godot/thirdparty/mbedtls/library/rsa_alt_helpers.c

/*
 *  Helper functions for the RSA module
 *
 *  Copyright The Mbed TLS Contributors
 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
 *
 */

#include "common.h"

#if defined(MBEDTLS_RSA_C)

#include "mbedtls/rsa.h"
#include "mbedtls/bignum.h"
#include "rsa_alt_helpers.h"

/*
 * Compute RSA prime factors from public and private exponents
 *
 * Summary of algorithm:
 * Setting F := lcm(P-1,Q-1), the idea is as follows:
 *
 * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
 *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
 *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
 *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
 *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
 *     factors of N.
 *
 * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
 *     construction still applies since (-)^K is the identity on the set of
 *     roots of 1 in Z/NZ.
 *
 * The public and private key primitives (-)^E and (-)^D are mutually inverse
 * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
 * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
 * Splitting L = 2^t * K with K odd, we have
 *
 *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,
 *
 * so (F / 2) * K is among the numbers
 *
 *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
 *
 * where ord is the order of 2 in (DE - 1).
 * We can therefore iterate through these numbers apply the construction
 * of (a) and (b) above to attempt to factor N.
 *
 */
int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
                              mbedtls_mpi const *E, mbedtls_mpi const *D,
                              mbedtls_mpi *P, mbedtls_mpi *Q)
{}

/*
 * Given P, Q and the public exponent E, deduce D.
 * This is essentially a modular inversion.
 */
int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
                                        mbedtls_mpi const *Q,
                                        mbedtls_mpi const *E,
                                        mbedtls_mpi *D)
{}

int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
                           const mbedtls_mpi *D, mbedtls_mpi *DP,
                           mbedtls_mpi *DQ, mbedtls_mpi *QP)
{}

/*
 * Check that core RSA parameters are sane.
 */
int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
                                const mbedtls_mpi *Q, const mbedtls_mpi *D,
                                const mbedtls_mpi *E,
                                int (*f_rng)(void *, unsigned char *, size_t),
                                void *p_rng)
{}

/*
 * Check that RSA CRT parameters are in accordance with core parameters.
 */
int mbedtls_rsa_validate_crt(const mbedtls_mpi *P,  const mbedtls_mpi *Q,
                             const mbedtls_mpi *D,  const mbedtls_mpi *DP,
                             const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
{}

#endif /* MBEDTLS_RSA_C */