godot/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid.h

// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

FFX_GROUPSHARED FfxUInt32 spdCounter;

#ifndef SPD_PACKED_ONLY
FFX_GROUPSHARED FfxFloat32 spdIntermediateR[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];

FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
{
    FfxFloat32x2 fUv = (tex + 0.5f + Jitter()) / RenderSize();
    fUv = ClampUv(fUv, RenderSize(), InputColorResourceDimensions());
    FfxFloat32x3 fRgb = SampleInputColor(fUv);

    fRgb /= PreExposure();
   
    //compute log luma
    const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, RGBToLuma(fRgb)));

    // Make sure out of screen pixels contribute no value to the end result
    const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;

    return FfxFloat32x4(result, 0, 0, 0);
}

FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
{
    return SPD_LoadMipmap5(tex);
}

void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
{
    if (index == LumaMipLevelToUse() || index == 5)
    {
        SPD_SetMipmap(pix, index, outValue.r);
    }

    if (index == MipCount() - 1) { //accumulate on 1x1 level

        if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
        {
            FfxFloat32 prev = SPD_LoadExposureBuffer().y;
            FfxFloat32 result = outValue.r;

            if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
            {
                FfxFloat32 rate = 1.0f;
                result = prev + (result - prev) * (1 - exp(-DeltaTime() * rate));
            }
            FfxFloat32x2 spdOutput = FfxFloat32x2(ComputeAutoExposureFromLavg(result), result);
            SPD_SetExposureBuffer(spdOutput);
        }
    }
}

void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
    SPD_IncreaseAtomicCounter(spdCounter);
}

FfxUInt32 SpdGetAtomicCounter()
{
    return spdCounter;
}

void SpdResetAtomicCounter(FfxUInt32 slice)
{
    SPD_ResetAtomicCounter();
}

FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
    return FfxFloat32x4(
        spdIntermediateR[x][y],
        spdIntermediateG[x][y],
        spdIntermediateB[x][y],
        spdIntermediateA[x][y]);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
    spdIntermediateR[x][y] = value.x;
    spdIntermediateG[x][y] = value.y;
    spdIntermediateB[x][y] = value.z;
    spdIntermediateA[x][y] = value.w;
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
    return (v0 + v1 + v2 + v3) * 0.25f;
}
#endif

// define fetch and store functions Packed
#if FFX_HALF
#error Callback must be implemented

FFX_GROUPSHARED FfxFloat16x2 spdIntermediateRG[16][16];
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateBA[16][16];

FfxFloat16x4 SpdLoadSourceImageH(FfxFloat32x2 tex, FfxUInt32 slice)
{
    return FfxFloat16x4(imgDst[0][FfxFloat32x3(tex, slice)]);
}
FfxFloat16x4 SpdLoadH(FfxInt32x2 p, FfxUInt32 slice)
{
    return FfxFloat16x4(imgDst6[FfxUInt32x3(p, slice)]);
}
void SpdStoreH(FfxInt32x2 p, FfxFloat16x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
    if (index == LumaMipLevelToUse() || index == 5)
    {
        imgDst6[FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
        return;
    }
    imgDst[mip + 1][FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
    InterlockedAdd(rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice], 1, spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
    return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
    rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice] = 0;
}
FfxFloat16x4 SpdLoadIntermediateH(FfxUInt32 x, FfxUInt32 y)
{
    return FfxFloat16x4(
        spdIntermediateRG[x][y].x,
        spdIntermediateRG[x][y].y,
        spdIntermediateBA[x][y].x,
        spdIntermediateBA[x][y].y);
}
void SpdStoreIntermediateH(FfxUInt32 x, FfxUInt32 y, FfxFloat16x4 value)
{
    spdIntermediateRG[x][y] = value.xy;
    spdIntermediateBA[x][y] = value.zw;
}
FfxFloat16x4 SpdReduce4H(FfxFloat16x4 v0, FfxFloat16x4 v1, FfxFloat16x4 v2, FfxFloat16x4 v3)
{
    return (v0 + v1 + v2 + v3) * FfxFloat16(0.25);
}
#endif

#include "ffx_spd.h"

void ComputeAutoExposure(FfxUInt32x3 WorkGroupId, FfxUInt32 LocalThreadIndex)
{
#if FFX_HALF
    SpdDownsampleH(
        FfxUInt32x2(WorkGroupId.xy),
        FfxUInt32(LocalThreadIndex),
        FfxUInt32(MipCount()),
        FfxUInt32(NumWorkGroups()),
        FfxUInt32(WorkGroupId.z),
        FfxUInt32x2(WorkGroupOffset()));
#else
    SpdDownsample(
        FfxUInt32x2(WorkGroupId.xy),
        FfxUInt32(LocalThreadIndex),
        FfxUInt32(MipCount()),
        FfxUInt32(NumWorkGroups()),
        FfxUInt32(WorkGroupId.z),
        FfxUInt32x2(WorkGroupOffset()));
#endif
}