// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "funnel-requestqueue.h"
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/wait.h>
#include "funnel-queue.h"
#include "logger.h"
#include "memory-alloc.h"
#include "thread-utils.h"
/*
* This queue will attempt to handle requests in reasonably sized batches instead of reacting
* immediately to each new request. The wait time between batches is dynamically adjusted up or
* down to try to balance responsiveness against wasted thread run time.
*
* If the wait time becomes long enough, the queue will become dormant and must be explicitly
* awoken when a new request is enqueued. The enqueue operation updates "newest" in the funnel
* queue via xchg (which is a memory barrier), and later checks "dormant" to decide whether to do a
* wakeup of the worker thread.
*
* When deciding to go to sleep, the worker thread sets "dormant" and then examines "newest" to
* decide if the funnel queue is idle. In dormant mode, the last examination of "newest" before
* going to sleep is done inside the wait_event_interruptible() macro, after a point where one or
* more memory barriers have been issued. (Preparing to sleep uses spin locks.) Even if the funnel
* queue's "next" field update isn't visible yet to make the entry accessible, its existence will
* kick the worker thread out of dormant mode and back into timer-based mode.
*
* Unbatched requests are used to communicate between different zone threads and will also cause
* the queue to awaken immediately.
*/
enum {
NANOSECOND = 1,
MICROSECOND = 1000 * NANOSECOND,
MILLISECOND = 1000 * MICROSECOND,
DEFAULT_WAIT_TIME = 20 * MICROSECOND,
MINIMUM_WAIT_TIME = DEFAULT_WAIT_TIME / 2,
MAXIMUM_WAIT_TIME = MILLISECOND,
MINIMUM_BATCH = 32,
MAXIMUM_BATCH = 64,
};
struct uds_request_queue {
/* Wait queue for synchronizing producers and consumer */
struct wait_queue_head wait_head;
/* Function to process a request */
uds_request_queue_processor_fn processor;
/* Queue of new incoming requests */
struct funnel_queue *main_queue;
/* Queue of old requests to retry */
struct funnel_queue *retry_queue;
/* The thread id of the worker thread */
struct thread *thread;
/* True if the worker was started */
bool started;
/* When true, requests can be enqueued */
bool running;
/* A flag set when the worker is waiting without a timeout */
atomic_t dormant;
};
static inline struct uds_request *poll_queues(struct uds_request_queue *queue)
{
struct funnel_queue_entry *entry;
entry = vdo_funnel_queue_poll(queue->retry_queue);
if (entry != NULL)
return container_of(entry, struct uds_request, queue_link);
entry = vdo_funnel_queue_poll(queue->main_queue);
if (entry != NULL)
return container_of(entry, struct uds_request, queue_link);
return NULL;
}
static inline bool are_queues_idle(struct uds_request_queue *queue)
{
return vdo_is_funnel_queue_idle(queue->retry_queue) &&
vdo_is_funnel_queue_idle(queue->main_queue);
}
/*
* Determine if there is a next request to process, and return it if there is. Also return flags
* indicating whether the worker thread can sleep (for the use of wait_event() macros) and whether
* the thread did sleep before returning a new request.
*/
static inline bool dequeue_request(struct uds_request_queue *queue,
struct uds_request **request_ptr, bool *waited_ptr)
{
struct uds_request *request = poll_queues(queue);
if (request != NULL) {
*request_ptr = request;
return true;
}
if (!READ_ONCE(queue->running)) {
/* Wake the worker thread so it can exit. */
*request_ptr = NULL;
return true;
}
*request_ptr = NULL;
*waited_ptr = true;
return false;
}
static void wait_for_request(struct uds_request_queue *queue, bool dormant,
unsigned long timeout, struct uds_request **request,
bool *waited)
{
if (dormant) {
wait_event_interruptible(queue->wait_head,
(dequeue_request(queue, request, waited) ||
!are_queues_idle(queue)));
return;
}
wait_event_interruptible_hrtimeout(queue->wait_head,
dequeue_request(queue, request, waited),
ns_to_ktime(timeout));
}
static void request_queue_worker(void *arg)
{
struct uds_request_queue *queue = arg;
struct uds_request *request = NULL;
unsigned long time_batch = DEFAULT_WAIT_TIME;
bool dormant = atomic_read(&queue->dormant);
bool waited = false;
long current_batch = 0;
for (;;) {
wait_for_request(queue, dormant, time_batch, &request, &waited);
if (likely(request != NULL)) {
current_batch++;
queue->processor(request);
} else if (!READ_ONCE(queue->running)) {
break;
}
if (dormant) {
/*
* The queue has been roused from dormancy. Clear the flag so enqueuers can
* stop broadcasting. No fence is needed for this transition.
*/
atomic_set(&queue->dormant, false);
dormant = false;
time_batch = DEFAULT_WAIT_TIME;
} else if (waited) {
/*
* We waited for this request to show up. Adjust the wait time to smooth
* out the batch size.
*/
if (current_batch < MINIMUM_BATCH) {
/*
* If the last batch of requests was too small, increase the wait
* time.
*/
time_batch += time_batch / 4;
if (time_batch >= MAXIMUM_WAIT_TIME) {
atomic_set(&queue->dormant, true);
dormant = true;
}
} else if (current_batch > MAXIMUM_BATCH) {
/*
* If the last batch of requests was too large, decrease the wait
* time.
*/
time_batch -= time_batch / 4;
if (time_batch < MINIMUM_WAIT_TIME)
time_batch = MINIMUM_WAIT_TIME;
}
current_batch = 0;
}
}
/*
* Ensure that we process any remaining requests that were enqueued before trying to shut
* down. The corresponding write barrier is in uds_request_queue_finish().
*/
smp_rmb();
while ((request = poll_queues(queue)) != NULL)
queue->processor(request);
}
int uds_make_request_queue(const char *queue_name,
uds_request_queue_processor_fn processor,
struct uds_request_queue **queue_ptr)
{
int result;
struct uds_request_queue *queue;
result = vdo_allocate(1, struct uds_request_queue, __func__, &queue);
if (result != VDO_SUCCESS)
return result;
queue->processor = processor;
queue->running = true;
atomic_set(&queue->dormant, false);
init_waitqueue_head(&queue->wait_head);
result = vdo_make_funnel_queue(&queue->main_queue);
if (result != VDO_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = vdo_make_funnel_queue(&queue->retry_queue);
if (result != VDO_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = vdo_create_thread(request_queue_worker, queue, queue_name,
&queue->thread);
if (result != VDO_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
queue->started = true;
*queue_ptr = queue;
return UDS_SUCCESS;
}
static inline void wake_up_worker(struct uds_request_queue *queue)
{
if (wq_has_sleeper(&queue->wait_head))
wake_up(&queue->wait_head);
}
void uds_request_queue_enqueue(struct uds_request_queue *queue,
struct uds_request *request)
{
struct funnel_queue *sub_queue;
bool unbatched = request->unbatched;
sub_queue = request->requeued ? queue->retry_queue : queue->main_queue;
vdo_funnel_queue_put(sub_queue, &request->queue_link);
/*
* We must wake the worker thread when it is dormant. A read fence isn't needed here since
* we know the queue operation acts as one.
*/
if (atomic_read(&queue->dormant) || unbatched)
wake_up_worker(queue);
}
void uds_request_queue_finish(struct uds_request_queue *queue)
{
if (queue == NULL)
return;
/*
* This memory barrier ensures that any requests we queued will be seen. The point is that
* when dequeue_request() sees the following update to the running flag, it will also be
* able to see any change we made to a next field in the funnel queue entry. The
* corresponding read barrier is in request_queue_worker().
*/
smp_wmb();
WRITE_ONCE(queue->running, false);
if (queue->started) {
wake_up_worker(queue);
vdo_join_threads(queue->thread);
}
vdo_free_funnel_queue(queue->main_queue);
vdo_free_funnel_queue(queue->retry_queue);
vdo_free(queue);
}