/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2013 - 2018 Intel Corporation. */ #ifndef _IAVF_TXRX_H_ #define _IAVF_TXRX_H_ /* Interrupt Throttling and Rate Limiting Goodies */ #define IAVF_DEFAULT_IRQ_WORK … /* The datasheet for the X710 and XL710 indicate that the maximum value for * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing * the register value which is divided by 2 lets use the actual values and * avoid an excessive amount of translation. */ #define IAVF_ITR_DYNAMIC … #define IAVF_ITR_MASK … #define IAVF_ITR_100K … #define IAVF_ITR_50K … #define IAVF_ITR_20K … #define IAVF_ITR_18K … #define IAVF_ITR_8K … #define IAVF_MAX_ITR … #define ITR_TO_REG(setting) … #define ITR_REG_ALIGN(setting) … #define ITR_IS_DYNAMIC(setting) … #define IAVF_ITR_RX_DEF … #define IAVF_ITR_TX_DEF … /* 0x40 is the enable bit for interrupt rate limiting, and must be set if * the value of the rate limit is non-zero */ #define INTRL_ENA … #define IAVF_MAX_INTRL … #define INTRL_REG_TO_USEC(intrl) … #define INTRL_USEC_TO_REG(set) … #define IAVF_INTRL_8K … #define IAVF_INTRL_62K … #define IAVF_INTRL_83K … #define IAVF_QUEUE_END_OF_LIST … /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum iavf_dyn_idx_t { … }; /* these are indexes into ITRN registers */ #define IAVF_RX_ITR … #define IAVF_TX_ITR … #define IAVF_PE_ITR … /* Supported RSS offloads */ #define IAVF_DEFAULT_RSS_HENA … #define IAVF_DEFAULT_RSS_HENA_EXPANDED … #define iavf_rx_desc … /** * iavf_test_staterr - tests bits in Rx descriptor status and error fields * @rx_desc: pointer to receive descriptor (in le64 format) * @stat_err_bits: value to mask * * This function does some fast chicanery in order to return the * value of the mask which is really only used for boolean tests. * The status_error_len doesn't need to be shifted because it begins * at offset zero. */ static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc, const u64 stat_err_bits) { … } /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define IAVF_RX_INCREMENT(r, i) … #define IAVF_RX_NEXT_DESC(r, i, n) … #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) … #define IAVF_MAX_BUFFER_TXD … #define IAVF_MIN_TX_LEN … /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define IAVF_MAX_READ_REQ_SIZE … #define IAVF_MAX_DATA_PER_TXD … #define IAVF_MAX_DATA_PER_TXD_ALIGNED … /** * iavf_txd_use_count - estimate the number of descriptors needed for Tx * @size: transmit request size in bytes * * Due to hardware alignment restrictions (4K alignment), we need to * assume that we can have no more than 12K of data per descriptor, even * though each descriptor can take up to 16K - 1 bytes of aligned memory. * Thus, we need to divide by 12K. But division is slow! Instead, * we decompose the operation into shifts and one relatively cheap * multiply operation. * * To divide by 12K, we first divide by 4K, then divide by 3: * To divide by 4K, shift right by 12 bits * To divide by 3, multiply by 85, then divide by 256 * (Divide by 256 is done by shifting right by 8 bits) * Finally, we add one to round up. Because 256 isn't an exact multiple of * 3, we'll underestimate near each multiple of 12K. This is actually more * accurate as we have 4K - 1 of wiggle room that we can fit into the last * segment. For our purposes this is accurate out to 1M which is orders of * magnitude greater than our largest possible GSO size. * * This would then be implemented as: * return (((size >> 12) * 85) >> 8) + 1; * * Since multiplication and division are commutative, we can reorder * operations into: * return ((size * 85) >> 20) + 1; */ static inline unsigned int iavf_txd_use_count(unsigned int size) { … } /* Tx Descriptors needed, worst case */ #define DESC_NEEDED … #define IAVF_MIN_DESC_PENDING … #define IAVF_TX_FLAGS_HW_VLAN … #define IAVF_TX_FLAGS_SW_VLAN … #define IAVF_TX_FLAGS_TSO … #define IAVF_TX_FLAGS_IPV4 … #define IAVF_TX_FLAGS_IPV6 … #define IAVF_TX_FLAGS_FCCRC … #define IAVF_TX_FLAGS_FSO … #define IAVF_TX_FLAGS_FD_SB … #define IAVF_TX_FLAGS_VXLAN_TUNNEL … #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN … #define IAVF_TX_FLAGS_VLAN_MASK … #define IAVF_TX_FLAGS_VLAN_PRIO_MASK … #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT … #define IAVF_TX_FLAGS_VLAN_SHIFT … struct iavf_tx_buffer { … }; struct iavf_queue_stats { … }; struct iavf_tx_queue_stats { … }; struct iavf_rx_queue_stats { … }; /* some useful defines for virtchannel interface, which * is the only remaining user of header split */ #define IAVF_RX_DTYPE_NO_SPLIT … #define IAVF_RX_DTYPE_HEADER_SPLIT … #define IAVF_RX_DTYPE_SPLIT_ALWAYS … #define IAVF_RX_SPLIT_L2 … #define IAVF_RX_SPLIT_IP … #define IAVF_RX_SPLIT_TCP_UDP … #define IAVF_RX_SPLIT_SCTP … /* struct that defines a descriptor ring, associated with a VSI */ struct iavf_ring { … } ____cacheline_internodealigned_in_smp; #define IAVF_ITR_ADAPTIVE_MIN_INC … #define IAVF_ITR_ADAPTIVE_MIN_USECS … #define IAVF_ITR_ADAPTIVE_MAX_USECS … #define IAVF_ITR_ADAPTIVE_LATENCY … #define IAVF_ITR_ADAPTIVE_BULK … #define ITR_IS_BULK(x) … struct iavf_ring_container { … }; /* iterator for handling rings in ring container */ #define iavf_for_each_ring(pos, head) … bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); void iavf_free_tx_resources(struct iavf_ring *tx_ring); void iavf_free_rx_resources(struct iavf_ring *rx_ring); int iavf_napi_poll(struct napi_struct *napi, int budget); void iavf_detect_recover_hung(struct iavf_vsi *vsi); int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); bool __iavf_chk_linearize(struct sk_buff *skb); /** * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed * @skb: send buffer * * Returns number of data descriptors needed for this skb. Returns 0 to indicate * there is not enough descriptors available in this ring since we need at least * one descriptor. **/ static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) { … } /** * iavf_maybe_stop_tx - 1st level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns 0 if stop is not needed **/ static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) { … } /** * iavf_chk_linearize - Check if there are more than 8 fragments per packet * @skb: send buffer * @count: number of buffers used * * Note: Our HW can't scatter-gather more than 8 fragments to build * a packet on the wire and so we need to figure out the cases where we * need to linearize the skb. **/ static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) { … } /** * txring_txq - helper to convert from a ring to a queue * @ring: Tx ring to find the netdev equivalent of **/ static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) { … } #endif /* _IAVF_TXRX_H_ */