#[vertex]
#version 450
#VERSION_DEFINES
/* Include our forward mobile UBOs definitions etc. */
#include "scene_forward_mobile_inc.glsl"
#define SHADER_IS_SRGB false
#define SHADER_SPACE_FAR 0.0
/* INPUT ATTRIBS */
// Always contains vertex position in XYZ, can contain tangent angle in W.
layout(location = 0) in vec4 vertex_angle_attrib;
//only for pure render depth when normal is not used
#ifdef NORMAL_USED
// Contains Normal/Axis in RG, can contain tangent in BA.
layout(location = 1) in vec4 axis_tangent_attrib;
#endif
// Location 2 is unused.
#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
layout(location = 5) in vec2 uv2_attrib;
#endif // MODE_RENDER_MATERIAL
#if defined(CUSTOM0_USED)
layout(location = 6) in vec4 custom0_attrib;
#endif
#if defined(CUSTOM1_USED)
layout(location = 7) in vec4 custom1_attrib;
#endif
#if defined(CUSTOM2_USED)
layout(location = 8) in vec4 custom2_attrib;
#endif
#if defined(CUSTOM3_USED)
layout(location = 9) in vec4 custom3_attrib;
#endif
#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS)
layout(location = 10) in uvec4 bone_attrib;
#endif
#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS)
layout(location = 11) in vec4 weight_attrib;
#endif
vec3 oct_to_vec3(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
float t = max(-v.z, 0.0);
v.xy += t * -sign(v.xy);
return normalize(v);
}
void axis_angle_to_tbn(vec3 axis, float angle, out vec3 tangent, out vec3 binormal, out vec3 normal) {
float c = cos(angle);
float s = sin(angle);
vec3 omc_axis = (1.0 - c) * axis;
vec3 s_axis = s * axis;
tangent = omc_axis.xxx * axis + vec3(c, -s_axis.z, s_axis.y);
binormal = omc_axis.yyy * axis + vec3(s_axis.z, c, -s_axis.x);
normal = omc_axis.zzz * axis + vec3(-s_axis.y, s_axis.x, c);
}
/* Spec Constants */
layout(constant_id = 17) const bool sc_is_multimesh = false;
/* Varyings */
layout(location = 0) highp out vec3 vertex_interp;
#ifdef NORMAL_USED
layout(location = 1) mediump out vec3 normal_interp;
#endif
#if defined(COLOR_USED)
layout(location = 2) mediump out vec4 color_interp;
#endif
#ifdef UV_USED
layout(location = 3) mediump out vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) mediump out vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) mediump out vec3 tangent_interp;
layout(location = 6) mediump out vec3 binormal_interp;
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#ifdef MODE_DUAL_PARABOLOID
layout(location = 9) out highp float dp_clip;
#endif
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#define ViewIndex gl_ViewIndex
#else
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif
vec3 multiview_uv(vec2 uv) {
return vec3(uv, ViewIndex);
}
ivec3 multiview_uv(ivec2 uv) {
return ivec3(uv, int(ViewIndex));
}
#else
// Set to zero, not supported in non stereo
#define ViewIndex 0
vec2 multiview_uv(vec2 uv) {
return uv;
}
ivec2 multiview_uv(ivec2 uv) {
return uv;
}
#endif //USE_MULTIVIEW
invariant gl_Position;
#GLOBALS
#define scene_data scene_data_block.data
#ifdef USE_DOUBLE_PRECISION
// Helper functions for emulating double precision when adding floats.
vec3 quick_two_sum(vec3 a, vec3 b, out vec3 out_p) {
vec3 s = a + b;
out_p = b - (s - a);
return s;
}
vec3 two_sum(vec3 a, vec3 b, out vec3 out_p) {
vec3 s = a + b;
vec3 v = s - a;
out_p = (a - (s - v)) + (b - v);
return s;
}
vec3 double_add_vec3(vec3 base_a, vec3 prec_a, vec3 base_b, vec3 prec_b, out vec3 out_precision) {
vec3 s, t, se, te;
s = two_sum(base_a, base_b, se);
t = two_sum(prec_a, prec_b, te);
se += t;
s = quick_two_sum(s, se, se);
se += te;
s = quick_two_sum(s, se, out_precision);
return s;
}
#endif
void main() {
vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
mat4 model_matrix = instances.data[draw_call.instance_index].transform;
mat4 inv_view_matrix = scene_data.inv_view_matrix;
#ifdef USE_DOUBLE_PRECISION
vec3 model_precision = vec3(model_matrix[0][3], model_matrix[1][3], model_matrix[2][3]);
model_matrix[0][3] = 0.0;
model_matrix[1][3] = 0.0;
model_matrix[2][3] = 0.0;
vec3 view_precision = vec3(inv_view_matrix[0][3], inv_view_matrix[1][3], inv_view_matrix[2][3]);
inv_view_matrix[0][3] = 0.0;
inv_view_matrix[1][3] = 0.0;
inv_view_matrix[2][3] = 0.0;
#endif
mat3 model_normal_matrix;
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
model_normal_matrix = transpose(inverse(mat3(model_matrix)));
} else {
model_normal_matrix = mat3(model_matrix);
}
mat4 matrix;
mat4 read_model_matrix = model_matrix;
if (sc_is_multimesh) {
//multimesh, instances are for it
#ifdef USE_PARTICLE_TRAILS
uint trail_size = (instances.data[draw_call.instance_index].flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK;
uint stride = 3 + 1 + 1; //particles always uses this format
uint offset = trail_size * stride * gl_InstanceIndex;
#ifdef COLOR_USED
vec4 pcolor;
#endif
{
uint boffset = offset + bone_attrib.x * stride;
matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x;
#ifdef COLOR_USED
pcolor = transforms.data[boffset + 3] * weight_attrib.x;
#endif
}
if (weight_attrib.y > 0.001) {
uint boffset = offset + bone_attrib.y * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.y;
#endif
}
if (weight_attrib.z > 0.001) {
uint boffset = offset + bone_attrib.z * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.z;
#endif
}
if (weight_attrib.w > 0.001) {
uint boffset = offset + bone_attrib.w * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.w;
#endif
}
instance_custom = transforms.data[offset + 4];
#ifdef COLOR_USED
color_interp *= pcolor;
#endif
#else
uint stride = 0;
{
//TODO implement a small lookup table for the stride
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
stride += 2;
} else {
stride += 3;
}
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
stride += 1;
}
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
stride += 1;
}
}
uint offset = stride * gl_InstanceIndex;
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
} else {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
offset += 3;
}
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
color_interp *= transforms.data[offset];
#endif
offset += 1;
}
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
#endif
//transpose
matrix = transpose(matrix);
#if !defined(USE_DOUBLE_PRECISION) || defined(SKIP_TRANSFORM_USED) || defined(VERTEX_WORLD_COORDS_USED) || defined(MODEL_MATRIX_USED)
// Normally we can bake the multimesh transform into the model matrix, but when using double precision
// we avoid baking it in so we can emulate high precision.
read_model_matrix = model_matrix * matrix;
#if !defined(USE_DOUBLE_PRECISION) || defined(SKIP_TRANSFORM_USED) || defined(VERTEX_WORLD_COORDS_USED)
model_matrix = read_model_matrix;
#endif // !defined(USE_DOUBLE_PRECISION) || defined(SKIP_TRANSFORM_USED) || defined(VERTEX_WORLD_COORDS_USED)
#endif // !defined(USE_DOUBLE_PRECISION) || defined(SKIP_TRANSFORM_USED) || defined(VERTEX_WORLD_COORDS_USED) || defined(MODEL_MATRIX_USED)
model_normal_matrix = model_normal_matrix * mat3(matrix);
}
vec3 vertex = vertex_angle_attrib.xyz * instances.data[draw_call.instance_index].compressed_aabb_size_pad.xyz + instances.data[draw_call.instance_index].compressed_aabb_position_pad.xyz;
#ifdef NORMAL_USED
vec3 normal = oct_to_vec3(axis_tangent_attrib.xy * 2.0 - 1.0);
#endif
#if defined(NORMAL_USED) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal;
float binormal_sign;
vec3 tangent;
if (axis_tangent_attrib.z > 0.0 || axis_tangent_attrib.w < 1.0) {
// Uncompressed format.
vec2 signed_tangent_attrib = axis_tangent_attrib.zw * 2.0 - 1.0;
tangent = oct_to_vec3(vec2(signed_tangent_attrib.x, abs(signed_tangent_attrib.y) * 2.0 - 1.0));
binormal_sign = sign(signed_tangent_attrib.y);
binormal = normalize(cross(normal, tangent) * binormal_sign);
} else {
// Compressed format.
float angle = vertex_angle_attrib.w;
binormal_sign = angle > 0.5 ? 1.0 : -1.0; // 0.5 does not exist in UNORM16, so values are either greater or smaller.
angle = abs(angle * 2.0 - 1.0) * M_PI; // 0.5 is basically zero, allowing to encode both signs reliably.
vec3 axis = normal;
axis_angle_to_tbn(axis, angle, tangent, binormal, normal);
binormal *= binormal_sign;
}
#endif
#ifdef UV_USED
uv_interp = uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
vec4 uv_scale = instances.data[draw_call.instance_index].uv_scale;
if (uv_scale != vec4(0.0)) { // Compression enabled
#ifdef UV_USED
uv_interp = (uv_interp - 0.5) * uv_scale.xy;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = (uv2_interp - 0.5) * uv_scale.zw;
#endif
}
#ifdef OVERRIDE_POSITION
vec4 position = vec4(1.0);
#endif
#ifdef USE_MULTIVIEW
mat4 projection_matrix = scene_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = scene_data.inv_projection_matrix_view[ViewIndex];
vec3 eye_offset = scene_data.eye_offset[ViewIndex].xyz;
#else
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
vec3 eye_offset = vec3(0.0, 0.0, 0.0);
#endif //USE_MULTIVIEW
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (model_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = model_normal_matrix * normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = model_normal_matrix * tangent;
binormal = model_normal_matrix * binormal;
#endif
#endif
float roughness = 1.0;
mat4 modelview = scene_data.view_matrix * model_matrix;
mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
mat4 read_view_matrix = scene_data.view_matrix;
vec2 read_viewport_size = scene_data.viewport_size;
{
#CODE : VERTEX
}
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
#ifdef USE_DOUBLE_PRECISION
// We separate the basis from the origin because the basis is fine with single point precision.
// Then we combine the translations from the model matrix and the view matrix using emulated doubles.
// We add the result to the vertex and ignore the final lost precision.
vec3 model_origin = model_matrix[3].xyz;
if (sc_is_multimesh) {
vertex = mat3(matrix) * vertex;
model_origin = double_add_vec3(model_origin, model_precision, matrix[3].xyz, vec3(0.0), model_precision);
}
vertex = mat3(inv_view_matrix * modelview) * vertex;
vec3 temp_precision;
vertex += double_add_vec3(model_origin, model_precision, scene_data.inv_view_matrix[3].xyz, view_precision, temp_precision);
vertex = mat3(scene_data.view_matrix) * vertex;
#else
vertex = (modelview * vec4(vertex, 1.0)).xyz;
#endif
#ifdef NORMAL_USED
normal = modelview_normal * normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
#endif
#endif // !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
#endif
vertex_interp = vertex;
#ifdef NORMAL_USED
normal_interp = normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_DUAL_PARABOLOID
vertex_interp.z *= scene_data.dual_paraboloid_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
vec3 vtx = vertex_interp;
float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / scene_data.z_far);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#endif
#endif //MODE_RENDER_DEPTH
#ifdef OVERRIDE_POSITION
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif // OVERRIDE_POSITION
#ifdef MODE_RENDER_DEPTH
if (scene_data.pancake_shadows) {
if (gl_Position.z >= 0.9999) {
gl_Position.z = 0.9999;
}
}
#endif // MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
if (scene_data.material_uv2_mode) {
gl_Position.xy = (uv2_attrib.xy + draw_call.uv_offset) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
}
#endif // MODE_RENDER_MATERIAL
}
#[fragment]
#version 450
#VERSION_DEFINES
#define SHADER_IS_SRGB false
#define SHADER_SPACE_FAR 0.0
/* Specialization Constants */
#if !defined(MODE_RENDER_DEPTH)
#if !defined(MODE_UNSHADED)
layout(constant_id = 0) const bool sc_use_light_projector = false;
layout(constant_id = 1) const bool sc_use_light_soft_shadows = false;
layout(constant_id = 2) const bool sc_use_directional_soft_shadows = false;
layout(constant_id = 3) const uint sc_soft_shadow_samples = 4;
layout(constant_id = 4) const uint sc_penumbra_shadow_samples = 4;
layout(constant_id = 5) const uint sc_directional_soft_shadow_samples = 4;
layout(constant_id = 6) const uint sc_directional_penumbra_shadow_samples = 4;
layout(constant_id = 8) const bool sc_projector_use_mipmaps = true;
layout(constant_id = 9) const bool sc_disable_omni_lights = false;
layout(constant_id = 10) const bool sc_disable_spot_lights = false;
layout(constant_id = 11) const bool sc_disable_reflection_probes = false;
layout(constant_id = 12) const bool sc_disable_directional_lights = false;
layout(constant_id = 18) const bool sc_use_lightmap_bicubic_filter = false;
#endif //!MODE_UNSHADED
layout(constant_id = 7) const bool sc_decal_use_mipmaps = true;
layout(constant_id = 13) const bool sc_disable_decals = false;
layout(constant_id = 14) const bool sc_disable_fog = false;
layout(constant_id = 16) const bool sc_use_depth_fog = false;
#endif //!MODE_RENDER_DEPTH
layout(constant_id = 15) const float sc_luminance_multiplier = 2.0;
/* Include our forward mobile UBOs definitions etc. */
#include "scene_forward_mobile_inc.glsl"
/* Varyings */
layout(location = 0) highp in vec3 vertex_interp;
#ifdef NORMAL_USED
layout(location = 1) mediump in vec3 normal_interp;
#endif
#if defined(COLOR_USED)
layout(location = 2) mediump in vec4 color_interp;
#endif
#ifdef UV_USED
layout(location = 3) mediump in vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) mediump in vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) mediump in vec3 tangent_interp;
layout(location = 6) mediump in vec3 binormal_interp;
#endif
#ifdef MODE_DUAL_PARABOLOID
layout(location = 9) highp in float dp_clip;
#endif
#ifdef USE_LIGHTMAP
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
}
float w1(float a) {
return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
}
float w2(float a) {
return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
}
float w3(float a) {
return (1.0 / 6.0) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0 + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0 + w3(a) / (w2(a) + w3(a));
}
vec4 textureArray_bicubic(texture2DArray tex, vec3 uv, vec2 texture_size) {
vec2 texel_size = vec2(1.0) / texture_size;
uv.xy = uv.xy * texture_size + vec2(0.5);
vec2 iuv = floor(uv.xy);
vec2 fuv = fract(uv.xy);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size;
return (g0(fuv.y) * (g0x * texture(sampler2DArray(tex, SAMPLER_LINEAR_CLAMP), vec3(p0, uv.z)) + g1x * texture(sampler2DArray(tex, SAMPLER_LINEAR_CLAMP), vec3(p1, uv.z)))) +
(g1(fuv.y) * (g0x * texture(sampler2DArray(tex, SAMPLER_LINEAR_CLAMP), vec3(p2, uv.z)) + g1x * texture(sampler2DArray(tex, SAMPLER_LINEAR_CLAMP), vec3(p3, uv.z))));
}
#endif //USE_LIGHTMAP
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#define ViewIndex gl_ViewIndex
#else
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif
vec3 multiview_uv(vec2 uv) {
return vec3(uv, ViewIndex);
}
ivec3 multiview_uv(ivec2 uv) {
return ivec3(uv, int(ViewIndex));
}
#else
// Set to zero, not supported in non stereo
#define ViewIndex 0
vec2 multiview_uv(vec2 uv) {
return uv;
}
ivec2 multiview_uv(ivec2 uv) {
return uv;
}
#endif //USE_MULTIVIEW
//defines to keep compatibility with vertex
#ifdef USE_MULTIVIEW
#define projection_matrix scene_data.projection_matrix_view[ViewIndex]
#define inv_projection_matrix scene_data.inv_projection_matrix_view[ViewIndex]
#else
#define projection_matrix scene_data.projection_matrix
#define inv_projection_matrix scene_data.inv_projection_matrix
#endif
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
#define LIGHT_TRANSMITTANCE_USED
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#GLOBALS
/* clang-format on */
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
layout(location = 0) out vec4 albedo_output_buffer;
layout(location = 1) out vec4 normal_output_buffer;
layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
layout(location = 4) out float depth_output_buffer;
#endif // MODE_RENDER_MATERIAL
#else // RENDER DEPTH
#ifdef MODE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
#else
layout(location = 0) out mediump vec4 frag_color;
#endif // MODE_MULTIPLE_RENDER_TARGETS
#endif // RENDER DEPTH
#include "../scene_forward_aa_inc.glsl"
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
// Default to SPECULAR_SCHLICK_GGX.
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
#include "../scene_forward_lights_inc.glsl"
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifndef MODE_RENDER_DEPTH
/*
Only supporting normal fog here.
*/
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data_block.data.fog_light_color;
if (scene_data_block.data.fog_aerial_perspective > 0.0) {
vec3 sky_fog_color = vec3(0.0);
vec3 cube_view = scene_data_block.data.radiance_inverse_xform * vertex;
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data_block.data.z_near) / (scene_data_block.data.z_far - scene_data_block.data.z_near));
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
sky_fog_color = texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(cube_view, lod)).rgb;
sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(cube_view, lod + 1)).rgb, blend);
#else
sky_fog_color = textureLod(samplerCube(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
fog_color = mix(fog_color, sky_fog_color, scene_data_block.data.fog_aerial_perspective);
}
if (scene_data_block.data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
vec3 view = normalize(vertex);
for (uint i = 0; i < scene_data_block.data.directional_light_count; i++) {
vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data_block.data.fog_sun_scatter;
}
}
float fog_amount = 0.0;
if (sc_use_depth_fog) {
float fog_z = smoothstep(scene_data_block.data.fog_depth_begin, scene_data_block.data.fog_depth_end, length(vertex));
float fog_quad_amount = pow(fog_z, scene_data_block.data.fog_depth_curve) * scene_data_block.data.fog_density;
fog_amount = fog_quad_amount;
} else {
fog_amount = 1 - exp(min(0.0, -length(vertex) * scene_data_block.data.fog_density));
}
if (abs(scene_data_block.data.fog_height_density) >= 0.0001) {
float y = (scene_data_block.data.inv_view_matrix * vec4(vertex, 1.0)).y;
float y_dist = y - scene_data_block.data.fog_height;
float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data_block.data.fog_height_density));
fog_amount = max(vfog_amount, fog_amount);
}
return vec4(fog_color, fog_amount);
}
#endif //!MODE_RENDER DEPTH
#define scene_data scene_data_block.data
void main() {
#ifdef MODE_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
//lay out everything, whatever is unused is optimized away anyway
vec3 vertex = vertex_interp;
#ifdef USE_MULTIVIEW
vec3 eye_offset = scene_data.eye_offset[ViewIndex].xyz;
vec3 view = -normalize(vertex_interp - eye_offset);
#else
vec3 eye_offset = vec3(0.0, 0.0, 0.0);
vec3 view = -normalize(vertex_interp);
#endif
vec3 albedo = vec3(1.0);
vec3 backlight = vec3(0.0);
vec4 transmittance_color = vec4(0.0);
float transmittance_depth = 0.0;
float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
#ifdef PREMUL_ALPHA_USED
float premul_alpha = 1.0;
#endif
#ifndef FOG_DISABLED
vec4 fog = vec4(0.0);
#endif // !FOG_DISABLED
#if defined(CUSTOM_RADIANCE_USED)
vec4 custom_radiance = vec4(0.0);
#endif
#if defined(CUSTOM_IRRADIANCE_USED)
vec4 custom_irradiance = vec4(0.0);
#endif
float ao = 1.0;
float ao_light_affect = 0.0;
float alpha = 1.0;
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
#ifdef NORMAL_USED
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
#endif //NORMAL_USED
#ifdef UV_USED
vec2 uv = uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(COLOR_USED)
vec4 color = color_interp;
#endif
#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.5);
#endif
float normal_map_depth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size;
float sss_strength = 0.0;
#ifdef ALPHA_SCISSOR_USED
float alpha_scissor_threshold = 1.0;
#endif // ALPHA_SCISSOR_USED
#ifdef ALPHA_HASH_USED
float alpha_hash_scale = 1.0;
#endif // ALPHA_HASH_USED
#ifdef ALPHA_ANTIALIASING_EDGE_USED
float alpha_antialiasing_edge = 0.0;
vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
#endif // ALPHA_ANTIALIASING_EDGE_USED
mat4 inv_view_matrix = scene_data.inv_view_matrix;
mat4 read_model_matrix = instances.data[draw_call.instance_index].transform;
#ifdef USE_DOUBLE_PRECISION
read_model_matrix[0][3] = 0.0;
read_model_matrix[1][3] = 0.0;
read_model_matrix[2][3] = 0.0;
inv_view_matrix[0][3] = 0.0;
inv_view_matrix[1][3] = 0.0;
inv_view_matrix[2][3] = 0.0;
#endif
#ifdef LIGHT_VERTEX_USED
vec3 light_vertex = vertex;
#endif //LIGHT_VERTEX_USED
mat3 model_normal_matrix;
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
model_normal_matrix = transpose(inverse(mat3(read_model_matrix)));
} else {
model_normal_matrix = mat3(read_model_matrix);
}
mat4 read_view_matrix = scene_data.view_matrix;
vec2 read_viewport_size = scene_data.viewport_size;
{
#CODE : FRAGMENT
}
#ifdef LIGHT_VERTEX_USED
vertex = light_vertex;
#ifdef USE_MULTIVIEW
view = -normalize(vertex - eye_offset);
#else
view = -normalize(vertex);
#endif //USE_MULTIVIEW
#endif //LIGHT_VERTEX_USED
#ifdef LIGHT_TRANSMITTANCE_USED
#ifdef SSS_MODE_SKIN
transmittance_color.a = sss_strength;
#else
transmittance_color.a *= sss_strength;
#endif
#endif
#ifndef USE_SHADOW_TO_OPACITY
#ifdef ALPHA_SCISSOR_USED
if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // ALPHA_SCISSOR_USED
// alpha hash can be used in unison with alpha antialiasing
#ifdef ALPHA_HASH_USED
vec3 object_pos = (inverse(read_model_matrix) * inv_view_matrix * vec4(vertex, 1.0)).xyz;
if (alpha < compute_alpha_hash_threshold(object_pos, alpha_hash_scale)) {
discard;
}
#endif // ALPHA_HASH_USED
// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
alpha = 1.0;
#endif
#ifdef ALPHA_ANTIALIASING_EDGE_USED
// If alpha scissor is used, we must further the edge threshold, otherwise we won't get any edge feather
#ifdef ALPHA_SCISSOR_USED
alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
#endif
alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
#endif // ALPHA_ANTIALIASING_EDGE_USED
#ifdef MODE_RENDER_DEPTH
#if defined(USE_OPAQUE_PREPASS) || defined(ALPHA_ANTIALIASING_EDGE_USED)
if (alpha < scene_data.opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS || ALPHA_ANTIALIASING_EDGE_USED
#endif // MODE_RENDER_DEPTH
#endif // !USE_SHADOW_TO_OPACITY
#ifdef NORMAL_MAP_USED
normal_map.xy = normal_map.xy * 2.0 - 1.0;
normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
#ifdef LIGHT_ANISOTROPY_USED
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// FOG //////////////////////
#ifndef MODE_RENDER_DEPTH
#ifndef FOG_DISABLED
#ifndef CUSTOM_FOG_USED
// fog must be processed as early as possible and then packed.
// to maximize VGPR usage
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (!sc_disable_fog && scene_data.fog_enabled) {
fog = fog_process(vertex);
}
#endif //!CUSTOM_FOG_USED
uint fog_rg = packHalf2x16(fog.rg);
uint fog_ba = packHalf2x16(fog.ba);
#endif //!FOG_DISABLED
#endif //!MODE_RENDER_DEPTH
/////////////////////// DECALS ////////////////////////////////
#ifndef MODE_RENDER_DEPTH
vec3 vertex_ddx = dFdx(vertex);
vec3 vertex_ddy = dFdy(vertex);
if (!sc_disable_decals) { //Decals
// must implement
uint decal_indices = instances.data[draw_call.instance_index].decals.x;
for (uint i = 0; i < 8; i++) {
uint decal_index = decal_indices & 0xFF;
if (i == 3) {
decal_indices = instances.data[draw_call.instance_index].decals.y;
} else {
decal_indices = decal_indices >> 8;
}
if (decal_index == 0xFF) {
break;
}
if (!bool(decals.data[decal_index].mask & instances.data[draw_call.instance_index].layer_mask)) {
continue; //not masked
}
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
continue; //out of decal
}
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
if (decals.data[decal_index].normal_fade > 0.0) {
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
}
//we need ddx/ddy for mipmaps, so simulate them
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
//has albedo
vec4 decal_albedo;
if (sc_decal_use_mipmaps) {
decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
} else {
decal_albedo = textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, 0.0);
}
decal_albedo *= decals.data[decal_index].modulate;
decal_albedo.a *= fade;
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
vec3 decal_normal;
if (sc_decal_use_mipmaps) {
decal_normal = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
} else {
decal_normal = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, 0.0).xyz;
}
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
//convert to view space, use xzy because y is up
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
}
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
vec3 decal_orm;
if (sc_decal_use_mipmaps) {
decal_orm = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
} else {
decal_orm = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, 0.0).xyz;
}
ao = mix(ao, decal_orm.r, decal_albedo.a);
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
}
}
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
//emission is additive, so its independent from albedo
if (sc_decal_use_mipmaps) {
emission += textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
} else {
emission += textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, 0.0).xyz * decals.data[decal_index].emission_energy * fade;
}
}
}
} //Decals
#endif //!MODE_RENDER_DEPTH
/////////////////////// LIGHTING //////////////////////////////
#ifdef NORMAL_USED
if (scene_data.roughness_limiter_enabled) {
//https://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
float roughness2 = roughness * roughness;
vec3 dndu = dFdx(normal), dndv = dFdy(normal);
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
roughness = sqrt(filteredRoughness2);
}
#endif // NORMAL_USED
//apply energy conservation
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
#ifndef MODE_UNSHADED
// Used in regular draw pass and when drawing SDFs for SDFGI and materials for VoxelGI.
emission *= scene_data.emissive_exposure_normalization;
#endif
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifndef AMBIENT_LIGHT_DISABLED
if (scene_data.use_reflection_cubemap) {
#ifdef LIGHT_ANISOTROPY_USED
// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
vec3 anisotropic_tangent = cross(anisotropic_direction, view);
vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
vec3 ref_vec = reflect(-view, bent_normal);
ref_vec = mix(ref_vec, bent_normal, roughness * roughness);
#else
vec3 ref_vec = reflect(-view, normal);
ref_vec = mix(ref_vec, normal, roughness * roughness);
#endif
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(sqrt(roughness) * MAX_ROUGHNESS_LOD, lod);
specular_light = texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(ref_vec, lod)).rgb;
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(ref_vec, lod + 1)).rgb, blend);
#else // USE_RADIANCE_CUBEMAP_ARRAY
specular_light = textureLod(samplerCube(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), ref_vec, sqrt(roughness) * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light *= sc_luminance_multiplier;
specular_light *= scene_data.IBL_exposure_normalization;
specular_light *= horizon * horizon;
specular_light *= scene_data.ambient_light_color_energy.a;
}
#if defined(CUSTOM_RADIANCE_USED)
specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
#endif // CUSTOM_RADIANCE_USED
#ifndef USE_LIGHTMAP
//lightmap overrides everything
if (scene_data.use_ambient_light) {
ambient_light = scene_data.ambient_light_color_energy.rgb;
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
#else
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
cubemap_ambient *= sc_luminance_multiplier;
cubemap_ambient *= scene_data.IBL_exposure_normalization;
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
}
}
#endif // !USE_LIGHTMAP
#if defined(CUSTOM_IRRADIANCE_USED)
ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
#endif // CUSTOM_IRRADIANCE_USED
#ifdef LIGHT_CLEARCOAT_USED
if (scene_data.use_reflection_cubemap) {
vec3 n = normalize(normal_interp); // We want to use geometric normal, not normal_map
float NoV = max(dot(n, view), 0.0001);
vec3 ref_vec = reflect(-view, n);
ref_vec = mix(ref_vec, n, clearcoat_roughness * clearcoat_roughness);
// The clear coat layer assumes an IOR of 1.5 (4% reflectance)
float Fc = clearcoat * (0.04 + 0.96 * SchlickFresnel(NoV));
float attenuation = 1.0 - Fc;
ambient_light *= attenuation;
specular_light *= attenuation;
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
float roughness_lod = mix(0.001, 0.1, sqrt(clearcoat_roughness)) * MAX_ROUGHNESS_LOD;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(roughness_lod, lod);
vec3 clearcoat_light = texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(ref_vec, lod)).rgb;
clearcoat_light = mix(clearcoat_light, texture(samplerCubeArray(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(ref_vec, lod + 1)).rgb, blend);
#else
vec3 clearcoat_light = textureLod(samplerCube(radiance_cubemap, DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), ref_vec, roughness_lod).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light += clearcoat_light * horizon * horizon * Fc * scene_data.ambient_light_color_energy.a;
}
#endif // LIGHT_CLEARCOAT_USED
#endif // !AMBIENT_LIGHT_DISABLED
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//radiance
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifndef AMBIENT_LIGHT_DISABLED
#ifdef USE_LIGHTMAP
//lightmap
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
uint index = instances.data[draw_call.instance_index].gi_offset;
vec3 wnormal = mat3(scene_data.inv_view_matrix) * normal;
const float c1 = 0.429043;
const float c2 = 0.511664;
const float c3 = 0.743125;
const float c4 = 0.886227;
const float c5 = 0.247708;
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
c4 * lightmap_captures.data[index].sh[0].rgb -
c5 * lightmap_captures.data[index].sh[6].rgb +
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z) *
scene_data.emissive_exposure_normalization;
} else if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
bool uses_sh = bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
uint ofs = instances.data[draw_call.instance_index].gi_offset & 0xFFFF;
uint slice = instances.data[draw_call.instance_index].gi_offset >> 16;
vec3 uvw;
uvw.xy = uv2 * instances.data[draw_call.instance_index].lightmap_uv_scale.zw + instances.data[draw_call.instance_index].lightmap_uv_scale.xy;
uvw.z = float(slice);
if (uses_sh) {
uvw.z *= 4.0; //SH textures use 4 times more data
vec3 lm_light_l0;
vec3 lm_light_l1n1;
vec3 lm_light_l1_0;
vec3 lm_light_l1p1;
if (sc_use_lightmap_bicubic_filter) {
lm_light_l0 = textureArray_bicubic(lightmap_textures[ofs], uvw + vec3(0.0, 0.0, 0.0), lightmaps.data[ofs].light_texture_size).rgb;
lm_light_l1n1 = textureArray_bicubic(lightmap_textures[ofs], uvw + vec3(0.0, 0.0, 1.0), lightmaps.data[ofs].light_texture_size).rgb;
lm_light_l1_0 = textureArray_bicubic(lightmap_textures[ofs], uvw + vec3(0.0, 0.0, 2.0), lightmaps.data[ofs].light_texture_size).rgb;
lm_light_l1p1 = textureArray_bicubic(lightmap_textures[ofs], uvw + vec3(0.0, 0.0, 3.0), lightmaps.data[ofs].light_texture_size).rgb;
} else {
lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
}
vec3 n = normalize(lightmaps.data[ofs].normal_xform * normal);
float exposure_normalization = lightmaps.data[ofs].exposure_normalization;
ambient_light += lm_light_l0 * exposure_normalization;
ambient_light += lm_light_l1n1 * n.y * exposure_normalization;
ambient_light += lm_light_l1_0 * n.z * exposure_normalization;
ambient_light += lm_light_l1p1 * n.x * exposure_normalization;
} else {
if (sc_use_lightmap_bicubic_filter) {
ambient_light += textureArray_bicubic(lightmap_textures[ofs], uvw, lightmaps.data[ofs].light_texture_size).rgb * lightmaps.data[ofs].exposure_normalization;
} else {
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw, 0.0).rgb * lightmaps.data[ofs].exposure_normalization;
}
}
}
// No GI nor non low end mode...
#endif // USE_LIGHTMAP
// skipping ssao, do we remove ssao totally?
if (!sc_disable_reflection_probes) { //Reflection probes
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
uint reflection_indices = instances.data[draw_call.instance_index].reflection_probes.x;
#ifdef LIGHT_ANISOTROPY_USED
// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
vec3 anisotropic_tangent = cross(anisotropic_direction, view);
vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
#else
vec3 bent_normal = normal;
#endif
vec3 ref_vec = normalize(reflect(-view, bent_normal));
ref_vec = mix(ref_vec, bent_normal, roughness * roughness);
for (uint i = 0; i < 8; i++) {
uint reflection_index = reflection_indices & 0xFF;
if (i == 3) {
reflection_indices = instances.data[draw_call.instance_index].reflection_probes.y;
} else {
reflection_indices = reflection_indices >> 8;
}
if (reflection_index == 0xFF) {
break;
}
reflection_process(reflection_index, vertex, ref_vec, bent_normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#if !defined(USE_LIGHTMAP)
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
} //Reflection probes
// finalize ambient light here
ambient_light *= albedo.rgb;
ambient_light *= ao;
#endif // !AMBIENT_LIGHT_DISABLED
// convert ao to direct light ao
ao = mix(1.0, ao, ao_light_affect);
//this saves some VGPRs
vec3 f0 = F0(metallic, specular, albedo);
#ifndef AMBIENT_LIGHT_DISABLED
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * f0 + env.y * clamp(50.0 * f0.g, metallic, 1.0);
#endif
}
#endif // !AMBIENT_LIGHT_DISABLED
#endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#if !defined(MODE_RENDER_DEPTH)
//this saves some VGPRs
uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
#endif
// LIGHTING
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (!sc_disable_directional_lights) { //directional light
#ifndef SHADOWS_DISABLED
// Do shadow and lighting in two passes to reduce register pressure
uint shadow0 = 0;
uint shadow1 = 0;
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
break;
}
if (!bool(directional_lights.data[i].mask & instances.data[draw_call.instance_index].layer_mask)) {
continue; //not masked
}
float shadow = 1.0;
// Directional light shadow code is basically the same as forward clustered at this point in time minus `LIGHT_TRANSMITTANCE_USED` support.
// Not sure if there is a reason to change this seeing directional lights are part of our global data
// Should think about whether we may want to move this code into an include file or function??
#ifdef USE_SOFT_SHADOWS
//version with soft shadows, more expensive
if (directional_lights.data[i].shadow_opacity > 0.001) {
float depth_z = -vertex.z;
vec4 pssm_coord;
vec3 light_dir = directional_lights.data[i].direction;
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
}
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
float shadow2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
pssm_blend = sqrt(pssm_blend);
shadow = mix(shadow, shadow2, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
#else
// Soft shadow disabled version
if (directional_lights.data[i].shadow_opacity > 0.001) {
float depth_z = -vertex.z;
vec4 pssm_coord;
float blur_factor;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
blur_factor = 1.0;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
}
pssm_coord /= pssm_coord.w;
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor + (1.0 - blur_factor) * float(directional_lights.data[i].blend_splits)), pssm_coord);
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
float blur_factor2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x - directional_lights.data[i].shadow_split_offsets.x * 0.1, directional_lights.data[i].shadow_split_offsets.x, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y - directional_lights.data[i].shadow_split_offsets.y * 0.1, directional_lights.data[i].shadow_split_offsets.y, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.z - directional_lights.data[i].shadow_split_offsets.z * 0.1, directional_lights.data[i].shadow_split_offsets.z, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
blur_factor2 = 1.0;
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor2 + (1.0 - blur_factor2) * float(directional_lights.data[i].blend_splits)), pssm_coord);
shadow = mix(shadow, shadow2, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
#endif
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
}
}
#endif // SHADOWS_DISABLED
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
break;
}
if (!bool(directional_lights.data[i].mask & instances.data[draw_call.instance_index].layer_mask)) {
continue; //not masked
}
// We're not doing light transmittence
float shadow = 1.0;
#ifndef SHADOWS_DISABLED
if (i < 4) {
shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
} else {
shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
}
shadow = mix(1.0, shadow, directional_lights.data[i].shadow_opacity);
#endif
blur_shadow(shadow);
#ifdef DEBUG_DRAW_PSSM_SPLITS
vec3 tint = vec3(1.0);
if (-vertex.z < directional_lights.data[i].shadow_split_offsets.x) {
tint = vec3(1.0, 0.0, 0.0);
} else if (-vertex.z < directional_lights.data[i].shadow_split_offsets.y) {
tint = vec3(0.0, 1.0, 0.0);
} else if (-vertex.z < directional_lights.data[i].shadow_split_offsets.z) {
tint = vec3(0.0, 0.0, 1.0);
} else {
tint = vec3(1.0, 1.0, 0.0);
}
tint = mix(tint, vec3(1.0), shadow);
shadow = 1.0;
#endif
light_compute(normal, directional_lights.data[i].direction, normalize(view), 0.0,
#ifndef DEBUG_DRAW_PSSM_SPLITS
directional_lights.data[i].color * directional_lights.data[i].energy,
#else
directional_lights.data[i].color * directional_lights.data[i].energy * tint,
#endif
true, shadow, f0, orms, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/* not supported here
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
transmittance_z,
#endif
*/
#ifdef LIGHT_RIM_USED
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
#ifdef USE_SOFT_SHADOW
directional_lights.data[i].size,
#endif
diffuse_light,
specular_light);
}
} //directional light
if (!sc_disable_omni_lights) { //omni lights
uint light_indices = instances.data[draw_call.instance_index].omni_lights.x;
for (uint i = 0; i < 8; i++) {
uint light_index = light_indices & 0xFF;
if (i == 3) {
light_indices = instances.data[draw_call.instance_index].omni_lights.y;
} else {
light_indices = light_indices >> 8;
}
if (light_index == 0xFF) {
break;
}
float shadow = light_process_omni_shadow(light_index, vertex, normal);
shadow = blur_shadow(shadow);
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/*
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
#endif
*/
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent,
binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
} //omni lights
if (!sc_disable_spot_lights) { //spot lights
uint light_indices = instances.data[draw_call.instance_index].spot_lights.x;
for (uint i = 0; i < 8; i++) {
uint light_index = light_indices & 0xFF;
if (i == 3) {
light_indices = instances.data[draw_call.instance_index].spot_lights.y;
} else {
light_indices = light_indices >> 8;
}
if (light_index == 0xFF) {
break;
}
float shadow = light_process_spot_shadow(light_index, vertex, normal);
shadow = blur_shadow(shadow);
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/*
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
#endif
*/
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent,
binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
} //spot lights
#ifdef USE_SHADOW_TO_OPACITY
#ifndef MODE_RENDER_DEPTH
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // !ALPHA_SCISSOR_USED
#endif // !MODE_RENDER_DEPTH
#endif // USE_SHADOW_TO_OPACITY
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
albedo_output_buffer.rgb = albedo;
albedo_output_buffer.a = alpha;
normal_output_buffer.rgb = normal * 0.5 + 0.5;
normal_output_buffer.a = 0.0;
depth_output_buffer.r = -vertex.z;
orm_output_buffer.r = ao;
orm_output_buffer.g = roughness;
orm_output_buffer.b = metallic;
orm_output_buffer.a = sss_strength;
emission_output_buffer.rgb = emission;
emission_output_buffer.a = 0.0;
#endif // MODE_RENDER_MATERIAL
#else // MODE_RENDER_DEPTH
// multiply by albedo
diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
// apply direct light AO
ao = unpackUnorm4x8(orms).x;
specular_light *= ao;
diffuse_light *= ao;
// apply metallic
metallic = unpackUnorm4x8(orms).z;
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
#ifndef FOG_DISABLED
//restore fog
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
#endif // !FOG_DISABLED
#ifdef MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else // MODE_UNSHADED
#ifdef SSS_MODE_SKIN
sss_strength = -sss_strength;
#endif // SSS_MODE_SKIN
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
specular_buffer = vec4(specular_light, metallic);
#endif // MODE_UNSHADED
#ifndef FOG_DISABLED
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
#endif // !FOG_DISABLED
#else //MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else // MODE_UNSHADED
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
#endif // MODE_UNSHADED
#ifndef FOG_DISABLED
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
#endif // !FOG_DISABLED
// On mobile we use a UNORM buffer with 10bpp which results in a range from 0.0 - 1.0 resulting in HDR breaking
// We divide by sc_luminance_multiplier to support a range from 0.0 - 2.0 both increasing precision on bright and darker images
frag_color.rgb = frag_color.rgb / sc_luminance_multiplier;
#ifdef PREMUL_ALPHA_USED
frag_color.rgb *= premul_alpha;
#endif
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH
}