/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Daniel Vetter <[email protected]> */ /** * DOC: frontbuffer tracking * * Many features require us to track changes to the currently active * frontbuffer, especially rendering targeted at the frontbuffer. * * To be able to do so we track frontbuffers using a bitmask for all possible * frontbuffer slots through intel_frontbuffer_track(). The functions in this * file are then called when the contents of the frontbuffer are invalidated, * when frontbuffer rendering has stopped again to flush out all the changes * and when the frontbuffer is exchanged with a flip. Subsystems interested in * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks * into the relevant places and filter for the frontbuffer slots that they are * interested int. * * On a high level there are two types of powersaving features. The first one * work like a special cache (FBC and PSR) and are interested when they should * stop caching and when to restart caching. This is done by placing callbacks * into the invalidate and the flush functions: At invalidate the caching must * be stopped and at flush time it can be restarted. And maybe they need to know * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate * and flush on its own) which can be achieved with placing callbacks into the * flip functions. * * The other type of display power saving feature only cares about busyness * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate * busyness. There is no direct way to detect idleness. Instead an idle timer * work delayed work should be started from the flush and flip functions and * cancelled as soon as busyness is detected. */ #include "gem/i915_gem_object_frontbuffer.h" #include "i915_active.h" #include "i915_drv.h" #include "intel_display_trace.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_drrs.h" #include "intel_fbc.h" #include "intel_frontbuffer.h" #include "intel_psr.h" #include "intel_tdf.h" /** * frontbuffer_flush - flush frontbuffer * @i915: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the flush * * This function gets called every time rendering on the given planes has * completed and frontbuffer caching can be started again. Flushes will get * delayed if they're blocked by some outstanding asynchronous rendering. * * Can be called without any locks held. */ static void frontbuffer_flush(struct drm_i915_private *i915, unsigned int frontbuffer_bits, enum fb_op_origin origin) { … } /** * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip * @i915: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called after scheduling a flip on @obj. The actual * frontbuffer flushing will be delayed until completion is signalled with * intel_frontbuffer_flip_complete. If an invalidate happens in between this * flush will be cancelled. * * Can be called without any locks held. */ void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915, unsigned frontbuffer_bits) { … } /** * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip * @i915: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called after the flip has been latched and will complete * on the next vblank. It will execute the flush if it hasn't been cancelled yet. * * Can be called without any locks held. */ void intel_frontbuffer_flip_complete(struct drm_i915_private *i915, unsigned frontbuffer_bits) { … } /** * intel_frontbuffer_flip - synchronous frontbuffer flip * @i915: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called after scheduling a flip on @obj. This is for * synchronous plane updates which will happen on the next vblank and which will * not get delayed by pending gpu rendering. * * Can be called without any locks held. */ void intel_frontbuffer_flip(struct drm_i915_private *i915, unsigned frontbuffer_bits) { … } void __intel_fb_invalidate(struct intel_frontbuffer *front, enum fb_op_origin origin, unsigned int frontbuffer_bits) { … } void __intel_fb_flush(struct intel_frontbuffer *front, enum fb_op_origin origin, unsigned int frontbuffer_bits) { … } static void intel_frontbuffer_flush_work(struct work_struct *work) { … } /** * intel_frontbuffer_queue_flush - queue flushing frontbuffer object * @front: GEM object to flush * * This function is targeted for our dirty callback for queueing flush when * dma fence is signales */ void intel_frontbuffer_queue_flush(struct intel_frontbuffer *front) { … } static int frontbuffer_active(struct i915_active *ref) { … } static void frontbuffer_retire(struct i915_active *ref) { … } static void frontbuffer_release(struct kref *ref) __releases(&intel_bo_to_i915(front->obj)->display.fb_tracking.lock) { … } struct intel_frontbuffer * intel_frontbuffer_get(struct drm_i915_gem_object *obj) { … } void intel_frontbuffer_put(struct intel_frontbuffer *front) { … } /** * intel_frontbuffer_track - update frontbuffer tracking * @old: current buffer for the frontbuffer slots * @new: new buffer for the frontbuffer slots * @frontbuffer_bits: bitmask of frontbuffer slots * * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them * from @old and setting them in @new. Both @old and @new can be NULL. */ void intel_frontbuffer_track(struct intel_frontbuffer *old, struct intel_frontbuffer *new, unsigned int frontbuffer_bits) { … }