/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright 2021 Google LLC */ /* * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI * instructions. It works on 8 blocks at a time, by precomputing the first 8 * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation * allows us to split finite field multiplication into two steps. * * In the first step, we consider h^i, m_i as normal polynomials of degree less * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication * is simply polynomial multiplication. * * In the second step, we compute the reduction of p(x) modulo the finite field * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. * * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where * multiplication is finite field multiplication. The advantage is that the * two-step process only requires 1 finite field reduction for every 8 * polynomial multiplications. Further parallelism is gained by interleaving the * multiplications and polynomial reductions. */ #include <linux/linkage.h> #include <asm/frame.h> #define STRIDE_BLOCKS 8 #define GSTAR %xmm7 #define PL %xmm8 #define PH %xmm9 #define TMP_XMM %xmm11 #define LO %xmm12 #define HI %xmm13 #define MI %xmm14 #define SUM %xmm15 #define KEY_POWERS %rdi #define MSG %rsi #define BLOCKS_LEFT %rdx #define ACCUMULATOR %rcx #define TMP %rax .section .rodata.cst16.gstar, "aM", @progbits, 16 .align 16 .Lgstar: .quad 0xc200000000000000, 0xc200000000000000 .text /* * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length * count pointed to by MSG and KEY_POWERS. */ .macro schoolbook1 count .set i, 0 .rept (\count) schoolbook1_iteration i 0 .set i, (i +1) .endr .endm /* * Computes the product of two 128-bit polynomials at the memory locations * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of * the 256-bit product into LO, MI, HI. * * Given: * X = [X_1 : X_0] * Y = [Y_1 : Y_0] * * We compute: * LO += X_0 * Y_0 * MI += X_0 * Y_1 + X_1 * Y_0 * HI += X_1 * Y_1 * * Later, the 256-bit result can be extracted as: * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] * This step is done when computing the polynomial reduction for efficiency * reasons. * * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an * extra multiplication of SUM and h^8. */ .macro schoolbook1_iteration i xor_sum movups (16*\i)(MSG), %xmm0 .if (\i == 0 && \xor_sum == 1) pxor SUM, %xmm0 .endif vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 vpxor %xmm2, MI, MI vpxor %xmm1, LO, LO vpxor %xmm4, HI, HI vpxor %xmm3, MI, MI .endm /* * Performs the same computation as schoolbook1_iteration, except we expect the * arguments to already be loaded into xmm0 and xmm1 and we set the result * registers LO, MI, and HI directly rather than XOR'ing into them. */ .macro schoolbook1_noload vpclmulqdq $0x01, %xmm0, %xmm1, MI vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 vpclmulqdq $0x00, %xmm0, %xmm1, LO vpclmulqdq $0x11, %xmm0, %xmm1, HI vpxor %xmm2, MI, MI .endm /* * Computes the 256-bit polynomial represented by LO, HI, MI. Stores * the result in PL, PH. * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] */ .macro schoolbook2 vpslldq $8, MI, PL vpsrldq $8, MI, PH pxor LO, PL pxor HI, PH .endm /* * Computes the 128-bit reduction of PH : PL. Stores the result in dest. * * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = * x^128 + x^127 + x^126 + x^121 + 1. * * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the * product of two 128-bit polynomials in Montgomery form. We need to reduce it * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor * of x^128, this product has two extra factors of x^128. To get it back into * Montgomery form, we need to remove one of these factors by dividing by x^128. * * To accomplish both of these goals, we add multiples of g(x) that cancel out * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low * bits are zero, the polynomial division by x^128 can be done by right shifting. * * Since the only nonzero term in the low 64 bits of g(x) is the constant term, * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. * * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). * * So our final computation is: * T = T_1 : T_0 = g*(x) * P_0 * V = V_1 : V_0 = g*(x) * (P_1 + T_0) * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 * * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. */ .macro montgomery_reduction dest vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] vpxor TMP_XMM, PH, \dest .endm /* * Compute schoolbook multiplication for 8 blocks * m_0h^8 + ... + m_7h^1 * * If reduce is set, also computes the montgomery reduction of the * previous full_stride call and XORs with the first message block. * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. */ .macro full_stride reduce pxor LO, LO pxor HI, HI pxor MI, MI schoolbook1_iteration 7 0 .if \reduce vpclmulqdq $0x00, PL, GSTAR, TMP_XMM .endif schoolbook1_iteration 6 0 .if \reduce pshufd $0b01001110, TMP_XMM, TMP_XMM .endif schoolbook1_iteration 5 0 .if \reduce pxor PL, TMP_XMM .endif schoolbook1_iteration 4 0 .if \reduce pxor TMP_XMM, PH .endif schoolbook1_iteration 3 0 .if \reduce pclmulqdq $0x11, GSTAR, TMP_XMM .endif schoolbook1_iteration 2 0 .if \reduce vpxor TMP_XMM, PH, SUM .endif schoolbook1_iteration 1 0 schoolbook1_iteration 0 1 addq $(8*16), MSG schoolbook2 .endm /* * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS */ .macro partial_stride mov BLOCKS_LEFT, TMP shlq $4, TMP addq $(16*STRIDE_BLOCKS), KEY_POWERS subq TMP, KEY_POWERS movups (MSG), %xmm0 pxor SUM, %xmm0 movaps (KEY_POWERS), %xmm1 schoolbook1_noload dec BLOCKS_LEFT addq $16, MSG addq $16, KEY_POWERS test $4, BLOCKS_LEFT jz .Lpartial4BlocksDone schoolbook1 4 addq $(4*16), MSG addq $(4*16), KEY_POWERS .Lpartial4BlocksDone: test $2, BLOCKS_LEFT jz .Lpartial2BlocksDone schoolbook1 2 addq $(2*16), MSG addq $(2*16), KEY_POWERS .Lpartial2BlocksDone: test $1, BLOCKS_LEFT jz .LpartialDone schoolbook1 1 .LpartialDone: schoolbook2 montgomery_reduction SUM .endm /* * Perform montgomery multiplication in GF(2^128) and store result in op1. * * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 * If op1, op2 are in montgomery form, this computes the montgomery * form of op1*op2. * * void clmul_polyval_mul(u8 *op1, const u8 *op2); */ SYM_FUNC_START(clmul_polyval_mul) FRAME_BEGIN vmovdqa .Lgstar(%rip), GSTAR movups (%rdi), %xmm0 movups (%rsi), %xmm1 schoolbook1_noload schoolbook2 montgomery_reduction SUM movups SUM, (%rdi) FRAME_END RET SYM_FUNC_END(clmul_polyval_mul) /* * Perform polynomial evaluation as specified by POLYVAL. This computes: * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} * where n=nblocks, h is the hash key, and m_i are the message blocks. * * rdi - pointer to precomputed key powers h^8 ... h^1 * rsi - pointer to message blocks * rdx - number of blocks to hash * rcx - pointer to the accumulator * * void clmul_polyval_update(const struct polyval_tfm_ctx *keys, * const u8 *in, size_t nblocks, u8 *accumulator); */ SYM_FUNC_START(clmul_polyval_update) FRAME_BEGIN vmovdqa .Lgstar(%rip), GSTAR movups (ACCUMULATOR), SUM subq $STRIDE_BLOCKS, BLOCKS_LEFT js .LstrideLoopExit full_stride 0 subq $STRIDE_BLOCKS, BLOCKS_LEFT js .LstrideLoopExitReduce .LstrideLoop: full_stride 1 subq $STRIDE_BLOCKS, BLOCKS_LEFT jns .LstrideLoop .LstrideLoopExitReduce: montgomery_reduction SUM .LstrideLoopExit: add $STRIDE_BLOCKS, BLOCKS_LEFT jz .LskipPartial partial_stride .LskipPartial: movups SUM, (ACCUMULATOR) FRAME_END RET SYM_FUNC_END(clmul_polyval_update)