <= 512 + 248) {
FAIL_IF(push_inst(compiler, LDRI_POST | RT(TMP_FP) | RN(SLJIT_SP) | ((sljit_ins)(local_size - 512) << 12)));
local_size = 512;
} else
FAIL_IF(push_inst(compiler, LDRI | RT(TMP_FP) | RN(SLJIT_SP) | 0));
}
if (local_size > 512) {
local_size -= 512;
if (local_size > 0xfff) {
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RN(SLJIT_SP)
| (((sljit_ins)local_size >> 12) << 10) | (1 << 22)));
local_size &= 0xfff;
}
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RN(SLJIT_SP) | ((sljit_ins)local_size << 10)));
local_size = 512;
}
offs = (sljit_ins)(local_size - 2 * SSIZE_OF(sw)) << (15 - 3);
prev = -1;
tmp = SLJIT_S0 - compiler->saveds;
for (i = SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options); i > tmp; i--) {
if (prev == -1) {
prev = i;
continue;
}
FAIL_IF(push_inst(compiler, LDP | RT(prev) | RT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
prev = -1;
}
for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
if (prev == -1) {
prev = i;
continue;
}
FAIL_IF(push_inst(compiler, LDP | RT(prev) | RT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
prev = -1;
}
fprev = -1;
tmp = SLJIT_FS0 - compiler->fsaveds;
for (i = SLJIT_FS0; i > tmp; i--) {
if (fprev == -1) {
fprev = i;
continue;
}
FAIL_IF(push_inst(compiler, LDP_F64 | VT(fprev) | VT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
fprev = -1;
}
for (i = compiler->fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) {
if (fprev == -1) {
fprev = i;
continue;
}
FAIL_IF(push_inst(compiler, LDP_F64 | VT(fprev) | VT2(i) | RN(SLJIT_SP) | offs));
offs -= (sljit_ins)2 << 15;
fprev = -1;
}
if (fprev != -1)
FAIL_IF(push_inst(compiler, LDRI_F64 | VT(fprev) | RN(SLJIT_SP) | (offs >> 5) | (1 << 10)));
if (prev != -1)
FAIL_IF(push_inst(compiler, LDRI | RT(prev) | RN(SLJIT_SP) | (offs >> 5) | ((fprev == -1) ? (1 << 10) : 0)));
/* This and the next call/jump instruction can be executed parallelly. */
return push_inst(compiler, ADDI | RD(SLJIT_SP) | RN(SLJIT_SP) | (sljit_ins)(local_size << 10));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler)
{
CHECK_ERROR();
CHECK(check_sljit_emit_return_void(compiler));
FAIL_IF(emit_stack_frame_release(compiler, 0));
return push_inst(compiler, RET | RN(TMP_LR));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_return_to(compiler, src, srcw));
if (src & SLJIT_MEM) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
srcw = 0;
} else if (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) {
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | RM(src)));
src = TMP_REG1;
srcw = 0;
}
FAIL_IF(emit_stack_frame_release(compiler, 1));
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_ijump(compiler, SLJIT_JUMP, src, srcw);
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
{
sljit_ins inv_bits = (op & SLJIT_32) ? W_OP : 0;
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
return push_inst(compiler, BRK);
case SLJIT_NOP:
return push_inst(compiler, NOP);
case SLJIT_LMUL_UW:
case SLJIT_LMUL_SW:
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | RM(SLJIT_R0)));
FAIL_IF(push_inst(compiler, MADD | RD(SLJIT_R0) | RN(SLJIT_R0) | RM(SLJIT_R1) | RT2(TMP_ZERO)));
return push_inst(compiler, (op == SLJIT_LMUL_UW ? UMULH : SMULH) | RD(SLJIT_R1) | RN(TMP_REG1) | RM(SLJIT_R1));
case SLJIT_DIVMOD_UW:
case SLJIT_DIVMOD_SW:
FAIL_IF(push_inst(compiler, (MOV ^ inv_bits) | RD(TMP_REG1) | RM(SLJIT_R0)));
FAIL_IF(push_inst(compiler, ((op == SLJIT_DIVMOD_UW ? UDIV : SDIV) ^ inv_bits) | RD(SLJIT_R0) | RN(SLJIT_R0) | RM(SLJIT_R1)));
FAIL_IF(push_inst(compiler, (MADD ^ inv_bits) | RD(SLJIT_R1) | RN(SLJIT_R0) | RM(SLJIT_R1) | RT2(TMP_ZERO)));
return push_inst(compiler, (SUB ^ inv_bits) | RD(SLJIT_R1) | RN(TMP_REG1) | RM(SLJIT_R1));
case SLJIT_DIV_UW:
case SLJIT_DIV_SW:
return push_inst(compiler, ((op == SLJIT_DIV_UW ? UDIV : SDIV) ^ inv_bits) | RD(SLJIT_R0) | RN(SLJIT_R0) | RM(SLJIT_R1));
case SLJIT_ENDBR:
case SLJIT_SKIP_FRAMES_BEFORE_RETURN:
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r, flags, mem_flags;
sljit_s32 op_flags = GET_ALL_FLAGS(op);
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
op = GET_OPCODE(op);
if (op >= SLJIT_MOV && op <= SLJIT_MOV_P) {
/* Both operands are registers. */
if (dst_r != TMP_REG1 && FAST_IS_REG(src))
return emit_op_imm(compiler, op | ((op_flags & SLJIT_32) ? INT_OP : 0), dst_r, TMP_REG1, src);
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
mem_flags = WORD_SIZE;
break;
case SLJIT_MOV_U8:
mem_flags = BYTE_SIZE;
if (src == SLJIT_IMM)
srcw = (sljit_u8)srcw;
break;
case SLJIT_MOV_S8:
mem_flags = BYTE_SIZE | SIGNED;
if (src == SLJIT_IMM)
srcw = (sljit_s8)srcw;
break;
case SLJIT_MOV_U16:
mem_flags = HALF_SIZE;
if (src == SLJIT_IMM)
srcw = (sljit_u16)srcw;
break;
case SLJIT_MOV_S16:
mem_flags = HALF_SIZE | SIGNED;
if (src == SLJIT_IMM)
srcw = (sljit_s16)srcw;
break;
case SLJIT_MOV_U32:
mem_flags = INT_SIZE;
if (src == SLJIT_IMM)
srcw = (sljit_u32)srcw;
break;
case SLJIT_MOV_S32:
case SLJIT_MOV32:
mem_flags = INT_SIZE | SIGNED;
if (src == SLJIT_IMM)
srcw = (sljit_s32)srcw;
break;
default:
SLJIT_UNREACHABLE();
mem_flags = 0;
break;
}
if (src == SLJIT_IMM)
FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG1, srcw));
else if (!(src & SLJIT_MEM))
dst_r = src;
else
FAIL_IF(emit_op_mem(compiler, mem_flags, dst_r, src, srcw, TMP_REG1));
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_flags | STORE, dst_r, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
flags = HAS_FLAGS(op_flags) ? SET_FLAGS : 0;
switch (op) {
case SLJIT_REV_U16:
case SLJIT_REV_S16:
mem_flags = HALF_SIZE;
break;
case SLJIT_REV_U32:
case SLJIT_REV_S32:
mem_flags = INT_SIZE;
break;
default:
mem_flags = WORD_SIZE;
if (op_flags & SLJIT_32) {
flags |= INT_OP;
mem_flags = INT_SIZE;
}
break;
}
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, mem_flags, TMP_REG2, src, srcw, TMP_REG2));
src = TMP_REG2;
}
emit_op_imm(compiler, flags | op, dst_r, TMP_REG1, src);
if (SLJIT_UNLIKELY(dst & SLJIT_MEM))
return emit_op_mem(compiler, mem_flags | STORE, dst_r, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 dst_r, flags, mem_flags;
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
flags = HAS_FLAGS(op) ? SET_FLAGS : 0;
mem_flags = WORD_SIZE;
if (op & SLJIT_32) {
flags |= INT_OP;
mem_flags = INT_SIZE;
}
if (dst == TMP_REG1)
flags |= UNUSED_RETURN;
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, mem_flags, TMP_REG1, src1, src1w, TMP_REG1));
src1 = TMP_REG1;
}
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, mem_flags, TMP_REG2, src2, src2w, TMP_REG2));
src2 = TMP_REG2;
}
if (src1 == SLJIT_IMM)
flags |= ARG1_IMM;
else
src1w = src1;
if (src2 == SLJIT_IMM)
flags |= ARG2_IMM;
else
src2w = src2;
emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src1w, src2w);
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_flags | STORE, dst_r, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, 1, 0, 0, src1, src1w, src2, src2w));
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op2(compiler, op, TMP_REG1, 0, src1, src1w, src2, src2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst_reg,
sljit_s32 src1_reg,
sljit_s32 src2_reg,
sljit_s32 src3, sljit_sw src3w)
{
sljit_ins inv_bits, imm;
sljit_s32 is_left;
sljit_sw mask;
CHECK_ERROR();
CHECK(check_sljit_emit_shift_into(compiler, op, dst_reg, src1_reg, src2_reg, src3, src3w));
is_left = (GET_OPCODE(op) == SLJIT_SHL || GET_OPCODE(op) == SLJIT_MSHL);
if (src1_reg == src2_reg) {
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op2(compiler, (is_left ? SLJIT_ROTL : SLJIT_ROTR) | (op & SLJIT_32), dst_reg, 0, src1_reg, 0, src3, src3w);
}
ADJUST_LOCAL_OFFSET(src3, src3w);
inv_bits = (op & SLJIT_32) ? W_OP : 0;
if (src3 == SLJIT_IMM) {
mask = inv_bits ? 0x1f : 0x3f;
src3w &= mask;
if (src3w == 0)
return SLJIT_SUCCESS;
if (is_left)
src3w = (src3w ^ mask) + 1;
return push_inst(compiler, (EXTR ^ (inv_bits | (inv_bits >> 9))) | RD(dst_reg)
| RN(is_left ? src1_reg : src2_reg) | RM(is_left ? src2_reg : src1_reg) | ((sljit_ins)src3w << 10));
}
if (src3 & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, inv_bits ? INT_SIZE : WORD_SIZE, TMP_REG2, src3, src3w, TMP_REG2));
src3 = TMP_REG2;
} else if (dst_reg == src3) {
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG2) | RM(src3)));
src3 = TMP_REG2;
}
FAIL_IF(push_inst(compiler, ((is_left ? LSLV : LSRV) ^ inv_bits) | RD(dst_reg) | RN(src1_reg) | RM(src3)));
if (!(op & SLJIT_SHIFT_INTO_NON_ZERO)) {
/* Shift left/right by 1. */
if (is_left)
imm = (sljit_ins)(inv_bits ? ((1 << 16) | (31 << 10)) : ((1 << 16) | (63 << 10) | (1 << 22)));
else
imm = (sljit_ins)(inv_bits ? ((31 << 16) | (30 << 10)) : ((63 << 16) | (62 << 10) | (1 << 22)));
FAIL_IF(push_inst(compiler, (UBFM ^ (inv_bits | (inv_bits >> 9))) | RD(TMP_REG1) | RN(src2_reg) | imm));
/* Set imm to mask. */
imm = (sljit_ins)(inv_bits ? (4 << 10) : ((5 << 10) | (1 << 22)));
FAIL_IF(push_inst(compiler, (EORI ^ inv_bits) | RD(TMP_REG2) | RN(src3) | imm));
src2_reg = TMP_REG1;
} else
FAIL_IF(push_inst(compiler, (SUB ^ inv_bits) | RD(TMP_REG2) | RN(TMP_ZERO) | RM(src3)));
FAIL_IF(push_inst(compiler, ((is_left ? LSRV : LSLV) ^ inv_bits) | RD(TMP_REG1) | RN(src2_reg) | RM(TMP_REG2)));
return push_inst(compiler, (ORR ^ inv_bits) | RD(dst_reg) | RN(dst_reg) | RM(TMP_REG1));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_src(compiler, op, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
switch (op) {
case SLJIT_FAST_RETURN:
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, MOV | RD(TMP_LR) | RM(src)));
else
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_LR, src, srcw, TMP_REG1));
return push_inst(compiler, RET | RN(TMP_LR));
case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN:
return SLJIT_SUCCESS;
case SLJIT_PREFETCH_L1:
case SLJIT_PREFETCH_L2:
case SLJIT_PREFETCH_L3:
case SLJIT_PREFETCH_ONCE:
SLJIT_ASSERT(reg_map[1] == 0 && reg_map[3] == 2 && reg_map[5] == 4);
/* The reg_map[op] should provide the appropriate constant. */
if (op == SLJIT_PREFETCH_L1)
op = 1;
else if (op == SLJIT_PREFETCH_L2)
op = 3;
else if (op == SLJIT_PREFETCH_L3)
op = 5;
else
op = 2;
/* Signed word sized load is the prefetch instruction. */
return emit_op_mem(compiler, WORD_SIZE | SIGNED, op, src, srcw, TMP_REG1);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_dst(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw)
{
sljit_s32 dst_r = TMP_LR;
CHECK_ERROR();
CHECK(check_sljit_emit_op_dst(compiler, op, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
switch (op) {
case SLJIT_FAST_ENTER:
if (FAST_IS_REG(dst))
return push_inst(compiler, MOV | RD(dst) | RM(TMP_LR));
break;
case SLJIT_GET_RETURN_ADDRESS:
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, dst_r, SLJIT_MEM1(SLJIT_SP), 0x8, TMP_REG2));
break;
}
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 type, sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(type, reg));
if (type == SLJIT_GP_REGISTER)
return reg_map[reg];
if (type != SLJIT_FLOAT_REGISTER && type != SLJIT_SIMD_REG_64 && type != SLJIT_SIMD_REG_128)
return -1;
return freg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_u32 size)
{
SLJIT_UNUSED_ARG(size);
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
return push_inst(compiler, *(sljit_ins*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
static sljit_s32 emit_fop_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
{
sljit_u32 shift = MEM_SIZE_SHIFT(flags);
sljit_ins type = (shift << 30);
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(flags & STORE))
type |= 0x00400000;
if (arg & OFFS_REG_MASK) {
argw &= 3;
if (argw == 0 || argw == shift)
return push_inst(compiler, STR_FR | type | VT(reg)
| RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (argw ? (1 << 12) : 0));
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG1) | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | ((sljit_ins)argw << 10)));
return push_inst(compiler, STR_FI | type | VT(reg) | RN(TMP_REG1));
}
arg &= REG_MASK;
if (!arg) {
FAIL_IF(load_immediate(compiler, TMP_REG1, argw & ~(0xfff << shift)));
argw = (argw >> shift) & 0xfff;
return push_inst(compiler, STR_FI | type | VT(reg) | RN(TMP_REG1) | ((sljit_ins)argw << 10));
}
if (argw >= 0 && (argw & ((1 << shift) - 1)) == 0) {
if ((argw >> shift) <= 0xfff)
return push_inst(compiler, STR_FI | type | VT(reg) | RN(arg) | ((sljit_ins)argw << (10 - shift)));
if (argw <= 0xffffff) {
FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(TMP_REG1) | RN(arg) | (((sljit_ins)argw >> 12) << 10)));
argw = ((argw & 0xfff) >> shift);
return push_inst(compiler, STR_FI | type | VT(reg) | RN(TMP_REG1) | ((sljit_ins)argw << 10));
}
}
if (argw <= 255 && argw >= -256)
return push_inst(compiler, STUR_FI | type | VT(reg) | RN(arg) | (((sljit_ins)argw & 0x1ff) << 12));
FAIL_IF(load_immediate(compiler, TMP_REG1, argw));
return push_inst(compiler, STR_FR | type | VT(reg) | RN(arg) | RM(TMP_REG1));
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
sljit_ins inv_bits = (op & SLJIT_32) ? (1 << 22) : 0;
if (GET_OPCODE(op) == SLJIT_CONV_S32_FROM_F64)
inv_bits |= W_OP;
if (src & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) ? INT_SIZE : WORD_SIZE, TMP_FREG1, src, srcw));
src = TMP_FREG1;
}
FAIL_IF(push_inst(compiler, (FCVTZS ^ inv_bits) | RD(dst_r) | VN(src)));
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, ((GET_OPCODE(op) == SLJIT_CONV_S32_FROM_F64) ? INT_SIZE : WORD_SIZE) | STORE, TMP_REG1, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
static sljit_s32 sljit_emit_fop1_conv_f64_from_w(struct sljit_compiler *compiler, sljit_ins ins,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
emit_op_mem(compiler, (ins & W_OP) ? WORD_SIZE : INT_SIZE, TMP_REG1, src, srcw, TMP_REG1);
src = TMP_REG1;
} else if (src == SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
}
FAIL_IF(push_inst(compiler, ins | VD(dst_r) | RN(src)));
if (dst & SLJIT_MEM)
return emit_fop_mem(compiler, ((ins & (1 << 22)) ? WORD_SIZE : INT_SIZE) | STORE, TMP_FREG1, dst, dstw);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_ins inv_bits = (op & SLJIT_32) ? (1 << 22) : 0;
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32) {
inv_bits |= W_OP;
if (src == SLJIT_IMM)
srcw = (sljit_s32)srcw;
}
return sljit_emit_fop1_conv_f64_from_w(compiler, SCVTF ^ inv_bits, dst, dstw, src, srcw);
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_uw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_ins inv_bits = (op & SLJIT_32) ? (1 << 22) : 0;
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_U32) {
inv_bits |= W_OP;
if (src == SLJIT_IMM)
srcw = (sljit_u32)srcw;
}
return sljit_emit_fop1_conv_f64_from_w(compiler, UCVTF ^ inv_bits, dst, dstw, src, srcw);
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 mem_flags = (op & SLJIT_32) ? INT_SIZE : WORD_SIZE;
sljit_ins inv_bits = (op & SLJIT_32) ? (1 << 22) : 0;
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, mem_flags, TMP_FREG1, src1, src1w));
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, mem_flags, TMP_FREG2, src2, src2w));
src2 = TMP_FREG2;
}
FAIL_IF(push_inst(compiler, (FCMP ^ inv_bits) | VN(src1) | VM(src2)));
if (GET_FLAG_TYPE(op) != SLJIT_UNORDERED_OR_EQUAL)
return SLJIT_SUCCESS;
FAIL_IF(push_inst(compiler, CSINC | (0x0 << 12) | RD(TMP_REG1) | RN(TMP_ZERO) | RM(TMP_ZERO)));
return push_inst(compiler, CCMPI | (0x0 << 16) | (0x7 << 12) | RN(TMP_REG1) | 0x4);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r, mem_flags = (op & SLJIT_32) ? INT_SIZE : WORD_SIZE;
sljit_ins inv_bits;
CHECK_ERROR();
SLJIT_COMPILE_ASSERT((INT_SIZE ^ 0x1) == WORD_SIZE, must_be_one_bit_difference);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
inv_bits = (op & SLJIT_32) ? (1 << 22) : 0;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32) ? (mem_flags ^ 0x1) : mem_flags, dst_r, src, srcw));
src = dst_r;
}
switch (GET_OPCODE(op)) {
case SLJIT_MOV_F64:
if (src != dst_r) {
if (dst_r != TMP_FREG1)
FAIL_IF(push_inst(compiler, (FMOV ^ inv_bits) | VD(dst_r) | VN(src)));
else
dst_r = src;
}
break;
case SLJIT_NEG_F64:
FAIL_IF(push_inst(compiler, (FNEG ^ inv_bits) | VD(dst_r) | VN(src)));
break;
case SLJIT_ABS_F64:
FAIL_IF(push_inst(compiler, (FABS ^ inv_bits) | VD(dst_r) | VN(src)));
break;
case SLJIT_CONV_F64_FROM_F32:
FAIL_IF(push_inst(compiler, FCVT | (sljit_ins)((op & SLJIT_32) ? (1 << 22) : (1 << 15)) | VD(dst_r) | VN(src)));
break;
}
if (dst & SLJIT_MEM)
return emit_fop_mem(compiler, mem_flags | STORE, dst_r, dst, dstw);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 dst_r, mem_flags = (op & SLJIT_32) ? INT_SIZE : WORD_SIZE;
sljit_ins inv_bits = (op & SLJIT_32) ? (1 << 22) : 0;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, mem_flags, TMP_FREG1, src1, src1w));
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, mem_flags, TMP_FREG2, src2, src2w));
src2 = TMP_FREG2;
}
switch (GET_OPCODE(op)) {
case SLJIT_ADD_F64:
FAIL_IF(push_inst(compiler, (FADD ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_SUB_F64:
FAIL_IF(push_inst(compiler, (FSUB ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_MUL_F64:
FAIL_IF(push_inst(compiler, (FMUL ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_DIV_F64:
FAIL_IF(push_inst(compiler, (FDIV ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_COPYSIGN_F64:
FAIL_IF(push_inst(compiler, (FMOV_R ^ ((op & SLJIT_32) ? (W_OP | (1 << 22)) : 0)) | VN(src2) | RD(TMP_REG1)));
FAIL_IF(push_inst(compiler, (FABS ^ inv_bits) | VD(dst_r) | VN(src1)));
FAIL_IF(push_inst(compiler, TBZ | ((op & SLJIT_32) ? 0 : ((sljit_ins)1 << 31)) | (0x1f << 19) | (2 << 5) | RT(TMP_REG1)));
return push_inst(compiler, (FNEG ^ inv_bits) | VD(dst_r) | VN(dst_r));
}
if (!(dst & SLJIT_MEM))
return SLJIT_SUCCESS;
return emit_fop_mem(compiler, mem_flags | STORE, TMP_FREG1, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset32(struct sljit_compiler *compiler,
sljit_s32 freg, sljit_f32 value)
{
sljit_u32 exp;
union {
sljit_u32 imm;
sljit_f32 value;
} u;
CHECK_ERROR();
CHECK(check_sljit_emit_fset32(compiler, freg, value));
u.value = value;
if (u.imm == 0)
return push_inst(compiler, (FMOV_R ^ (W_OP | (1 << 22))) | RN(TMP_ZERO) | VD(freg) | (1 << 16));
if ((u.imm << (32 - 19)) == 0) {
exp = (u.imm >> (23 + 2)) & 0x3f;
if (exp == 0x20 || exp == 0x1f)
return push_inst(compiler, (FMOV_I ^ (1 << 22)) | (sljit_ins)((((u.imm >> 24) & 0x80) | ((u.imm >> 19) & 0x7f)) << 13) | VD(freg));
}
FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_s32)u.imm));
return push_inst(compiler, (FMOV_R ^ (W_OP | (1 << 22))) | RN(TMP_REG1) | VD(freg) | (1 << 16));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler,
sljit_s32 freg, sljit_f64 value)
{
sljit_uw exp;
union {
sljit_uw imm;
sljit_f64 value;
} u;
CHECK_ERROR();
CHECK(check_sljit_emit_fset64(compiler, freg, value));
u.value = value;
if (u.imm == 0)
return push_inst(compiler, FMOV_R | RN(TMP_ZERO) | VD(freg) | (sljit_ins)1 << 16);
if ((u.imm << (64 - 48)) == 0) {
exp = (u.imm >> (52 + 2)) & 0x1ff;
if (exp == 0x100 || exp == 0xff)
return push_inst(compiler, FMOV_I | (sljit_ins)((((u.imm >> 56) & 0x80) | ((u.imm >> 48) & 0x7f)) << 13) | VD(freg));
}
FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_sw)u.imm));
return push_inst(compiler, FMOV_R | RN(TMP_REG1) | VD(freg) | (1 << 16));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 freg, sljit_s32 reg)
{
sljit_ins inst;
CHECK_ERROR();
CHECK(check_sljit_emit_fcopy(compiler, op, freg, reg));
if (GET_OPCODE(op) == SLJIT_COPY_TO_F64)
inst = FMOV_R | RN(reg) | VD(freg) | (1 << 16);
else
inst = FMOV_R | VN(freg) | RD(reg);
if (op & SLJIT_32)
inst ^= W_OP | (1 << 22);
return push_inst(compiler, inst);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
static sljit_ins get_cc(struct sljit_compiler *compiler, sljit_s32 type)
{
switch (type) {
case SLJIT_EQUAL:
case SLJIT_ATOMIC_STORED:
case SLJIT_F_EQUAL:
case SLJIT_ORDERED_EQUAL:
case SLJIT_UNORDERED_OR_EQUAL:
return 0x1;
case SLJIT_NOT_EQUAL:
case SLJIT_ATOMIC_NOT_STORED:
case SLJIT_F_NOT_EQUAL:
case SLJIT_UNORDERED_OR_NOT_EQUAL:
case SLJIT_ORDERED_NOT_EQUAL:
return 0x0;
case SLJIT_CARRY:
if (compiler->status_flags_state & SLJIT_CURRENT_FLAGS_ADD)
return 0x3;
/* fallthrough */
case SLJIT_LESS:
return 0x2;
case SLJIT_NOT_CARRY:
if (compiler->status_flags_state & SLJIT_CURRENT_FLAGS_ADD)
return 0x2;
/* fallthrough */
case SLJIT_GREATER_EQUAL:
return 0x3;
case SLJIT_GREATER:
case SLJIT_UNORDERED_OR_GREATER:
return 0x9;
case SLJIT_LESS_EQUAL:
case SLJIT_F_LESS_EQUAL:
case SLJIT_ORDERED_LESS_EQUAL:
return 0x8;
case SLJIT_SIG_LESS:
case SLJIT_UNORDERED_OR_LESS:
return 0xa;
case SLJIT_SIG_GREATER_EQUAL:
case SLJIT_F_GREATER_EQUAL:
case SLJIT_ORDERED_GREATER_EQUAL:
return 0xb;
case SLJIT_SIG_GREATER:
case SLJIT_F_GREATER:
case SLJIT_ORDERED_GREATER:
return 0xd;
case SLJIT_SIG_LESS_EQUAL:
case SLJIT_UNORDERED_OR_LESS_EQUAL:
return 0xc;
case SLJIT_OVERFLOW:
if (!(compiler->status_flags_state & (SLJIT_CURRENT_FLAGS_ADD | SLJIT_CURRENT_FLAGS_SUB)))
return 0x0;
/* fallthrough */
case SLJIT_UNORDERED:
return 0x7;
case SLJIT_NOT_OVERFLOW:
if (!(compiler->status_flags_state & (SLJIT_CURRENT_FLAGS_ADD | SLJIT_CURRENT_FLAGS_SUB)))
return 0x1;
/* fallthrough */
case SLJIT_ORDERED:
return 0x6;
case SLJIT_F_LESS:
case SLJIT_ORDERED_LESS:
return 0x5;
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
return 0x4;
default:
SLJIT_UNREACHABLE();
return 0xe;
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
struct sljit_jump *jump;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
if (type < SLJIT_JUMP) {
jump->flags |= IS_COND;
PTR_FAIL_IF(push_inst(compiler, B_CC | (6 << 5) | get_cc(compiler, type)));
}
else if (type >= SLJIT_FAST_CALL)
jump->flags |= IS_BL;
PTR_FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(TMP_REG1)));
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types)
{
SLJIT_UNUSED_ARG(arg_types);
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types));
if (type & SLJIT_CALL_RETURN) {
PTR_FAIL_IF(emit_stack_frame_release(compiler, 0));
type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP);
}
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_jump(compiler, type);
}
static SLJIT_INLINE struct sljit_jump* emit_cmp_to0(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 src, sljit_sw srcw)
{
struct sljit_jump *jump;
sljit_ins inv_bits = (type & SLJIT_32) ? W_OP : 0;
SLJIT_ASSERT((type & 0xff) == SLJIT_EQUAL || (type & 0xff) == SLJIT_NOT_EQUAL);
ADJUST_LOCAL_OFFSET(src, srcw);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
jump->flags |= IS_CBZ | IS_COND;
if (src & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem(compiler, inv_bits ? INT_SIZE : WORD_SIZE, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
}
else if (src == SLJIT_IMM) {
PTR_FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
}
SLJIT_ASSERT(FAST_IS_REG(src));
if ((type & 0xff) == SLJIT_EQUAL)
inv_bits |= 1 << 24;
PTR_FAIL_IF(push_inst(compiler, (CBZ ^ inv_bits) | (6 << 5) | RT(src)));
PTR_FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, BR | RN(TMP_REG1)));
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
struct sljit_jump *jump;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
if (src != SLJIT_IMM) {
if (src & SLJIT_MEM) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
}
return push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(src));
}
/* These jumps are converted to jump/call instructions when possible. */
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
jump->u.target = (sljit_uw)srcw;
FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
return push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(TMP_REG1));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types,
sljit_s32 src, sljit_sw srcw)
{
SLJIT_UNUSED_ARG(arg_types);
CHECK_ERROR();
CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw));
if (src & SLJIT_MEM) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
}
if (type & SLJIT_CALL_RETURN) {
if (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) {
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | RM(src)));
src = TMP_REG1;
}
FAIL_IF(emit_stack_frame_release(compiler, 0));
type = SLJIT_JUMP;
}
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_ijump(compiler, type, src, srcw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 type)
{
sljit_s32 dst_r, src_r, flags, mem_flags;
sljit_ins cc;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
cc = get_cc(compiler, type);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (GET_OPCODE(op) < SLJIT_ADD) {
FAIL_IF(push_inst(compiler, CSINC | (cc << 12) | RD(dst_r) | RN(TMP_ZERO) | RM(TMP_ZERO)));
if (dst_r == TMP_REG1) {
mem_flags = (GET_OPCODE(op) == SLJIT_MOV ? WORD_SIZE : INT_SIZE) | STORE;
return emit_op_mem(compiler, mem_flags, TMP_REG1, dst, dstw, TMP_REG2);
}
return SLJIT_SUCCESS;
}
flags = HAS_FLAGS(op) ? SET_FLAGS : 0;
mem_flags = WORD_SIZE;
if (op & SLJIT_32) {
flags |= INT_OP;
mem_flags = INT_SIZE;
}
src_r = dst;
if (dst & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, mem_flags, TMP_REG1, dst, dstw, TMP_REG1));
src_r = TMP_REG1;
}
FAIL_IF(push_inst(compiler, CSINC | (cc << 12) | RD(TMP_REG2) | RN(TMP_ZERO) | RM(TMP_ZERO)));
emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src_r, TMP_REG2);
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_flags | STORE, TMP_REG1, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_select(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_reg,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2_reg)
{
sljit_ins inv_bits = (type & SLJIT_32) ? W_OP : 0;
sljit_ins cc;
CHECK_ERROR();
CHECK(check_sljit_emit_select(compiler, type, dst_reg, src1, src1w, src2_reg));
ADJUST_LOCAL_OFFSET(src1, src1w);
if (src1 == SLJIT_IMM) {
if (type & SLJIT_32)
src1w = (sljit_s32)src1w;
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
src1 = TMP_REG1;
} else if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src1, src1w, TMP_REG2));
src1 = TMP_REG1;
}
cc = get_cc(compiler, type & ~SLJIT_32);
return push_inst(compiler, (CSEL ^ inv_bits) | (cc << 12) | RD(dst_reg) | RN(src2_reg) | RM(src1));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fselect(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_freg,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2_freg)
{
sljit_ins inv_bits = (type & SLJIT_32) ? (1 << 22) : 0;
sljit_ins cc;
CHECK_ERROR();
CHECK(check_sljit_emit_fselect(compiler, type, dst_freg, src1, src1w, src2_freg));
ADJUST_LOCAL_OFFSET(src1, src1w);
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (type & SLJIT_32) ? INT_SIZE : WORD_SIZE, TMP_FREG1, src1, src1w));
src1 = TMP_FREG1;
}
cc = get_cc(compiler, type & ~SLJIT_32);
return push_inst(compiler, (FCSEL ^ inv_bits) | (cc << 12) | VD(dst_freg) | VN(src2_freg) | VM(src1));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 reg,
sljit_s32 mem, sljit_sw memw)
{
sljit_u32 inst;
CHECK_ERROR();
CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw));
if (!(reg & REG_PAIR_MASK))
return sljit_emit_mem_unaligned(compiler, type, reg, mem, memw);
ADJUST_LOCAL_OFFSET(mem, memw);
if (!(mem & REG_MASK)) {
FAIL_IF(load_immediate(compiler, TMP_REG1, memw & ~0x1f8));
mem = SLJIT_MEM1(TMP_REG1);
memw &= 0x1f8;
} else if (mem & OFFS_REG_MASK) {
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG1) | RN(mem & REG_MASK) | RM(OFFS_REG(mem)) | ((sljit_ins)(memw & 0x3) << 10)));
mem = SLJIT_MEM1(TMP_REG1);
memw = 0;
} else if ((memw & 0x7) != 0 || memw > 0x1f8 || memw < -0x200) {
inst = ADDI;
if (memw < 0) {
/* Remains negative for integer min. */
memw = -memw;
inst = SUBI;
} else if ((memw & 0x7) == 0 && memw <= 0x7ff0) {
if (!(type & SLJIT_MEM_STORE) && (mem & REG_MASK) == REG_PAIR_FIRST(reg)) {
FAIL_IF(push_inst(compiler, LDRI | RD(REG_PAIR_SECOND(reg)) | RN(mem & REG_MASK) | ((sljit_ins)memw << 7)));
return push_inst(compiler, LDRI | RD(REG_PAIR_FIRST(reg)) | RN(mem & REG_MASK) | ((sljit_ins)(memw + 0x8) << 7));
}
inst = (type & SLJIT_MEM_STORE) ? STRI : LDRI;
FAIL_IF(push_inst(compiler, inst | RD(REG_PAIR_FIRST(reg)) | RN(mem & REG_MASK) | ((sljit_ins)memw << 7)));
return push_inst(compiler, inst | RD(REG_PAIR_SECOND(reg)) | RN(mem & REG_MASK) | ((sljit_ins)(memw + 0x8) << 7));
}
if ((sljit_uw)memw <= 0xfff) {
FAIL_IF(push_inst(compiler, inst | RD(TMP_REG1) | RN(mem & REG_MASK) | ((sljit_ins)memw << 10)));
memw = 0;
} else if ((sljit_uw)memw <= 0xffffff) {
FAIL_IF(push_inst(compiler, inst | (1 << 22) | RD(TMP_REG1) | RN(mem & REG_MASK) | (((sljit_ins)memw >> 12) << 10)));
if ((memw & 0xe07) != 0) {
FAIL_IF(push_inst(compiler, inst | RD(TMP_REG1) | RN(TMP_REG1) | (((sljit_ins)memw & 0xfff) << 10)));
memw = 0;
} else {
memw &= 0xfff;
}
} else {
FAIL_IF(load_immediate(compiler, TMP_REG1, memw));
FAIL_IF(push_inst(compiler, (inst == ADDI ? ADD : SUB) | RD(TMP_REG1) | RN(mem & REG_MASK) | RM(TMP_REG1)));
memw = 0;
}
mem = SLJIT_MEM1(TMP_REG1);
if (inst == SUBI)
memw = -memw;
}
SLJIT_ASSERT((memw & 0x7) == 0 && memw <= 0x1f8 && memw >= -0x200);
return push_inst(compiler, ((type & SLJIT_MEM_STORE) ? STP : LDP) | RT(REG_PAIR_FIRST(reg)) | RT2(REG_PAIR_SECOND(reg)) | RN(mem & REG_MASK) | (sljit_ins)((memw & 0x3f8) << 12));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 reg,
sljit_s32 mem, sljit_sw memw)
{
sljit_u32 sign = 0, inst;
CHECK_ERROR();
CHECK(check_sljit_emit_mem_update(compiler, type, reg, mem, memw));
if ((mem & OFFS_REG_MASK) || (memw > 255 || memw < -256))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_MEM_SUPP)
return SLJIT_SUCCESS;
switch (type & 0xff) {
case SLJIT_MOV:
case SLJIT_MOV_P:
inst = STURBI | (MEM_SIZE_SHIFT(WORD_SIZE) << 30) | 0x400;
break;
case SLJIT_MOV_S8:
sign = 1;
/* fallthrough */
case SLJIT_MOV_U8:
inst = STURBI | (MEM_SIZE_SHIFT(BYTE_SIZE) << 30) | 0x400;
break;
case SLJIT_MOV_S16:
sign = 1;
/* fallthrough */
case SLJIT_MOV_U16:
inst = STURBI | (MEM_SIZE_SHIFT(HALF_SIZE) << 30) | 0x400;
break;
case SLJIT_MOV_S32:
sign = 1;
/* fallthrough */
case SLJIT_MOV_U32:
case SLJIT_MOV32:
inst = STURBI | (MEM_SIZE_SHIFT(INT_SIZE) << 30) | 0x400;
break;
default:
SLJIT_UNREACHABLE();
inst = STURBI | (MEM_SIZE_SHIFT(WORD_SIZE) << 30) | 0x400;
break;
}
if (!(type & SLJIT_MEM_STORE))
inst |= sign ? 0x00800000 : 0x00400000;
if (!(type & SLJIT_MEM_POST))
inst |= 0x800;
return push_inst(compiler, inst | RT(reg) | RN(mem & REG_MASK) | (sljit_ins)((memw & 0x1ff) << 12));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem_update(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg,
sljit_s32 mem, sljit_sw memw)
{
sljit_u32 inst;
CHECK_ERROR();
CHECK(check_sljit_emit_fmem_update(compiler, type, freg, mem, memw));
if ((mem & OFFS_REG_MASK) || (memw > 255 || memw < -256))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_MEM_SUPP)
return SLJIT_SUCCESS;
inst = STUR_FI | 0x80000400;
if (!(type & SLJIT_32))
inst |= 0x40000000;
if (!(type & SLJIT_MEM_STORE))
inst |= 0x00400000;
if (!(type & SLJIT_MEM_POST))
inst |= 0x800;
return push_inst(compiler, inst | VT(freg) | RN(mem & REG_MASK) | (sljit_ins)((memw & 0x1ff) << 12));
}
static sljit_s32 sljit_emit_simd_mem_offset(struct sljit_compiler *compiler, sljit_s32 *mem_ptr, sljit_sw memw)
{
sljit_ins ins;
sljit_s32 mem = *mem_ptr;
if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) {
*mem_ptr = TMP_REG1;
return push_inst(compiler, ADD | RD(TMP_REG1) | RN(mem & REG_MASK) | RM(OFFS_REG(mem)) | ((sljit_ins)(memw & 0x3) << 10));
}
if (!(mem & REG_MASK)) {
*mem_ptr = TMP_REG1;
return load_immediate(compiler, TMP_REG1, memw);
}
mem &= REG_MASK;
if (memw == 0) {
*mem_ptr = mem;
return SLJIT_SUCCESS;
}
*mem_ptr = TMP_REG1;
if (memw < -0xffffff || memw > 0xffffff) {
FAIL_IF(load_immediate(compiler, TMP_REG1, memw));
return push_inst(compiler, ADD | RD(TMP_REG1) | RN(TMP_REG1) | RM(mem));
}
ins = ADDI;
if (memw < 0) {
memw = -memw;
ins = SUBI;
}
if (memw > 0xfff) {
FAIL_IF(push_inst(compiler, ins | (1 << 22) | RD(TMP_REG1) | RN(mem) | ((sljit_ins)(memw >> 12) << 10)));
memw &= 0xfff;
if (memw == 0)
return SLJIT_SUCCESS;
mem = TMP_REG1;
}
return push_inst(compiler, ins | RD(TMP_REG1) | RN(mem) | ((sljit_ins)memw << 10));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg,
sljit_s32 srcdst, sljit_sw srcdstw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_ins ins;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_mov(compiler, type, freg, srcdst, srcdstw));
ADJUST_LOCAL_OFFSET(srcdst, srcdstw);
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (!(srcdst & SLJIT_MEM)) {
if (type & SLJIT_SIMD_STORE)
ins = VD(srcdst) | VN(freg) | VM(freg);
else
ins = VD(freg) | VN(srcdst) | VM(srcdst);
if (reg_size == 4)
ins |= (1 << 30);
return push_inst(compiler, ORR_v | ins);
}
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &srcdst, srcdstw));
if (elem_size > 3)
elem_size = 3;
ins = (type & SLJIT_SIMD_STORE) ? ST1 : LD1;
if (reg_size == 4)
ins |= (1 << 30);
return push_inst(compiler, ins | ((sljit_ins)elem_size << 10) | RN(srcdst) | VT(freg));
}
static sljit_ins simd_get_imm(sljit_s32 elem_size, sljit_uw value)
{
sljit_ins result;
if (elem_size > 2 && (sljit_u32)value == (value >> 32)) {
elem_size = 2;
value = (sljit_u32)value;
}
if (elem_size == 2 && (sljit_u16)value == (value >> 16)) {
elem_size = 1;
value = (sljit_u16)value;
}
if (elem_size == 1 && (sljit_u8)value == (value >> 8)) {
elem_size = 0;
value = (sljit_u8)value;
}
switch (elem_size) {
case 0:
SLJIT_ASSERT(value <= 0xff);
result = 0xe000;
break;
case 1:
SLJIT_ASSERT(value <= 0xffff);
result = 0;
while (1) {
if (value <= 0xff) {
result |= 0x8000;
break;
}
if ((value & 0xff) == 0) {
value >>= 8;
result |= 0xa000;
break;
}
if (result != 0)
return ~(sljit_ins)0;
value ^= (sljit_uw)0xffff;
result = (1 << 29);
}
break;
case 2:
SLJIT_ASSERT(value <= 0xffffffff);
result = 0;
while (1) {
if (value <= 0xff) {
result |= 0x0000;
break;
}
if ((value & ~(sljit_uw)0xff00) == 0) {
value >>= 8;
result |= 0x2000;
break;
}
if ((value & ~(sljit_uw)0xff0000) == 0) {
value >>= 16;
result |= 0x4000;
break;
}
if ((value & ~(sljit_uw)0xff000000) == 0) {
value >>= 24;
result |= 0x6000;
break;
}
if ((value & (sljit_uw)0xff) == 0xff && (value >> 16) == 0) {
value >>= 8;
result |= 0xc000;
break;
}
if ((value & (sljit_uw)0xffff) == 0xffff && (value >> 24) == 0) {
value >>= 16;
result |= 0xd000;
break;
}
if (result != 0)
return ~(sljit_ins)0;
value ^= (sljit_uw)0xffffffff;
result = (1 << 29);
}
break;
default:
return ~(sljit_ins)0;
}
return (((sljit_ins)value & 0x1f) << 5) | (((sljit_ins)value & 0xe0) << 11) | result;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_replicate(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_ins ins, imm;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_replicate(compiler, type, freg, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (src & SLJIT_MEM) {
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src, srcw));
ins = (sljit_ins)elem_size << 10;
if (reg_size == 4)
ins |= (sljit_ins)1 << 30;
return push_inst(compiler, LD1R | ins | RN(src) | VT(freg));
}
ins = (sljit_ins)1 << (16 + elem_size);
if (reg_size == 4)
ins |= (sljit_ins)1 << 30;
if (type & SLJIT_SIMD_FLOAT) {
if (src == SLJIT_IMM)
return push_inst(compiler, MOVI | (ins & ((sljit_ins)1 << 30)) | VD(freg));
return push_inst(compiler, DUP_e | ins | VD(freg) | VN(src));
}
if (src == SLJIT_IMM) {
if (elem_size < 3)
srcw &= ((sljit_sw)1 << (((sljit_sw)1 << elem_size) << 3)) - 1;
imm = simd_get_imm(elem_size, (sljit_uw)srcw);
if (imm != ~(sljit_ins)0) {
imm |= ins & ((sljit_ins)1 << 30);
return push_inst(compiler, MOVI | imm | VD(freg));
}
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
}
return push_inst(compiler, DUP_g | ins | VD(freg) | RN(src));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_mov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg, sljit_s32 lane_index,
sljit_s32 srcdst, sljit_sw srcdstw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_ins ins;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_lane_mov(compiler, type, freg, lane_index, srcdst, srcdstw));
ADJUST_LOCAL_OFFSET(srcdst, srcdstw);
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (type & SLJIT_SIMD_LANE_ZERO) {
ins = (reg_size == 3) ? 0 : ((sljit_ins)1 << 30);
if ((type & SLJIT_SIMD_FLOAT) && freg == srcdst) {
FAIL_IF(push_inst(compiler, ORR_v | ins | VD(TMP_FREG1) | VN(freg) | VM(freg)));
srcdst = TMP_FREG1;
srcdstw = 0;
}
FAIL_IF(push_inst(compiler, MOVI | ins | VD(freg)));
}
if (srcdst & SLJIT_MEM) {
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &srcdst, srcdstw));
if (elem_size == 3)
ins = 0x8400;
else if (elem_size == 0)
ins = 0;
else
ins = (sljit_ins)0x2000 << elem_size;
lane_index = lane_index << elem_size;
ins |= (sljit_ins)(((lane_index & 0x8) << 27) | ((lane_index & 0x7) << 10));
return push_inst(compiler, ((type & SLJIT_SIMD_STORE) ? ST1_s : LD1_s) | ins | RN(srcdst) | VT(freg));
}
if (type & SLJIT_SIMD_FLOAT) {
if (type & SLJIT_SIMD_STORE)
ins = INS_e | ((sljit_ins)1 << (16 + elem_size)) | ((sljit_ins)lane_index << (11 + elem_size)) | VD(srcdst) | VN(freg);
else
ins = INS_e | ((((sljit_ins)lane_index << 1) | 1) << (16 + elem_size)) | VD(freg) | VN(srcdst);
return push_inst(compiler, ins);
}
if (srcdst == SLJIT_IMM) {
if (elem_size < 3)
srcdstw &= ((sljit_sw)1 << (((sljit_sw)1 << elem_size) << 3)) - 1;
FAIL_IF(load_immediate(compiler, TMP_REG1, srcdstw));
srcdst = TMP_REG1;
}
if (type & SLJIT_SIMD_STORE) {
ins = RD(srcdst) | VN(freg);
if ((type & SLJIT_SIMD_LANE_SIGNED) && (elem_size < 2 || (elem_size == 2 && !(type & SLJIT_32)))) {
ins |= SMOV;
if (!(type & SLJIT_32))
ins |= (sljit_ins)1 << 30;
} else
ins |= UMOV;
} else
ins = INS | VD(freg) | RN(srcdst);
if (elem_size == 3)
ins |= (sljit_ins)1 << 30;
return push_inst(compiler, ins | ((((sljit_ins)lane_index << 1) | 1) << (16 + elem_size)));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_replicate(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg,
sljit_s32 src, sljit_s32 src_lane_index)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_ins ins;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_lane_replicate(compiler, type, freg, src, src_lane_index));
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
ins = (((sljit_ins)src_lane_index << 1) | 1) << (16 + elem_size);
if (reg_size == 4)
ins |= (sljit_ins)1 << 30;
return push_inst(compiler, DUP_e | ins | VD(freg) | VN(src));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_extend(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 elem2_size = SLJIT_SIMD_GET_ELEM2_SIZE(type);
CHECK_ERROR();
CHECK(check_sljit_emit_simd_extend(compiler, type, freg, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size != 2 || elem2_size != 3))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (src & SLJIT_MEM) {
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src, srcw));
if (reg_size == 4 && elem2_size - elem_size == 1)
FAIL_IF(push_inst(compiler, LD1 | ((sljit_ins)elem_size << 10) | RN(src) | VT(freg)));
else
FAIL_IF(push_inst(compiler, LD1_s | ((sljit_ins)0x2000 << (reg_size - elem2_size + elem_size)) | RN(src) | VT(freg)));
src = freg;
}
if (type & SLJIT_SIMD_FLOAT) {
SLJIT_ASSERT(reg_size == 4);
return push_inst(compiler, FCVTL | (1 << 22) | VD(freg) | VN(src));
}
do {
FAIL_IF(push_inst(compiler, ((type & SLJIT_SIMD_EXTEND_SIGNED) ? SSHLL : USHLL)
| ((sljit_ins)1 << (19 + elem_size)) | VD(freg) | VN(src)));
src = freg;
} while (++elem_size < elem2_size);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_sign(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 freg,
sljit_s32 dst, sljit_sw dstw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_ins ins, imms;
sljit_s32 dst_r;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_sign(compiler, type, freg, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
switch (elem_size) {
case 0:
imms = 0x643219;
ins = USHR | (0x9 << 16);
break;
case 1:
imms = (reg_size == 4) ? 0x643219 : 0x6231;
ins = USHR | (0x11 << 16);
break;
case 2:
imms = (reg_size == 4) ? 0x6231 : 0x61;
ins = USHR | (0x21 << 16);
break;
default:
imms = 0x61;
ins = USHR | (0x41 << 16);
break;
}
if (reg_size == 4)
ins |= (1 << 30);
FAIL_IF(push_inst(compiler, ins | VD(TMP_FREG1) | VN(freg)));
if (reg_size == 4 && elem_size > 0)
FAIL_IF(push_inst(compiler, XTN | ((sljit_ins)(elem_size - 1) << 22) | VD(TMP_FREG1) | VN(TMP_FREG1)));
if (imms >= 0x100) {
ins = (reg_size == 4 && elem_size == 0) ? (1 << 30) : 0;
do {
FAIL_IF(push_inst(compiler, USRA | ins | ((imms & 0xff) << 16) | VD(TMP_FREG1) | VN(TMP_FREG1)));
imms >>= 8;
} while (imms >= 0x100);
}
FAIL_IF(push_inst(compiler, USRA | (1 << 30) | (imms << 16) | VD(TMP_FREG1) | VN(TMP_FREG1)));
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
ins = (0x1 << 16);
if (reg_size == 4 && elem_size == 0) {
FAIL_IF(push_inst(compiler, INS_e | (0x3 << 16) | (0x8 << 11) | VD(TMP_FREG1) | VN(TMP_FREG1)));
ins = (0x2 << 16);
}
FAIL_IF(push_inst(compiler, UMOV | ins | RD(dst_r) | VN(TMP_FREG1)));
if (dst_r == TMP_REG1)
return emit_op_mem(compiler, STORE | ((type & SLJIT_32) ? INT_SIZE : WORD_SIZE), TMP_REG1, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_op2(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_freg, sljit_s32 src1_freg, sljit_s32 src2_freg)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_ins ins = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_op2(compiler, type, dst_freg, src1_freg, src2_freg));
if (reg_size != 3 && reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
switch (SLJIT_SIMD_GET_OPCODE(type)) {
case SLJIT_SIMD_OP2_AND:
ins = AND_v;
break;
case SLJIT_SIMD_OP2_OR:
ins = ORR_v;
break;
case SLJIT_SIMD_OP2_XOR:
ins = EOR_v;
break;
}
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (reg_size == 4)
ins |= (sljit_ins)1 << 30;
return push_inst(compiler, ins | VD(dst_freg) | VN(src1_freg) | VM(src2_freg));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_load(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst_reg,
sljit_s32 mem_reg)
{
sljit_ins ins;
CHECK_ERROR();
CHECK(check_sljit_emit_atomic_load(compiler, op, dst_reg, mem_reg));
#ifdef __ARM_FEATURE_ATOMICS
switch (GET_OPCODE(op)) {
case SLJIT_MOV32:
case SLJIT_MOV_U32:
ins = LDR ^ (1 << 30);
break;
case SLJIT_MOV_U16:
ins = LDRH;
break;
case SLJIT_MOV_U8:
ins = LDRB;
break;
default:
ins = LDR;
break;
}
#else /* !__ARM_FEATURE_ATOMICS */
switch (GET_OPCODE(op)) {
case SLJIT_MOV32:
case SLJIT_MOV_U32:
ins = LDXR ^ (1 << 30);
break;
case SLJIT_MOV_U8:
ins = LDXRB;
break;
case SLJIT_MOV_U16:
ins = LDXRH;
break;
default:
ins = LDXR;
break;
}
#endif /* ARM_FEATURE_ATOMICS */
return push_inst(compiler, ins | RN(mem_reg) | RT(dst_reg));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_store(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src_reg,
sljit_s32 mem_reg,
sljit_s32 temp_reg)
{
sljit_ins ins;
sljit_s32 tmp = temp_reg;
sljit_ins cmp = 0;
sljit_ins inv_bits = W_OP;
CHECK_ERROR();
CHECK(check_sljit_emit_atomic_store(compiler, op, src_reg, mem_reg, temp_reg));
#ifdef __ARM_FEATURE_ATOMICS
if (op & SLJIT_SET_ATOMIC_STORED)
cmp = (SUBS ^ W_OP) | RD(TMP_ZERO);
switch (GET_OPCODE(op)) {
case SLJIT_MOV32:
case SLJIT_MOV_U32:
ins = CAS ^ (1 << 30);
break;
case SLJIT_MOV_U16:
ins = CASH;
break;
case SLJIT_MOV_U8:
ins = CASB;
break;
default:
ins = CAS;
inv_bits = 0;
if (cmp)
cmp ^= W_OP;
break;
}
if (cmp) {
FAIL_IF(push_inst(compiler, (MOV ^ inv_bits) | RM(temp_reg) | RD(TMP_REG1)));
tmp = TMP_REG1;
}
FAIL_IF(push_inst(compiler, ins | RM(tmp) | RN(mem_reg) | RD(src_reg)));
if (!cmp)
return SLJIT_SUCCESS;
FAIL_IF(push_inst(compiler, cmp | RM(tmp) | RN(temp_reg)));
FAIL_IF(push_inst(compiler, (CSET ^ inv_bits) | RD(tmp)));
return push_inst(compiler, cmp | RM(tmp) | RN(TMP_ZERO));
#else /* !__ARM_FEATURE_ATOMICS */
SLJIT_UNUSED_ARG(tmp);
SLJIT_UNUSED_ARG(inv_bits);
if (op & SLJIT_SET_ATOMIC_STORED)
cmp = (SUBI ^ W_OP) | (1 << 29);
switch (GET_OPCODE(op)) {
case SLJIT_MOV32:
case SLJIT_MOV_U32:
ins = STXR ^ (1 << 30);
break;
case SLJIT_MOV_U8:
ins = STXRB;
break;
case SLJIT_MOV_U16:
ins = STXRH;
break;
default:
ins = STXR;
break;
}
FAIL_IF(push_inst(compiler, ins | RM(TMP_REG1) | RN(mem_reg) | RT(src_reg)));
return cmp ? push_inst(compiler, cmp | RD(TMP_ZERO) | RN(TMP_REG1)) : SLJIT_SUCCESS;
#endif /* __ARM_FEATURE_ATOMICS */
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset)
{
sljit_s32 dst_reg;
sljit_ins ins;
CHECK_ERROR();
CHECK(check_sljit_get_local_base(compiler, dst, dstw, offset));
ADJUST_LOCAL_OFFSET(SLJIT_MEM1(SLJIT_SP), offset);
dst_reg = FAST_IS_REG(dst) ? dst : TMP_REG1;
/* Not all instruction forms support accessing SP register. */
if (offset <= 0xffffff && offset >= -0xffffff) {
ins = ADDI;
if (offset < 0) {
offset = -offset;
ins = SUBI;
}
if (offset <= 0xfff)
FAIL_IF(push_inst(compiler, ins | RD(dst_reg) | RN(SLJIT_SP) | (sljit_ins)(offset << 10)));
else {
FAIL_IF(push_inst(compiler, ins | RD(dst_reg) | RN(SLJIT_SP) | (sljit_ins)((offset & 0xfff000) >> (12 - 10)) | (1 << 22)));
offset &= 0xfff;
if (offset != 0)
FAIL_IF(push_inst(compiler, ins | RD(dst_reg) | RN(dst_reg) | (sljit_ins)(offset << 10)));
}
}
else {
FAIL_IF(load_immediate (compiler, dst_reg, offset));
/* Add extended register form. */
FAIL_IF(push_inst(compiler, ADDE | (0x3 << 13) | RD(dst_reg) | RN(SLJIT_SP) | RM(dst_reg)));
}
if (SLJIT_UNLIKELY(dst & SLJIT_MEM))
return emit_op_mem(compiler, WORD_SIZE | STORE, dst_reg, dst, dstw, TMP_REG1);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_s32 dst_r;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
PTR_FAIL_IF(emit_imm64_const(compiler, dst_r, (sljit_uw)init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw, TMP_REG2));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
struct sljit_put_label *put_label;
sljit_s32 dst_r;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_put_label(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
PTR_FAIL_IF(emit_imm64_const(compiler, dst_r, 0));
put_label = (struct sljit_put_label*)ensure_abuf(compiler, sizeof(struct sljit_put_label));
PTR_FAIL_IF(!put_label);
set_put_label(put_label, compiler, 1);
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw, TMP_REG2));
return put_label;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
sljit_ins* inst = (sljit_ins*)addr;
sljit_u32 dst;
SLJIT_UNUSED_ARG(executable_offset);
SLJIT_UPDATE_WX_FLAGS(inst, inst + 4, 0);
dst = inst[0] & 0x1f;
SLJIT_ASSERT((inst[0] & 0xffe00000) == MOVZ && (inst[1] & 0xffe00000) == (MOVK | (1 << 21)));
inst[0] = MOVZ | dst | (((sljit_u32)new_target & 0xffff) << 5);
inst[1] = MOVK | dst | (((sljit_u32)(new_target >> 16) & 0xffff) << 5) | (1 << 21);
inst[2] = MOVK | dst | (((sljit_u32)(new_target >> 32) & 0xffff) << 5) | (2 << 21);
inst[3] = MOVK | dst | ((sljit_u32)(new_target >> 48) << 5) | (3 << 21);
SLJIT_UPDATE_WX_FLAGS(inst, inst + 4, 1);
inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 4);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
{
sljit_set_jump_addr(addr, (sljit_uw)new_constant, executable_offset);
}