/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* Userspace interface to the pkey device driver
*
* Copyright IBM Corp. 2017, 2023
*
* Author: Harald Freudenberger <[email protected]>
*
*/
#ifndef _UAPI_PKEY_H
#define _UAPI_PKEY_H
#include <linux/ioctl.h>
#include <linux/types.h>
/*
* Ioctl calls supported by the pkey device driver
*/
#define PKEY_IOCTL_MAGIC 'p'
#define SECKEYBLOBSIZE 64 /* secure key blob size is always 64 bytes */
#define PROTKEYBLOBSIZE 80 /* protected key blob size is always 80 bytes */
#define MAXPROTKEYSIZE 64 /* a protected key blob may be up to 64 bytes */
#define MAXCLRKEYSIZE 32 /* a clear key value may be up to 32 bytes */
#define MAXAESCIPHERKEYSIZE 136 /* our aes cipher keys have always 136 bytes */
#define MINEP11AESKEYBLOBSIZE 256 /* min EP11 AES key blob size */
#define MAXEP11AESKEYBLOBSIZE 336 /* max EP11 AES key blob size */
/* Minimum size of a key blob */
#define MINKEYBLOBSIZE SECKEYBLOBSIZE
/* defines for the type field within the pkey_protkey struct */
#define PKEY_KEYTYPE_AES_128 1
#define PKEY_KEYTYPE_AES_192 2
#define PKEY_KEYTYPE_AES_256 3
#define PKEY_KEYTYPE_ECC 4
#define PKEY_KEYTYPE_ECC_P256 5
#define PKEY_KEYTYPE_ECC_P384 6
#define PKEY_KEYTYPE_ECC_P521 7
#define PKEY_KEYTYPE_ECC_ED25519 8
#define PKEY_KEYTYPE_ECC_ED448 9
#define PKEY_KEYTYPE_AES_XTS_128 10
#define PKEY_KEYTYPE_AES_XTS_256 11
#define PKEY_KEYTYPE_HMAC_512 12
#define PKEY_KEYTYPE_HMAC_1024 13
/* the newer ioctls use a pkey_key_type enum for type information */
enum pkey_key_type {
PKEY_TYPE_CCA_DATA = (__u32) 1,
PKEY_TYPE_CCA_CIPHER = (__u32) 2,
PKEY_TYPE_EP11 = (__u32) 3,
PKEY_TYPE_CCA_ECC = (__u32) 0x1f,
PKEY_TYPE_EP11_AES = (__u32) 6,
PKEY_TYPE_EP11_ECC = (__u32) 7,
PKEY_TYPE_PROTKEY = (__u32) 8,
};
/* the newer ioctls use a pkey_key_size enum for key size information */
enum pkey_key_size {
PKEY_SIZE_AES_128 = (__u32) 128,
PKEY_SIZE_AES_192 = (__u32) 192,
PKEY_SIZE_AES_256 = (__u32) 256,
PKEY_SIZE_UNKNOWN = (__u32) 0xFFFFFFFF,
};
/* some of the newer ioctls use these flags */
#define PKEY_FLAGS_MATCH_CUR_MKVP 0x00000002
#define PKEY_FLAGS_MATCH_ALT_MKVP 0x00000004
/* keygenflags defines for CCA AES cipher keys */
#define PKEY_KEYGEN_XPRT_SYM 0x00008000
#define PKEY_KEYGEN_XPRT_UASY 0x00004000
#define PKEY_KEYGEN_XPRT_AASY 0x00002000
#define PKEY_KEYGEN_XPRT_RAW 0x00001000
#define PKEY_KEYGEN_XPRT_CPAC 0x00000800
#define PKEY_KEYGEN_XPRT_DES 0x00000080
#define PKEY_KEYGEN_XPRT_AES 0x00000040
#define PKEY_KEYGEN_XPRT_RSA 0x00000008
/* Struct to hold apqn target info (card/domain pair) */
struct pkey_apqn {
__u16 card;
__u16 domain;
};
/* Struct to hold a CCA AES secure key blob */
struct pkey_seckey {
__u8 seckey[SECKEYBLOBSIZE]; /* the secure key blob */
};
/* Struct to hold protected key and length info */
struct pkey_protkey {
__u32 type; /* key type, one of the PKEY_KEYTYPE_AES values */
__u32 len; /* bytes actually stored in protkey[] */
__u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
};
/* Struct to hold an AES clear key value */
struct pkey_clrkey {
__u8 clrkey[MAXCLRKEYSIZE]; /* 16, 24, or 32 byte clear key value */
};
/*
* EP11 key blobs of type PKEY_TYPE_EP11_AES and PKEY_TYPE_EP11_ECC
* are ep11 blobs prepended by this header:
*/
struct ep11kblob_header {
__u8 type; /* always 0x00 */
__u8 hver; /* header version, currently needs to be 0x00 */
__u16 len; /* total length in bytes (including this header) */
__u8 version; /* PKEY_TYPE_EP11_AES or PKEY_TYPE_EP11_ECC */
__u8 res0; /* unused */
__u16 bitlen; /* clear key bit len, 0 for unknown */
__u8 res1[8]; /* unused */
} __packed;
/*
* Generate CCA AES secure key.
*/
struct pkey_genseck {
__u16 cardnr; /* in: card to use or FFFF for any */
__u16 domain; /* in: domain or FFFF for any */
__u32 keytype; /* in: key type to generate */
struct pkey_seckey seckey; /* out: the secure key blob */
};
#define PKEY_GENSECK _IOWR(PKEY_IOCTL_MAGIC, 0x01, struct pkey_genseck)
/*
* Construct CCA AES secure key from clear key value
*/
struct pkey_clr2seck {
__u16 cardnr; /* in: card to use or FFFF for any */
__u16 domain; /* in: domain or FFFF for any */
__u32 keytype; /* in: key type to generate */
struct pkey_clrkey clrkey; /* in: the clear key value */
struct pkey_seckey seckey; /* out: the secure key blob */
};
#define PKEY_CLR2SECK _IOWR(PKEY_IOCTL_MAGIC, 0x02, struct pkey_clr2seck)
/*
* Fabricate AES protected key from a CCA AES secure key
*/
struct pkey_sec2protk {
__u16 cardnr; /* in: card to use or FFFF for any */
__u16 domain; /* in: domain or FFFF for any */
struct pkey_seckey seckey; /* in: the secure key blob */
struct pkey_protkey protkey; /* out: the protected key */
};
#define PKEY_SEC2PROTK _IOWR(PKEY_IOCTL_MAGIC, 0x03, struct pkey_sec2protk)
/*
* Fabricate AES protected key from clear key value
*/
struct pkey_clr2protk {
__u32 keytype; /* in: key type to generate */
struct pkey_clrkey clrkey; /* in: the clear key value */
struct pkey_protkey protkey; /* out: the protected key */
};
#define PKEY_CLR2PROTK _IOWR(PKEY_IOCTL_MAGIC, 0x04, struct pkey_clr2protk)
/*
* Search for matching crypto card based on the Master Key
* Verification Pattern provided inside a CCA AES secure key.
*/
struct pkey_findcard {
struct pkey_seckey seckey; /* in: the secure key blob */
__u16 cardnr; /* out: card number */
__u16 domain; /* out: domain number */
};
#define PKEY_FINDCARD _IOWR(PKEY_IOCTL_MAGIC, 0x05, struct pkey_findcard)
/*
* Combined together: findcard + sec2prot
*/
struct pkey_skey2pkey {
struct pkey_seckey seckey; /* in: the secure key blob */
struct pkey_protkey protkey; /* out: the protected key */
};
#define PKEY_SKEY2PKEY _IOWR(PKEY_IOCTL_MAGIC, 0x06, struct pkey_skey2pkey)
/*
* Verify the given CCA AES secure key for being able to be usable with
* the pkey module. Check for correct key type and check for having at
* least one crypto card being able to handle this key (master key
* or old master key verification pattern matches).
* Return some info about the key: keysize in bits, keytype (currently
* only AES), flag if key is wrapped with an old MKVP.
*/
struct pkey_verifykey {
struct pkey_seckey seckey; /* in: the secure key blob */
__u16 cardnr; /* out: card number */
__u16 domain; /* out: domain number */
__u16 keysize; /* out: key size in bits */
__u32 attributes; /* out: attribute bits */
};
#define PKEY_VERIFYKEY _IOWR(PKEY_IOCTL_MAGIC, 0x07, struct pkey_verifykey)
#define PKEY_VERIFY_ATTR_AES 0x00000001 /* key is an AES key */
#define PKEY_VERIFY_ATTR_OLD_MKVP 0x00000100 /* key has old MKVP value */
/*
* Generate AES random protected key.
*/
struct pkey_genprotk {
__u32 keytype; /* in: key type to generate */
struct pkey_protkey protkey; /* out: the protected key */
};
#define PKEY_GENPROTK _IOWR(PKEY_IOCTL_MAGIC, 0x08, struct pkey_genprotk)
/*
* Verify an AES protected key.
*/
struct pkey_verifyprotk {
struct pkey_protkey protkey; /* in: the protected key to verify */
};
#define PKEY_VERIFYPROTK _IOW(PKEY_IOCTL_MAGIC, 0x09, struct pkey_verifyprotk)
/*
* Transform an key blob (of any type) into a protected key
*/
struct pkey_kblob2pkey {
__u8 __user *key; /* in: the key blob */
__u32 keylen; /* in: the key blob length */
struct pkey_protkey protkey; /* out: the protected key */
};
#define PKEY_KBLOB2PROTK _IOWR(PKEY_IOCTL_MAGIC, 0x0A, struct pkey_kblob2pkey)
/*
* Generate secure key, version 2.
* Generate CCA AES secure key, CCA AES cipher key or EP11 AES secure key.
* There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and
* tries to send the request to each apqn without any further checking (like
* card type or online state). If the apqn fails, simple the next one in the
* list is tried until success (return 0) or the end of the list is reached
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to
* generate a list of apqns based on the key type to generate.
* The keygenflags argument is passed to the low level generation functions
* individual for the key type and has a key type specific meaning. When
* generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_*
* flags to widen the export possibilities. By default a cipher key is
* only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* The keygenflag argument for generating an EP11 AES key should either be 0
* to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and
* XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags.
*/
struct pkey_genseck2 {
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets*/
__u32 apqn_entries; /* in: # of apqn target list entries */
enum pkey_key_type type; /* in: key type to generate */
enum pkey_key_size size; /* in: key size to generate */
__u32 keygenflags; /* in: key generation flags */
__u8 __user *key; /* in: pointer to key blob buffer */
__u32 keylen; /* in: available key blob buffer size */
/* out: actual key blob size */
};
#define PKEY_GENSECK2 _IOWR(PKEY_IOCTL_MAGIC, 0x11, struct pkey_genseck2)
/*
* Generate secure key from clear key value, version 2.
* Construct an CCA AES secure key, CCA AES cipher key or EP11 AES secure
* key from a given clear key value.
* There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and
* tries to send the request to each apqn without any further checking (like
* card type or online state). If the apqn fails, simple the next one in the
* list is tried until success (return 0) or the end of the list is reached
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to
* generate a list of apqns based on the key type to generate.
* The keygenflags argument is passed to the low level generation functions
* individual for the key type and has a key type specific meaning. When
* generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_*
* flags to widen the export possibilities. By default a cipher key is
* only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* The keygenflag argument for generating an EP11 AES key should either be 0
* to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and
* XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags.
*/
struct pkey_clr2seck2 {
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */
__u32 apqn_entries; /* in: # of apqn target list entries */
enum pkey_key_type type; /* in: key type to generate */
enum pkey_key_size size; /* in: key size to generate */
__u32 keygenflags; /* in: key generation flags */
struct pkey_clrkey clrkey; /* in: the clear key value */
__u8 __user *key; /* in: pointer to key blob buffer */
__u32 keylen; /* in: available key blob buffer size */
/* out: actual key blob size */
};
#define PKEY_CLR2SECK2 _IOWR(PKEY_IOCTL_MAGIC, 0x12, struct pkey_clr2seck2)
/*
* Verify the given secure key, version 2.
* Check for correct key type. If cardnr and domain are given (are not
* 0xFFFF) also check if this apqn is able to handle this type of key.
* If cardnr and/or domain is 0xFFFF, on return these values are filled
* with one apqn able to handle this key.
* The function also checks for the master key verification patterns
* of the key matching to the current or alternate mkvp of the apqn.
* For CCA AES secure keys and CCA AES cipher keys this means to check
* the key's mkvp against the current or old mkvp of the apqns. The flags
* field is updated with some additional info about the apqn mkvp
* match: If the current mkvp matches to the key's mkvp then the
* PKEY_FLAGS_MATCH_CUR_MKVP bit is set, if the alternate mkvp matches to
* the key's mkvp the PKEY_FLAGS_MATCH_ALT_MKVP is set. For CCA keys the
* alternate mkvp is the old master key verification pattern.
* CCA AES secure keys are also checked to have the CPACF export allowed
* bit enabled (XPRTCPAC) in the kmf1 field.
* EP11 keys are also supported and the wkvp of the key is checked against
* the current wkvp of the apqns. There is no alternate for this type of
* key and so on a match the flag PKEY_FLAGS_MATCH_CUR_MKVP always is set.
* EP11 keys are also checked to have XCP_BLOB_PROTKEY_EXTRACTABLE set.
* The ioctl returns 0 as long as the given or found apqn matches to
* matches with the current or alternate mkvp to the key's mkvp. If the given
* apqn does not match or there is no such apqn found, -1 with errno
* ENODEV is returned.
*/
struct pkey_verifykey2 {
__u8 __user *key; /* in: pointer to key blob */
__u32 keylen; /* in: key blob size */
__u16 cardnr; /* in/out: card number */
__u16 domain; /* in/out: domain number */
enum pkey_key_type type; /* out: the key type */
enum pkey_key_size size; /* out: the key size */
__u32 flags; /* out: additional key info flags */
};
#define PKEY_VERIFYKEY2 _IOWR(PKEY_IOCTL_MAGIC, 0x17, struct pkey_verifykey2)
/*
* Transform a key blob into a protected key, version 2.
* There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and
* tries to send the request to each apqn without any further checking (like
* card type or online state). If the apqn fails, simple the next one in the
* list is tried until success (return 0) or the end of the list is reached
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4K ioctl to
* generate a list of apqns based on the key.
* Deriving ECC protected keys from ECC secure keys is not supported with
* this ioctl, use PKEY_KBLOB2PROTK3 for this purpose.
*/
struct pkey_kblob2pkey2 {
__u8 __user *key; /* in: pointer to key blob */
__u32 keylen; /* in: key blob size */
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */
__u32 apqn_entries; /* in: # of apqn target list entries */
struct pkey_protkey protkey; /* out: the protected key */
};
#define PKEY_KBLOB2PROTK2 _IOWR(PKEY_IOCTL_MAGIC, 0x1A, struct pkey_kblob2pkey2)
/*
* Build a list of APQNs based on a key blob given.
* Is able to find out which type of secure key is given (CCA AES secure
* key, CCA AES cipher key, CCA ECC private key, EP11 AES key, EP11 ECC private
* key) and tries to find all matching crypto cards based on the MKVP and maybe
* other criteria (like CCA AES cipher keys need a CEX5C or higher, EP11 keys
* with BLOB_PKEY_EXTRACTABLE need a CEX7 and EP11 api version 4). The list of
* APQNs is further filtered by the key's mkvp which needs to match to either
* the current mkvp (CCA and EP11) or the alternate mkvp (old mkvp, CCA adapters
* only) of the apqns. The flags argument may be used to limit the matching
* apqns. If the PKEY_FLAGS_MATCH_CUR_MKVP is given, only the current mkvp of
* each apqn is compared. Likewise with the PKEY_FLAGS_MATCH_ALT_MKVP. If both
* are given, it is assumed to return apqns where either the current or the
* alternate mkvp matches. At least one of the matching flags needs to be given.
* The flags argument for EP11 keys has no further action and is currently
* ignored (but needs to be given as PKEY_FLAGS_MATCH_CUR_MKVP) as there is only
* the wkvp from the key to match against the apqn's wkvp.
* The list of matching apqns is stored into the space given by the apqns
* argument and the number of stored entries goes into apqn_entries. If the list
* is empty (apqn_entries is 0) the apqn_entries field is updated to the number
* of apqn targets found and the ioctl returns with 0. If apqn_entries is > 0
* but the number of apqn targets does not fit into the list, the apqn_targets
* field is updated with the number of required entries but there are no apqn
* values stored in the list and the ioctl returns with ENOSPC. If no matching
* APQN is found, the ioctl returns with 0 but the apqn_entries value is 0.
*/
struct pkey_apqns4key {
__u8 __user *key; /* in: pointer to key blob */
__u32 keylen; /* in: key blob size */
__u32 flags; /* in: match controlling flags */
struct pkey_apqn __user *apqns; /* in/out: ptr to list of apqn targets*/
__u32 apqn_entries; /* in: max # of apqn entries in the list */
/* out: # apqns stored into the list */
};
#define PKEY_APQNS4K _IOWR(PKEY_IOCTL_MAGIC, 0x1B, struct pkey_apqns4key)
/*
* Build a list of APQNs based on a key type given.
* Build a list of APQNs based on a given key type and maybe further
* restrict the list by given master key verification patterns.
* For different key types there may be different ways to match the
* master key verification patterns. For CCA keys (CCA data key and CCA
* cipher key) the first 8 bytes of cur_mkvp refer to the current AES mkvp value
* of the apqn and the first 8 bytes of the alt_mkvp refer to the old AES mkvp.
* For CCA ECC keys it is similar but the match is against the APKA current/old
* mkvp. The flags argument controls if the apqns current and/or alternate mkvp
* should match. If the PKEY_FLAGS_MATCH_CUR_MKVP is given, only the current
* mkvp of each apqn is compared. Likewise with the PKEY_FLAGS_MATCH_ALT_MKVP.
* If both are given, it is assumed to return apqns where either the
* current or the alternate mkvp matches. If no match flag is given
* (flags is 0) the mkvp values are ignored for the match process.
* For EP11 keys there is only the current wkvp. So if the apqns should also
* match to a given wkvp, then the PKEY_FLAGS_MATCH_CUR_MKVP flag should be
* set. The wkvp value is 32 bytes but only the leftmost 16 bytes are compared
* against the leftmost 16 byte of the wkvp of the apqn.
* The list of matching apqns is stored into the space given by the apqns
* argument and the number of stored entries goes into apqn_entries. If the list
* is empty (apqn_entries is 0) the apqn_entries field is updated to the number
* of apqn targets found and the ioctl returns with 0. If apqn_entries is > 0
* but the number of apqn targets does not fit into the list, the apqn_targets
* field is updated with the number of required entries but there are no apqn
* values stored in the list and the ioctl returns with ENOSPC. If no matching
* APQN is found, the ioctl returns with 0 but the apqn_entries value is 0.
*/
struct pkey_apqns4keytype {
enum pkey_key_type type; /* in: key type */
__u8 cur_mkvp[32]; /* in: current mkvp */
__u8 alt_mkvp[32]; /* in: alternate mkvp */
__u32 flags; /* in: match controlling flags */
struct pkey_apqn __user *apqns; /* in/out: ptr to list of apqn targets*/
__u32 apqn_entries; /* in: max # of apqn entries in the list */
/* out: # apqns stored into the list */
};
#define PKEY_APQNS4KT _IOWR(PKEY_IOCTL_MAGIC, 0x1C, struct pkey_apqns4keytype)
/*
* Transform a key blob into a protected key, version 3.
* The difference to version 2 of this ioctl is that the protected key
* buffer is now explicitly and not within a struct pkey_protkey any more.
* So this ioctl is also able to handle EP11 and CCA ECC secure keys and
* provide ECC protected keys.
* There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and
* tries to send the request to each apqn without any further checking (like
* card type or online state). If the apqn fails, simple the next one in the
* list is tried until success (return 0) or the end of the list is reached
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4K ioctl to
* generate a list of apqns based on the key.
*/
struct pkey_kblob2pkey3 {
__u8 __user *key; /* in: pointer to key blob */
__u32 keylen; /* in: key blob size */
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */
__u32 apqn_entries; /* in: # of apqn target list entries */
__u32 pkeytype; /* out: prot key type (enum pkey_key_type) */
__u32 pkeylen; /* in/out: size of pkey buffer/actual len of pkey */
__u8 __user *pkey; /* in: pkey blob buffer space ptr */
};
#define PKEY_KBLOB2PROTK3 _IOWR(PKEY_IOCTL_MAGIC, 0x1D, struct pkey_kblob2pkey3)
#endif /* _UAPI_PKEY_H */