// SPDX-License-Identifier: GPL-2.0
/*
* Hyper-V Isolation VM interface with paravisor and hypervisor
*
* Author:
* Tianyu Lan <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/hyperv.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <asm/svm.h>
#include <asm/sev.h>
#include <asm/io.h>
#include <asm/coco.h>
#include <asm/mem_encrypt.h>
#include <asm/set_memory.h>
#include <asm/mshyperv.h>
#include <asm/hypervisor.h>
#include <asm/mtrr.h>
#include <asm/io_apic.h>
#include <asm/realmode.h>
#include <asm/e820/api.h>
#include <asm/desc.h>
#include <uapi/asm/vmx.h>
#ifdef CONFIG_AMD_MEM_ENCRYPT
#define GHCB_USAGE_HYPERV_CALL 1
union hv_ghcb {
struct ghcb ghcb;
struct {
u64 hypercalldata[509];
u64 outputgpa;
union {
union {
struct {
u32 callcode : 16;
u32 isfast : 1;
u32 reserved1 : 14;
u32 isnested : 1;
u32 countofelements : 12;
u32 reserved2 : 4;
u32 repstartindex : 12;
u32 reserved3 : 4;
};
u64 asuint64;
} hypercallinput;
union {
struct {
u16 callstatus;
u16 reserved1;
u32 elementsprocessed : 12;
u32 reserved2 : 20;
};
u64 asunit64;
} hypercalloutput;
};
u64 reserved2;
} hypercall;
} __packed __aligned(HV_HYP_PAGE_SIZE);
/* Only used in an SNP VM with the paravisor */
static u16 hv_ghcb_version __ro_after_init;
/* Functions only used in an SNP VM with the paravisor go here. */
u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size)
{
union hv_ghcb *hv_ghcb;
void **ghcb_base;
unsigned long flags;
u64 status;
if (!hv_ghcb_pg)
return -EFAULT;
WARN_ON(in_nmi());
local_irq_save(flags);
ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
hv_ghcb = (union hv_ghcb *)*ghcb_base;
if (!hv_ghcb) {
local_irq_restore(flags);
return -EFAULT;
}
hv_ghcb->ghcb.protocol_version = GHCB_PROTOCOL_MAX;
hv_ghcb->ghcb.ghcb_usage = GHCB_USAGE_HYPERV_CALL;
hv_ghcb->hypercall.outputgpa = (u64)output;
hv_ghcb->hypercall.hypercallinput.asuint64 = 0;
hv_ghcb->hypercall.hypercallinput.callcode = control;
if (input_size)
memcpy(hv_ghcb->hypercall.hypercalldata, input, input_size);
VMGEXIT();
hv_ghcb->ghcb.ghcb_usage = 0xffffffff;
memset(hv_ghcb->ghcb.save.valid_bitmap, 0,
sizeof(hv_ghcb->ghcb.save.valid_bitmap));
status = hv_ghcb->hypercall.hypercalloutput.callstatus;
local_irq_restore(flags);
return status;
}
static inline u64 rd_ghcb_msr(void)
{
return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
}
static inline void wr_ghcb_msr(u64 val)
{
native_wrmsrl(MSR_AMD64_SEV_ES_GHCB, val);
}
static enum es_result hv_ghcb_hv_call(struct ghcb *ghcb, u64 exit_code,
u64 exit_info_1, u64 exit_info_2)
{
/* Fill in protocol and format specifiers */
ghcb->protocol_version = hv_ghcb_version;
ghcb->ghcb_usage = GHCB_DEFAULT_USAGE;
ghcb_set_sw_exit_code(ghcb, exit_code);
ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
VMGEXIT();
if (ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0))
return ES_VMM_ERROR;
else
return ES_OK;
}
void __noreturn hv_ghcb_terminate(unsigned int set, unsigned int reason)
{
u64 val = GHCB_MSR_TERM_REQ;
/* Tell the hypervisor what went wrong. */
val |= GHCB_SEV_TERM_REASON(set, reason);
/* Request Guest Termination from Hypervisor */
wr_ghcb_msr(val);
VMGEXIT();
while (true)
asm volatile("hlt\n" : : : "memory");
}
bool hv_ghcb_negotiate_protocol(void)
{
u64 ghcb_gpa;
u64 val;
/* Save ghcb page gpa. */
ghcb_gpa = rd_ghcb_msr();
/* Do the GHCB protocol version negotiation */
wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
VMGEXIT();
val = rd_ghcb_msr();
if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
return false;
if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
return false;
hv_ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val),
GHCB_PROTOCOL_MAX);
/* Write ghcb page back after negotiating protocol. */
wr_ghcb_msr(ghcb_gpa);
VMGEXIT();
return true;
}
static void hv_ghcb_msr_write(u64 msr, u64 value)
{
union hv_ghcb *hv_ghcb;
void **ghcb_base;
unsigned long flags;
if (!hv_ghcb_pg)
return;
WARN_ON(in_nmi());
local_irq_save(flags);
ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
hv_ghcb = (union hv_ghcb *)*ghcb_base;
if (!hv_ghcb) {
local_irq_restore(flags);
return;
}
ghcb_set_rcx(&hv_ghcb->ghcb, msr);
ghcb_set_rax(&hv_ghcb->ghcb, lower_32_bits(value));
ghcb_set_rdx(&hv_ghcb->ghcb, upper_32_bits(value));
if (hv_ghcb_hv_call(&hv_ghcb->ghcb, SVM_EXIT_MSR, 1, 0))
pr_warn("Fail to write msr via ghcb %llx.\n", msr);
local_irq_restore(flags);
}
static void hv_ghcb_msr_read(u64 msr, u64 *value)
{
union hv_ghcb *hv_ghcb;
void **ghcb_base;
unsigned long flags;
/* Check size of union hv_ghcb here. */
BUILD_BUG_ON(sizeof(union hv_ghcb) != HV_HYP_PAGE_SIZE);
if (!hv_ghcb_pg)
return;
WARN_ON(in_nmi());
local_irq_save(flags);
ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
hv_ghcb = (union hv_ghcb *)*ghcb_base;
if (!hv_ghcb) {
local_irq_restore(flags);
return;
}
ghcb_set_rcx(&hv_ghcb->ghcb, msr);
if (hv_ghcb_hv_call(&hv_ghcb->ghcb, SVM_EXIT_MSR, 0, 0))
pr_warn("Fail to read msr via ghcb %llx.\n", msr);
else
*value = (u64)lower_32_bits(hv_ghcb->ghcb.save.rax)
| ((u64)lower_32_bits(hv_ghcb->ghcb.save.rdx) << 32);
local_irq_restore(flags);
}
/* Only used in a fully enlightened SNP VM, i.e. without the paravisor */
static u8 ap_start_input_arg[PAGE_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
static u8 ap_start_stack[PAGE_SIZE] __aligned(PAGE_SIZE);
static DEFINE_PER_CPU(struct sev_es_save_area *, hv_sev_vmsa);
/* Functions only used in an SNP VM without the paravisor go here. */
#define hv_populate_vmcb_seg(seg, gdtr_base) \
do { \
if (seg.selector) { \
seg.base = 0; \
seg.limit = HV_AP_SEGMENT_LIMIT; \
seg.attrib = *(u16 *)(gdtr_base + seg.selector + 5); \
seg.attrib = (seg.attrib & 0xFF) | ((seg.attrib >> 4) & 0xF00); \
} \
} while (0) \
static int snp_set_vmsa(void *va, bool vmsa)
{
u64 attrs;
/*
* Running at VMPL0 allows the kernel to change the VMSA bit for a page
* using the RMPADJUST instruction. However, for the instruction to
* succeed it must target the permissions of a lesser privileged
* (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
* instruction in the AMD64 APM Volume 3).
*/
attrs = 1;
if (vmsa)
attrs |= RMPADJUST_VMSA_PAGE_BIT;
return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
}
static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
{
int err;
err = snp_set_vmsa(vmsa, false);
if (err)
pr_err("clear VMSA page failed (%u), leaking page\n", err);
else
free_page((unsigned long)vmsa);
}
int hv_snp_boot_ap(u32 cpu, unsigned long start_ip)
{
struct sev_es_save_area *vmsa = (struct sev_es_save_area *)
__get_free_page(GFP_KERNEL | __GFP_ZERO);
struct sev_es_save_area *cur_vmsa;
struct desc_ptr gdtr;
u64 ret, retry = 5;
struct hv_enable_vp_vtl *start_vp_input;
unsigned long flags;
if (!vmsa)
return -ENOMEM;
native_store_gdt(&gdtr);
vmsa->gdtr.base = gdtr.address;
vmsa->gdtr.limit = gdtr.size;
asm volatile("movl %%es, %%eax;" : "=a" (vmsa->es.selector));
hv_populate_vmcb_seg(vmsa->es, vmsa->gdtr.base);
asm volatile("movl %%cs, %%eax;" : "=a" (vmsa->cs.selector));
hv_populate_vmcb_seg(vmsa->cs, vmsa->gdtr.base);
asm volatile("movl %%ss, %%eax;" : "=a" (vmsa->ss.selector));
hv_populate_vmcb_seg(vmsa->ss, vmsa->gdtr.base);
asm volatile("movl %%ds, %%eax;" : "=a" (vmsa->ds.selector));
hv_populate_vmcb_seg(vmsa->ds, vmsa->gdtr.base);
vmsa->efer = native_read_msr(MSR_EFER);
vmsa->cr4 = native_read_cr4();
vmsa->cr3 = __native_read_cr3();
vmsa->cr0 = native_read_cr0();
vmsa->xcr0 = 1;
vmsa->g_pat = HV_AP_INIT_GPAT_DEFAULT;
vmsa->rip = (u64)secondary_startup_64_no_verify;
vmsa->rsp = (u64)&ap_start_stack[PAGE_SIZE];
/*
* Set the SNP-specific fields for this VMSA:
* VMPL level
* SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
*/
vmsa->vmpl = 0;
vmsa->sev_features = sev_status >> 2;
ret = snp_set_vmsa(vmsa, true);
if (!ret) {
pr_err("RMPADJUST(%llx) failed: %llx\n", (u64)vmsa, ret);
free_page((u64)vmsa);
return ret;
}
local_irq_save(flags);
start_vp_input = (struct hv_enable_vp_vtl *)ap_start_input_arg;
memset(start_vp_input, 0, sizeof(*start_vp_input));
start_vp_input->partition_id = -1;
start_vp_input->vp_index = cpu;
start_vp_input->target_vtl.target_vtl = ms_hyperv.vtl;
*(u64 *)&start_vp_input->vp_context = __pa(vmsa) | 1;
do {
ret = hv_do_hypercall(HVCALL_START_VP,
start_vp_input, NULL);
} while (hv_result(ret) == HV_STATUS_TIME_OUT && retry--);
local_irq_restore(flags);
if (!hv_result_success(ret)) {
pr_err("HvCallStartVirtualProcessor failed: %llx\n", ret);
snp_cleanup_vmsa(vmsa);
vmsa = NULL;
}
cur_vmsa = per_cpu(hv_sev_vmsa, cpu);
/* Free up any previous VMSA page */
if (cur_vmsa)
snp_cleanup_vmsa(cur_vmsa);
/* Record the current VMSA page */
per_cpu(hv_sev_vmsa, cpu) = vmsa;
return ret;
}
#else
static inline void hv_ghcb_msr_write(u64 msr, u64 value) {}
static inline void hv_ghcb_msr_read(u64 msr, u64 *value) {}
#endif /* CONFIG_AMD_MEM_ENCRYPT */
#ifdef CONFIG_INTEL_TDX_GUEST
static void hv_tdx_msr_write(u64 msr, u64 val)
{
struct tdx_module_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = EXIT_REASON_MSR_WRITE,
.r12 = msr,
.r13 = val,
};
u64 ret = __tdx_hypercall(&args);
WARN_ONCE(ret, "Failed to emulate MSR write: %lld\n", ret);
}
static void hv_tdx_msr_read(u64 msr, u64 *val)
{
struct tdx_module_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = EXIT_REASON_MSR_READ,
.r12 = msr,
};
u64 ret = __tdx_hypercall(&args);
if (WARN_ONCE(ret, "Failed to emulate MSR read: %lld\n", ret))
*val = 0;
else
*val = args.r11;
}
u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2)
{
struct tdx_module_args args = { };
args.r10 = control;
args.rdx = param1;
args.r8 = param2;
(void)__tdx_hypercall(&args);
return args.r11;
}
#else
static inline void hv_tdx_msr_write(u64 msr, u64 value) {}
static inline void hv_tdx_msr_read(u64 msr, u64 *value) {}
#endif /* CONFIG_INTEL_TDX_GUEST */
#if defined(CONFIG_AMD_MEM_ENCRYPT) || defined(CONFIG_INTEL_TDX_GUEST)
void hv_ivm_msr_write(u64 msr, u64 value)
{
if (!ms_hyperv.paravisor_present)
return;
if (hv_isolation_type_tdx())
hv_tdx_msr_write(msr, value);
else if (hv_isolation_type_snp())
hv_ghcb_msr_write(msr, value);
}
void hv_ivm_msr_read(u64 msr, u64 *value)
{
if (!ms_hyperv.paravisor_present)
return;
if (hv_isolation_type_tdx())
hv_tdx_msr_read(msr, value);
else if (hv_isolation_type_snp())
hv_ghcb_msr_read(msr, value);
}
/*
* hv_mark_gpa_visibility - Set pages visible to host via hvcall.
*
* In Isolation VM, all guest memory is encrypted from host and guest
* needs to set memory visible to host via hvcall before sharing memory
* with host.
*/
static int hv_mark_gpa_visibility(u16 count, const u64 pfn[],
enum hv_mem_host_visibility visibility)
{
struct hv_gpa_range_for_visibility *input;
u16 pages_processed;
u64 hv_status;
unsigned long flags;
/* no-op if partition isolation is not enabled */
if (!hv_is_isolation_supported())
return 0;
if (count > HV_MAX_MODIFY_GPA_REP_COUNT) {
pr_err("Hyper-V: GPA count:%d exceeds supported:%lu\n", count,
HV_MAX_MODIFY_GPA_REP_COUNT);
return -EINVAL;
}
local_irq_save(flags);
input = *this_cpu_ptr(hyperv_pcpu_input_arg);
if (unlikely(!input)) {
local_irq_restore(flags);
return -EINVAL;
}
input->partition_id = HV_PARTITION_ID_SELF;
input->host_visibility = visibility;
input->reserved0 = 0;
input->reserved1 = 0;
memcpy((void *)input->gpa_page_list, pfn, count * sizeof(*pfn));
hv_status = hv_do_rep_hypercall(
HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY, count,
0, input, &pages_processed);
local_irq_restore(flags);
if (hv_result_success(hv_status))
return 0;
else
return -EFAULT;
}
/*
* When transitioning memory between encrypted and decrypted, the caller
* of set_memory_encrypted() or set_memory_decrypted() is responsible for
* ensuring that the memory isn't in use and isn't referenced while the
* transition is in progress. The transition has multiple steps, and the
* memory is in an inconsistent state until all steps are complete. A
* reference while the state is inconsistent could result in an exception
* that can't be cleanly fixed up.
*
* But the Linux kernel load_unaligned_zeropad() mechanism could cause a
* stray reference that can't be prevented by the caller, so Linux has
* specific code to handle this case. But when the #VC and #VE exceptions
* routed to a paravisor, the specific code doesn't work. To avoid this
* problem, mark the pages as "not present" while the transition is in
* progress. If load_unaligned_zeropad() causes a stray reference, a normal
* page fault is generated instead of #VC or #VE, and the page-fault-based
* handlers for load_unaligned_zeropad() resolve the reference. When the
* transition is complete, hv_vtom_set_host_visibility() marks the pages
* as "present" again.
*/
static int hv_vtom_clear_present(unsigned long kbuffer, int pagecount, bool enc)
{
return set_memory_np(kbuffer, pagecount);
}
/*
* hv_vtom_set_host_visibility - Set specified memory visible to host.
*
* In Isolation VM, all guest memory is encrypted from host and guest
* needs to set memory visible to host via hvcall before sharing memory
* with host. This function works as wrap of hv_mark_gpa_visibility()
* with memory base and size.
*/
static int hv_vtom_set_host_visibility(unsigned long kbuffer, int pagecount, bool enc)
{
enum hv_mem_host_visibility visibility = enc ?
VMBUS_PAGE_NOT_VISIBLE : VMBUS_PAGE_VISIBLE_READ_WRITE;
u64 *pfn_array;
phys_addr_t paddr;
int i, pfn, err;
void *vaddr;
int ret = 0;
pfn_array = kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
if (!pfn_array) {
ret = -ENOMEM;
goto err_set_memory_p;
}
for (i = 0, pfn = 0; i < pagecount; i++) {
/*
* Use slow_virt_to_phys() because the PRESENT bit has been
* temporarily cleared in the PTEs. slow_virt_to_phys() works
* without the PRESENT bit while virt_to_hvpfn() or similar
* does not.
*/
vaddr = (void *)kbuffer + (i * HV_HYP_PAGE_SIZE);
paddr = slow_virt_to_phys(vaddr);
pfn_array[pfn] = paddr >> HV_HYP_PAGE_SHIFT;
pfn++;
if (pfn == HV_MAX_MODIFY_GPA_REP_COUNT || i == pagecount - 1) {
ret = hv_mark_gpa_visibility(pfn, pfn_array,
visibility);
if (ret)
goto err_free_pfn_array;
pfn = 0;
}
}
err_free_pfn_array:
kfree(pfn_array);
err_set_memory_p:
/*
* Set the PTE PRESENT bits again to revert what hv_vtom_clear_present()
* did. Do this even if there is an error earlier in this function in
* order to avoid leaving the memory range in a "broken" state. Setting
* the PRESENT bits shouldn't fail, but return an error if it does.
*/
err = set_memory_p(kbuffer, pagecount);
if (err && !ret)
ret = err;
return ret;
}
static bool hv_vtom_tlb_flush_required(bool private)
{
/*
* Since hv_vtom_clear_present() marks the PTEs as "not present"
* and flushes the TLB, they can't be in the TLB. That makes the
* flush controlled by this function redundant, so return "false".
*/
return false;
}
static bool hv_vtom_cache_flush_required(void)
{
return false;
}
static bool hv_is_private_mmio(u64 addr)
{
/*
* Hyper-V always provides a single IO-APIC in a guest VM.
* When a paravisor is used, it is emulated by the paravisor
* in the guest context and must be mapped private.
*/
if (addr >= HV_IOAPIC_BASE_ADDRESS &&
addr < (HV_IOAPIC_BASE_ADDRESS + PAGE_SIZE))
return true;
/* Same with a vTPM */
if (addr >= VTPM_BASE_ADDRESS &&
addr < (VTPM_BASE_ADDRESS + PAGE_SIZE))
return true;
return false;
}
void __init hv_vtom_init(void)
{
enum hv_isolation_type type = hv_get_isolation_type();
switch (type) {
case HV_ISOLATION_TYPE_VBS:
fallthrough;
/*
* By design, a VM using vTOM doesn't see the SEV setting,
* so SEV initialization is bypassed and sev_status isn't set.
* Set it here to indicate a vTOM VM.
*
* Note: if CONFIG_AMD_MEM_ENCRYPT is not set, sev_status is
* defined as 0ULL, to which we can't assigned a value.
*/
#ifdef CONFIG_AMD_MEM_ENCRYPT
case HV_ISOLATION_TYPE_SNP:
sev_status = MSR_AMD64_SNP_VTOM;
cc_vendor = CC_VENDOR_AMD;
break;
#endif
case HV_ISOLATION_TYPE_TDX:
cc_vendor = CC_VENDOR_INTEL;
break;
default:
panic("hv_vtom_init: unsupported isolation type %d\n", type);
}
cc_set_mask(ms_hyperv.shared_gpa_boundary);
physical_mask &= ms_hyperv.shared_gpa_boundary - 1;
x86_platform.hyper.is_private_mmio = hv_is_private_mmio;
x86_platform.guest.enc_cache_flush_required = hv_vtom_cache_flush_required;
x86_platform.guest.enc_tlb_flush_required = hv_vtom_tlb_flush_required;
x86_platform.guest.enc_status_change_prepare = hv_vtom_clear_present;
x86_platform.guest.enc_status_change_finish = hv_vtom_set_host_visibility;
/* Set WB as the default cache mode. */
mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
}
#endif /* defined(CONFIG_AMD_MEM_ENCRYPT) || defined(CONFIG_INTEL_TDX_GUEST) */
enum hv_isolation_type hv_get_isolation_type(void)
{
if (!(ms_hyperv.priv_high & HV_ISOLATION))
return HV_ISOLATION_TYPE_NONE;
return FIELD_GET(HV_ISOLATION_TYPE, ms_hyperv.isolation_config_b);
}
EXPORT_SYMBOL_GPL(hv_get_isolation_type);
/*
* hv_is_isolation_supported - Check system runs in the Hyper-V
* isolation VM.
*/
bool hv_is_isolation_supported(void)
{
if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
return false;
if (!hypervisor_is_type(X86_HYPER_MS_HYPERV))
return false;
return hv_get_isolation_type() != HV_ISOLATION_TYPE_NONE;
}
DEFINE_STATIC_KEY_FALSE(isolation_type_snp);
/*
* hv_isolation_type_snp - Check if the system runs in an AMD SEV-SNP based
* isolation VM.
*/
bool hv_isolation_type_snp(void)
{
return static_branch_unlikely(&isolation_type_snp);
}
DEFINE_STATIC_KEY_FALSE(isolation_type_tdx);
/*
* hv_isolation_type_tdx - Check if the system runs in an Intel TDX based
* isolated VM.
*/
bool hv_isolation_type_tdx(void)
{
return static_branch_unlikely(&isolation_type_tdx);
}