// SPDX-License-Identifier: GPL-2.0
/*
* Performance event support - Processor Activity Instrumentation Facility
*
* Copyright IBM Corp. 2022
* Author(s): Thomas Richter <[email protected]>
*/
#define KMSG_COMPONENT "pai_crypto"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/io.h>
#include <linux/perf_event.h>
#include <asm/ctlreg.h>
#include <asm/pai.h>
#include <asm/debug.h>
static debug_info_t *cfm_dbg;
static unsigned int paicrypt_cnt; /* Size of the mapped counter sets */
/* extracted with QPACI instruction */
DEFINE_STATIC_KEY_FALSE(pai_key);
struct pai_userdata {
u16 num;
u64 value;
} __packed;
struct paicrypt_map {
unsigned long *page; /* Page for CPU to store counters */
struct pai_userdata *save; /* Page to store no-zero counters */
unsigned int active_events; /* # of PAI crypto users */
refcount_t refcnt; /* Reference count mapped buffers */
struct perf_event *event; /* Perf event for sampling */
struct list_head syswide_list; /* List system-wide sampling events */
};
struct paicrypt_mapptr {
struct paicrypt_map *mapptr;
};
static struct paicrypt_root { /* Anchor to per CPU data */
refcount_t refcnt; /* Overall active events */
struct paicrypt_mapptr __percpu *mapptr;
} paicrypt_root;
/* Free per CPU data when the last event is removed. */
static void paicrypt_root_free(void)
{
if (refcount_dec_and_test(&paicrypt_root.refcnt)) {
free_percpu(paicrypt_root.mapptr);
paicrypt_root.mapptr = NULL;
}
debug_sprintf_event(cfm_dbg, 5, "%s root.refcount %d\n", __func__,
refcount_read(&paicrypt_root.refcnt));
}
/*
* On initialization of first event also allocate per CPU data dynamically.
* Start with an array of pointers, the array size is the maximum number of
* CPUs possible, which might be larger than the number of CPUs currently
* online.
*/
static int paicrypt_root_alloc(void)
{
if (!refcount_inc_not_zero(&paicrypt_root.refcnt)) {
/* The memory is already zeroed. */
paicrypt_root.mapptr = alloc_percpu(struct paicrypt_mapptr);
if (!paicrypt_root.mapptr)
return -ENOMEM;
refcount_set(&paicrypt_root.refcnt, 1);
}
return 0;
}
/* Release the PMU if event is the last perf event */
static DEFINE_MUTEX(pai_reserve_mutex);
/* Adjust usage counters and remove allocated memory when all users are
* gone.
*/
static void paicrypt_event_destroy_cpu(struct perf_event *event, int cpu)
{
struct paicrypt_mapptr *mp = per_cpu_ptr(paicrypt_root.mapptr, cpu);
struct paicrypt_map *cpump = mp->mapptr;
mutex_lock(&pai_reserve_mutex);
debug_sprintf_event(cfm_dbg, 5, "%s event %#llx cpu %d users %d "
"refcnt %u\n", __func__, event->attr.config,
event->cpu, cpump->active_events,
refcount_read(&cpump->refcnt));
if (refcount_dec_and_test(&cpump->refcnt)) {
debug_sprintf_event(cfm_dbg, 4, "%s page %#lx save %p\n",
__func__, (unsigned long)cpump->page,
cpump->save);
free_page((unsigned long)cpump->page);
kvfree(cpump->save);
kfree(cpump);
mp->mapptr = NULL;
}
paicrypt_root_free();
mutex_unlock(&pai_reserve_mutex);
}
static void paicrypt_event_destroy(struct perf_event *event)
{
int cpu;
static_branch_dec(&pai_key);
free_page(PAI_SAVE_AREA(event));
if (event->cpu == -1) {
struct cpumask *mask = PAI_CPU_MASK(event);
for_each_cpu(cpu, mask)
paicrypt_event_destroy_cpu(event, cpu);
kfree(mask);
} else {
paicrypt_event_destroy_cpu(event, event->cpu);
}
}
static u64 paicrypt_getctr(unsigned long *page, int nr, bool kernel)
{
if (kernel)
nr += PAI_CRYPTO_MAXCTR;
return page[nr];
}
/* Read the counter values. Return value from location in CMP. For event
* CRYPTO_ALL sum up all events.
*/
static u64 paicrypt_getdata(struct perf_event *event, bool kernel)
{
struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr);
struct paicrypt_map *cpump = mp->mapptr;
u64 sum = 0;
int i;
if (event->attr.config != PAI_CRYPTO_BASE) {
return paicrypt_getctr(cpump->page,
event->attr.config - PAI_CRYPTO_BASE,
kernel);
}
for (i = 1; i <= paicrypt_cnt; i++) {
u64 val = paicrypt_getctr(cpump->page, i, kernel);
if (!val)
continue;
sum += val;
}
return sum;
}
static u64 paicrypt_getall(struct perf_event *event)
{
u64 sum = 0;
if (!event->attr.exclude_kernel)
sum += paicrypt_getdata(event, true);
if (!event->attr.exclude_user)
sum += paicrypt_getdata(event, false);
return sum;
}
/* Check concurrent access of counting and sampling for crypto events.
* This function is called in process context and it is save to block.
* When the event initialization functions fails, no other call back will
* be invoked.
*
* Allocate the memory for the event.
*/
static struct paicrypt_map *paicrypt_busy(struct perf_event *event, int cpu)
{
struct paicrypt_map *cpump = NULL;
struct paicrypt_mapptr *mp;
int rc;
mutex_lock(&pai_reserve_mutex);
/* Allocate root node */
rc = paicrypt_root_alloc();
if (rc)
goto unlock;
/* Allocate node for this event */
mp = per_cpu_ptr(paicrypt_root.mapptr, cpu);
cpump = mp->mapptr;
if (!cpump) { /* Paicrypt_map allocated? */
cpump = kzalloc(sizeof(*cpump), GFP_KERNEL);
if (!cpump) {
rc = -ENOMEM;
goto free_root;
}
INIT_LIST_HEAD(&cpump->syswide_list);
}
/* Allocate memory for counter page and counter extraction.
* Only the first counting event has to allocate a page.
*/
if (cpump->page) {
refcount_inc(&cpump->refcnt);
goto unlock;
}
rc = -ENOMEM;
cpump->page = (unsigned long *)get_zeroed_page(GFP_KERNEL);
if (!cpump->page)
goto free_paicrypt_map;
cpump->save = kvmalloc_array(paicrypt_cnt + 1,
sizeof(struct pai_userdata), GFP_KERNEL);
if (!cpump->save) {
free_page((unsigned long)cpump->page);
cpump->page = NULL;
goto free_paicrypt_map;
}
/* Set mode and reference count */
rc = 0;
refcount_set(&cpump->refcnt, 1);
mp->mapptr = cpump;
debug_sprintf_event(cfm_dbg, 5, "%s users %d refcnt %u page %#lx "
"save %p rc %d\n", __func__, cpump->active_events,
refcount_read(&cpump->refcnt),
(unsigned long)cpump->page, cpump->save, rc);
goto unlock;
free_paicrypt_map:
/* Undo memory allocation */
kfree(cpump);
mp->mapptr = NULL;
free_root:
paicrypt_root_free();
unlock:
mutex_unlock(&pai_reserve_mutex);
return rc ? ERR_PTR(rc) : cpump;
}
static int paicrypt_event_init_all(struct perf_event *event)
{
struct paicrypt_map *cpump;
struct cpumask *maskptr;
int cpu, rc = -ENOMEM;
maskptr = kzalloc(sizeof(*maskptr), GFP_KERNEL);
if (!maskptr)
goto out;
for_each_online_cpu(cpu) {
cpump = paicrypt_busy(event, cpu);
if (IS_ERR(cpump)) {
for_each_cpu(cpu, maskptr)
paicrypt_event_destroy_cpu(event, cpu);
kfree(maskptr);
rc = PTR_ERR(cpump);
goto out;
}
cpumask_set_cpu(cpu, maskptr);
}
/*
* On error all cpumask are freed and all events have been destroyed.
* Save of which CPUs data structures have been allocated for.
* Release them in paicrypt_event_destroy call back function
* for this event.
*/
PAI_CPU_MASK(event) = maskptr;
rc = 0;
out:
return rc;
}
/* Might be called on different CPU than the one the event is intended for. */
static int paicrypt_event_init(struct perf_event *event)
{
struct perf_event_attr *a = &event->attr;
struct paicrypt_map *cpump;
int rc = 0;
/* PAI crypto PMU registered as PERF_TYPE_RAW, check event type */
if (a->type != PERF_TYPE_RAW && event->pmu->type != a->type)
return -ENOENT;
/* PAI crypto event must be in valid range */
if (a->config < PAI_CRYPTO_BASE ||
a->config > PAI_CRYPTO_BASE + paicrypt_cnt)
return -EINVAL;
/* Allow only CRYPTO_ALL for sampling */
if (a->sample_period && a->config != PAI_CRYPTO_BASE)
return -EINVAL;
/* Get a page to store last counter values for sampling */
if (a->sample_period) {
PAI_SAVE_AREA(event) = get_zeroed_page(GFP_KERNEL);
if (!PAI_SAVE_AREA(event)) {
rc = -ENOMEM;
goto out;
}
}
if (event->cpu >= 0) {
cpump = paicrypt_busy(event, event->cpu);
if (IS_ERR(cpump))
rc = PTR_ERR(cpump);
} else {
rc = paicrypt_event_init_all(event);
}
if (rc) {
free_page(PAI_SAVE_AREA(event));
goto out;
}
event->destroy = paicrypt_event_destroy;
if (a->sample_period) {
a->sample_period = 1;
a->freq = 0;
/* Register for paicrypt_sched_task() to be called */
event->attach_state |= PERF_ATTACH_SCHED_CB;
/* Add raw data which contain the memory mapped counters */
a->sample_type |= PERF_SAMPLE_RAW;
/* Turn off inheritance */
a->inherit = 0;
}
static_branch_inc(&pai_key);
out:
return rc;
}
static void paicrypt_read(struct perf_event *event)
{
u64 prev, new, delta;
prev = local64_read(&event->hw.prev_count);
new = paicrypt_getall(event);
local64_set(&event->hw.prev_count, new);
delta = (prev <= new) ? new - prev
: (-1ULL - prev) + new + 1; /* overflow */
local64_add(delta, &event->count);
}
static void paicrypt_start(struct perf_event *event, int flags)
{
struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr);
struct paicrypt_map *cpump = mp->mapptr;
u64 sum;
if (!event->attr.sample_period) { /* Counting */
sum = paicrypt_getall(event); /* Get current value */
local64_set(&event->hw.prev_count, sum);
} else { /* Sampling */
memcpy((void *)PAI_SAVE_AREA(event), cpump->page, PAGE_SIZE);
/* Enable context switch callback for system-wide sampling */
if (!(event->attach_state & PERF_ATTACH_TASK)) {
list_add_tail(PAI_SWLIST(event), &cpump->syswide_list);
perf_sched_cb_inc(event->pmu);
} else {
cpump->event = event;
}
}
}
static int paicrypt_add(struct perf_event *event, int flags)
{
struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr);
struct paicrypt_map *cpump = mp->mapptr;
unsigned long ccd;
if (++cpump->active_events == 1) {
ccd = virt_to_phys(cpump->page) | PAI_CRYPTO_KERNEL_OFFSET;
WRITE_ONCE(get_lowcore()->ccd, ccd);
local_ctl_set_bit(0, CR0_CRYPTOGRAPHY_COUNTER_BIT);
}
if (flags & PERF_EF_START)
paicrypt_start(event, PERF_EF_RELOAD);
event->hw.state = 0;
return 0;
}
static void paicrypt_have_sample(struct perf_event *, struct paicrypt_map *);
static void paicrypt_stop(struct perf_event *event, int flags)
{
struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr);
struct paicrypt_map *cpump = mp->mapptr;
if (!event->attr.sample_period) { /* Counting */
paicrypt_read(event);
} else { /* Sampling */
if (!(event->attach_state & PERF_ATTACH_TASK)) {
perf_sched_cb_dec(event->pmu);
list_del(PAI_SWLIST(event));
} else {
paicrypt_have_sample(event, cpump);
cpump->event = NULL;
}
}
event->hw.state = PERF_HES_STOPPED;
}
static void paicrypt_del(struct perf_event *event, int flags)
{
struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr);
struct paicrypt_map *cpump = mp->mapptr;
paicrypt_stop(event, PERF_EF_UPDATE);
if (--cpump->active_events == 0) {
local_ctl_clear_bit(0, CR0_CRYPTOGRAPHY_COUNTER_BIT);
WRITE_ONCE(get_lowcore()->ccd, 0);
}
}
/* Create raw data and save it in buffer. Calculate the delta for each
* counter between this invocation and the last invocation.
* Returns number of bytes copied.
* Saves only entries with positive counter difference of the form
* 2 bytes: Number of counter
* 8 bytes: Value of counter
*/
static size_t paicrypt_copy(struct pai_userdata *userdata, unsigned long *page,
unsigned long *page_old, bool exclude_user,
bool exclude_kernel)
{
int i, outidx = 0;
for (i = 1; i <= paicrypt_cnt; i++) {
u64 val = 0, val_old = 0;
if (!exclude_kernel) {
val += paicrypt_getctr(page, i, true);
val_old += paicrypt_getctr(page_old, i, true);
}
if (!exclude_user) {
val += paicrypt_getctr(page, i, false);
val_old += paicrypt_getctr(page_old, i, false);
}
if (val >= val_old)
val -= val_old;
else
val = (~0ULL - val_old) + val + 1;
if (val) {
userdata[outidx].num = i;
userdata[outidx].value = val;
outidx++;
}
}
return outidx * sizeof(struct pai_userdata);
}
static int paicrypt_push_sample(size_t rawsize, struct paicrypt_map *cpump,
struct perf_event *event)
{
struct perf_sample_data data;
struct perf_raw_record raw;
struct pt_regs regs;
int overflow;
/* Setup perf sample */
memset(®s, 0, sizeof(regs));
memset(&raw, 0, sizeof(raw));
memset(&data, 0, sizeof(data));
perf_sample_data_init(&data, 0, event->hw.last_period);
if (event->attr.sample_type & PERF_SAMPLE_TID) {
data.tid_entry.pid = task_tgid_nr(current);
data.tid_entry.tid = task_pid_nr(current);
}
if (event->attr.sample_type & PERF_SAMPLE_TIME)
data.time = event->clock();
if (event->attr.sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
data.id = event->id;
if (event->attr.sample_type & PERF_SAMPLE_CPU) {
data.cpu_entry.cpu = smp_processor_id();
data.cpu_entry.reserved = 0;
}
if (event->attr.sample_type & PERF_SAMPLE_RAW) {
raw.frag.size = rawsize;
raw.frag.data = cpump->save;
perf_sample_save_raw_data(&data, &raw);
}
overflow = perf_event_overflow(event, &data, ®s);
perf_event_update_userpage(event);
/* Save crypto counter lowcore page after reading event data. */
memcpy((void *)PAI_SAVE_AREA(event), cpump->page, PAGE_SIZE);
return overflow;
}
/* Check if there is data to be saved on schedule out of a task. */
static void paicrypt_have_sample(struct perf_event *event,
struct paicrypt_map *cpump)
{
size_t rawsize;
if (!event) /* No event active */
return;
rawsize = paicrypt_copy(cpump->save, cpump->page,
(unsigned long *)PAI_SAVE_AREA(event),
event->attr.exclude_user,
event->attr.exclude_kernel);
if (rawsize) /* No incremented counters */
paicrypt_push_sample(rawsize, cpump, event);
}
/* Check if there is data to be saved on schedule out of a task. */
static void paicrypt_have_samples(void)
{
struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr);
struct paicrypt_map *cpump = mp->mapptr;
struct perf_event *event;
list_for_each_entry(event, &cpump->syswide_list, hw.tp_list)
paicrypt_have_sample(event, cpump);
}
/* Called on schedule-in and schedule-out. No access to event structure,
* but for sampling only event CRYPTO_ALL is allowed.
*/
static void paicrypt_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
/* We started with a clean page on event installation. So read out
* results on schedule_out and if page was dirty, save old values.
*/
if (!sched_in)
paicrypt_have_samples();
}
/* Attribute definitions for paicrypt interface. As with other CPU
* Measurement Facilities, there is one attribute per mapped counter.
* The number of mapped counters may vary per machine generation. Use
* the QUERY PROCESSOR ACTIVITY COUNTER INFORMATION (QPACI) instruction
* to determine the number of mapped counters. The instructions returns
* a positive number, which is the highest number of supported counters.
* All counters less than this number are also supported, there are no
* holes. A returned number of zero means no support for mapped counters.
*
* The identification of the counter is a unique number. The chosen range
* is 0x1000 + offset in mapped kernel page.
* All CPU Measurement Facility counters identifiers must be unique and
* the numbers from 0 to 496 are already used for the CPU Measurement
* Counter facility. Numbers 0xb0000, 0xbc000 and 0xbd000 are already
* used for the CPU Measurement Sampling facility.
*/
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *paicrypt_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group paicrypt_events_group = {
.name = "events",
.attrs = NULL /* Filled in attr_event_init() */
};
static struct attribute_group paicrypt_format_group = {
.name = "format",
.attrs = paicrypt_format_attr,
};
static const struct attribute_group *paicrypt_attr_groups[] = {
&paicrypt_events_group,
&paicrypt_format_group,
NULL,
};
/* Performance monitoring unit for mapped counters */
static struct pmu paicrypt = {
.task_ctx_nr = perf_hw_context,
.event_init = paicrypt_event_init,
.add = paicrypt_add,
.del = paicrypt_del,
.start = paicrypt_start,
.stop = paicrypt_stop,
.read = paicrypt_read,
.sched_task = paicrypt_sched_task,
.attr_groups = paicrypt_attr_groups
};
/* List of symbolic PAI counter names. */
static const char * const paicrypt_ctrnames[] = {
[0] = "CRYPTO_ALL",
[1] = "KM_DEA",
[2] = "KM_TDEA_128",
[3] = "KM_TDEA_192",
[4] = "KM_ENCRYPTED_DEA",
[5] = "KM_ENCRYPTED_TDEA_128",
[6] = "KM_ENCRYPTED_TDEA_192",
[7] = "KM_AES_128",
[8] = "KM_AES_192",
[9] = "KM_AES_256",
[10] = "KM_ENCRYPTED_AES_128",
[11] = "KM_ENCRYPTED_AES_192",
[12] = "KM_ENCRYPTED_AES_256",
[13] = "KM_XTS_AES_128",
[14] = "KM_XTS_AES_256",
[15] = "KM_XTS_ENCRYPTED_AES_128",
[16] = "KM_XTS_ENCRYPTED_AES_256",
[17] = "KMC_DEA",
[18] = "KMC_TDEA_128",
[19] = "KMC_TDEA_192",
[20] = "KMC_ENCRYPTED_DEA",
[21] = "KMC_ENCRYPTED_TDEA_128",
[22] = "KMC_ENCRYPTED_TDEA_192",
[23] = "KMC_AES_128",
[24] = "KMC_AES_192",
[25] = "KMC_AES_256",
[26] = "KMC_ENCRYPTED_AES_128",
[27] = "KMC_ENCRYPTED_AES_192",
[28] = "KMC_ENCRYPTED_AES_256",
[29] = "KMC_PRNG",
[30] = "KMA_GCM_AES_128",
[31] = "KMA_GCM_AES_192",
[32] = "KMA_GCM_AES_256",
[33] = "KMA_GCM_ENCRYPTED_AES_128",
[34] = "KMA_GCM_ENCRYPTED_AES_192",
[35] = "KMA_GCM_ENCRYPTED_AES_256",
[36] = "KMF_DEA",
[37] = "KMF_TDEA_128",
[38] = "KMF_TDEA_192",
[39] = "KMF_ENCRYPTED_DEA",
[40] = "KMF_ENCRYPTED_TDEA_128",
[41] = "KMF_ENCRYPTED_TDEA_192",
[42] = "KMF_AES_128",
[43] = "KMF_AES_192",
[44] = "KMF_AES_256",
[45] = "KMF_ENCRYPTED_AES_128",
[46] = "KMF_ENCRYPTED_AES_192",
[47] = "KMF_ENCRYPTED_AES_256",
[48] = "KMCTR_DEA",
[49] = "KMCTR_TDEA_128",
[50] = "KMCTR_TDEA_192",
[51] = "KMCTR_ENCRYPTED_DEA",
[52] = "KMCTR_ENCRYPTED_TDEA_128",
[53] = "KMCTR_ENCRYPTED_TDEA_192",
[54] = "KMCTR_AES_128",
[55] = "KMCTR_AES_192",
[56] = "KMCTR_AES_256",
[57] = "KMCTR_ENCRYPTED_AES_128",
[58] = "KMCTR_ENCRYPTED_AES_192",
[59] = "KMCTR_ENCRYPTED_AES_256",
[60] = "KMO_DEA",
[61] = "KMO_TDEA_128",
[62] = "KMO_TDEA_192",
[63] = "KMO_ENCRYPTED_DEA",
[64] = "KMO_ENCRYPTED_TDEA_128",
[65] = "KMO_ENCRYPTED_TDEA_192",
[66] = "KMO_AES_128",
[67] = "KMO_AES_192",
[68] = "KMO_AES_256",
[69] = "KMO_ENCRYPTED_AES_128",
[70] = "KMO_ENCRYPTED_AES_192",
[71] = "KMO_ENCRYPTED_AES_256",
[72] = "KIMD_SHA_1",
[73] = "KIMD_SHA_256",
[74] = "KIMD_SHA_512",
[75] = "KIMD_SHA3_224",
[76] = "KIMD_SHA3_256",
[77] = "KIMD_SHA3_384",
[78] = "KIMD_SHA3_512",
[79] = "KIMD_SHAKE_128",
[80] = "KIMD_SHAKE_256",
[81] = "KIMD_GHASH",
[82] = "KLMD_SHA_1",
[83] = "KLMD_SHA_256",
[84] = "KLMD_SHA_512",
[85] = "KLMD_SHA3_224",
[86] = "KLMD_SHA3_256",
[87] = "KLMD_SHA3_384",
[88] = "KLMD_SHA3_512",
[89] = "KLMD_SHAKE_128",
[90] = "KLMD_SHAKE_256",
[91] = "KMAC_DEA",
[92] = "KMAC_TDEA_128",
[93] = "KMAC_TDEA_192",
[94] = "KMAC_ENCRYPTED_DEA",
[95] = "KMAC_ENCRYPTED_TDEA_128",
[96] = "KMAC_ENCRYPTED_TDEA_192",
[97] = "KMAC_AES_128",
[98] = "KMAC_AES_192",
[99] = "KMAC_AES_256",
[100] = "KMAC_ENCRYPTED_AES_128",
[101] = "KMAC_ENCRYPTED_AES_192",
[102] = "KMAC_ENCRYPTED_AES_256",
[103] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_DEA",
[104] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_128",
[105] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_192",
[106] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_DEA",
[107] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_128",
[108] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_192",
[109] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_128",
[110] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_192",
[111] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_256",
[112] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_128",
[113] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_192",
[114] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_256A",
[115] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_128",
[116] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_256",
[117] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_128",
[118] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_256",
[119] = "PCC_SCALAR_MULTIPLY_P256",
[120] = "PCC_SCALAR_MULTIPLY_P384",
[121] = "PCC_SCALAR_MULTIPLY_P521",
[122] = "PCC_SCALAR_MULTIPLY_ED25519",
[123] = "PCC_SCALAR_MULTIPLY_ED448",
[124] = "PCC_SCALAR_MULTIPLY_X25519",
[125] = "PCC_SCALAR_MULTIPLY_X448",
[126] = "PRNO_SHA_512_DRNG",
[127] = "PRNO_TRNG_QUERY_RAW_TO_CONDITIONED_RATIO",
[128] = "PRNO_TRNG",
[129] = "KDSA_ECDSA_VERIFY_P256",
[130] = "KDSA_ECDSA_VERIFY_P384",
[131] = "KDSA_ECDSA_VERIFY_P521",
[132] = "KDSA_ECDSA_SIGN_P256",
[133] = "KDSA_ECDSA_SIGN_P384",
[134] = "KDSA_ECDSA_SIGN_P521",
[135] = "KDSA_ENCRYPTED_ECDSA_SIGN_P256",
[136] = "KDSA_ENCRYPTED_ECDSA_SIGN_P384",
[137] = "KDSA_ENCRYPTED_ECDSA_SIGN_P521",
[138] = "KDSA_EDDSA_VERIFY_ED25519",
[139] = "KDSA_EDDSA_VERIFY_ED448",
[140] = "KDSA_EDDSA_SIGN_ED25519",
[141] = "KDSA_EDDSA_SIGN_ED448",
[142] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED25519",
[143] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED448",
[144] = "PCKMO_ENCRYPT_DEA_KEY",
[145] = "PCKMO_ENCRYPT_TDEA_128_KEY",
[146] = "PCKMO_ENCRYPT_TDEA_192_KEY",
[147] = "PCKMO_ENCRYPT_AES_128_KEY",
[148] = "PCKMO_ENCRYPT_AES_192_KEY",
[149] = "PCKMO_ENCRYPT_AES_256_KEY",
[150] = "PCKMO_ENCRYPT_ECC_P256_KEY",
[151] = "PCKMO_ENCRYPT_ECC_P384_KEY",
[152] = "PCKMO_ENCRYPT_ECC_P521_KEY",
[153] = "PCKMO_ENCRYPT_ECC_ED25519_KEY",
[154] = "PCKMO_ENCRYPT_ECC_ED448_KEY",
[155] = "IBM_RESERVED_155",
[156] = "IBM_RESERVED_156",
[157] = "KM_FULL_XTS_AES_128",
[158] = "KM_FULL_XTS_AES_256",
[159] = "KM_FULL_XTS_ENCRYPTED_AES_128",
[160] = "KM_FULL_XTS_ENCRYPTED_AES_256",
[161] = "KMAC_HMAC_SHA_224",
[162] = "KMAC_HMAC_SHA_256",
[163] = "KMAC_HMAC_SHA_384",
[164] = "KMAC_HMAC_SHA_512",
[165] = "KMAC_HMAC_ENCRYPTED_SHA_224",
[166] = "KMAC_HMAC_ENCRYPTED_SHA_256",
[167] = "KMAC_HMAC_ENCRYPTED_SHA_384",
[168] = "KMAC_HMAC_ENCRYPTED_SHA_512",
[169] = "PCKMO_ENCRYPT_HMAC_512_KEY",
[170] = "PCKMO_ENCRYPT_HMAC_1024_KEY",
[171] = "PCKMO_ENCRYPT_AES_XTS_128",
[172] = "PCKMO_ENCRYPT_AES_XTS_256",
};
static void __init attr_event_free(struct attribute **attrs, int num)
{
struct perf_pmu_events_attr *pa;
int i;
for (i = 0; i < num; i++) {
struct device_attribute *dap;
dap = container_of(attrs[i], struct device_attribute, attr);
pa = container_of(dap, struct perf_pmu_events_attr, attr);
kfree(pa);
}
kfree(attrs);
}
static int __init attr_event_init_one(struct attribute **attrs, int num)
{
struct perf_pmu_events_attr *pa;
/* Index larger than array_size, no counter name available */
if (num >= ARRAY_SIZE(paicrypt_ctrnames)) {
attrs[num] = NULL;
return 0;
}
pa = kzalloc(sizeof(*pa), GFP_KERNEL);
if (!pa)
return -ENOMEM;
sysfs_attr_init(&pa->attr.attr);
pa->id = PAI_CRYPTO_BASE + num;
pa->attr.attr.name = paicrypt_ctrnames[num];
pa->attr.attr.mode = 0444;
pa->attr.show = cpumf_events_sysfs_show;
pa->attr.store = NULL;
attrs[num] = &pa->attr.attr;
return 0;
}
/* Create PMU sysfs event attributes on the fly. */
static int __init attr_event_init(void)
{
struct attribute **attrs;
int ret, i;
attrs = kmalloc_array(paicrypt_cnt + 2, sizeof(*attrs), GFP_KERNEL);
if (!attrs)
return -ENOMEM;
for (i = 0; i <= paicrypt_cnt; i++) {
ret = attr_event_init_one(attrs, i);
if (ret) {
attr_event_free(attrs, i);
return ret;
}
}
attrs[i] = NULL;
paicrypt_events_group.attrs = attrs;
return 0;
}
static int __init paicrypt_init(void)
{
struct qpaci_info_block ib;
int rc;
if (!test_facility(196))
return 0;
qpaci(&ib);
paicrypt_cnt = ib.num_cc;
if (paicrypt_cnt == 0)
return 0;
if (paicrypt_cnt >= PAI_CRYPTO_MAXCTR) {
pr_err("Too many PMU pai_crypto counters %d\n", paicrypt_cnt);
return -E2BIG;
}
rc = attr_event_init(); /* Export known PAI crypto events */
if (rc) {
pr_err("Creation of PMU pai_crypto /sysfs failed\n");
return rc;
}
/* Setup s390dbf facility */
cfm_dbg = debug_register(KMSG_COMPONENT, 2, 256, 128);
if (!cfm_dbg) {
pr_err("Registration of s390dbf pai_crypto failed\n");
return -ENOMEM;
}
debug_register_view(cfm_dbg, &debug_sprintf_view);
rc = perf_pmu_register(&paicrypt, "pai_crypto", -1);
if (rc) {
pr_err("Registering the pai_crypto PMU failed with rc=%i\n",
rc);
debug_unregister_view(cfm_dbg, &debug_sprintf_view);
debug_unregister(cfm_dbg);
return rc;
}
return 0;
}
device_initcall(paicrypt_init);