// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
* Copyright (C) 2015 Thomas Meyer ([email protected])
* Copyright (C) 2004 PathScale, Inc
* Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
*/
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <as-layout.h>
#include <kern_util.h>
#include <os.h>
#include <sysdep/mcontext.h>
#include <um_malloc.h>
#include <sys/ucontext.h>
#include <timetravel.h>
void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
[SIGTRAP] = relay_signal,
[SIGFPE] = relay_signal,
[SIGILL] = relay_signal,
[SIGWINCH] = winch,
[SIGBUS] = bus_handler,
[SIGSEGV] = segv_handler,
[SIGIO] = sigio_handler,
};
static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
{
struct uml_pt_regs r;
int save_errno = errno;
r.is_user = 0;
if (sig == SIGSEGV) {
/* For segfaults, we want the data from the sigcontext. */
get_regs_from_mc(&r, mc);
GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
}
/* enable signals if sig isn't IRQ signal */
if ((sig != SIGIO) && (sig != SIGWINCH))
unblock_signals_trace();
(*sig_info[sig])(sig, si, &r);
errno = save_errno;
}
/*
* These are the asynchronous signals. SIGPROF is excluded because we want to
* be able to profile all of UML, not just the non-critical sections. If
* profiling is not thread-safe, then that is not my problem. We can disable
* profiling when SMP is enabled in that case.
*/
#define SIGIO_BIT 0
#define SIGIO_MASK (1 << SIGIO_BIT)
#define SIGALRM_BIT 1
#define SIGALRM_MASK (1 << SIGALRM_BIT)
int signals_enabled;
#ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
static int signals_blocked, signals_blocked_pending;
#endif
static unsigned int signals_pending;
static unsigned int signals_active = 0;
static void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
{
int enabled = signals_enabled;
#ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
if ((signals_blocked ||
__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) &&
(sig == SIGIO)) {
/* increment so unblock will do another round */
__atomic_add_fetch(&signals_blocked_pending, 1,
__ATOMIC_SEQ_CST);
return;
}
#endif
if (!enabled && (sig == SIGIO)) {
/*
* In TT_MODE_EXTERNAL, need to still call time-travel
* handlers. This will mark signals_pending by itself
* (only if necessary.)
* Note we won't get here if signals are hard-blocked
* (which is handled above), in that case the hard-
* unblock will handle things.
*/
if (time_travel_mode == TT_MODE_EXTERNAL)
sigio_run_timetravel_handlers();
else
signals_pending |= SIGIO_MASK;
return;
}
block_signals_trace();
sig_handler_common(sig, si, mc);
um_set_signals_trace(enabled);
}
static void timer_real_alarm_handler(mcontext_t *mc)
{
struct uml_pt_regs regs;
if (mc != NULL)
get_regs_from_mc(®s, mc);
else
memset(®s, 0, sizeof(regs));
timer_handler(SIGALRM, NULL, ®s);
}
static void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
{
int enabled;
enabled = signals_enabled;
if (!signals_enabled) {
signals_pending |= SIGALRM_MASK;
return;
}
block_signals_trace();
signals_active |= SIGALRM_MASK;
timer_real_alarm_handler(mc);
signals_active &= ~SIGALRM_MASK;
um_set_signals_trace(enabled);
}
void deliver_alarm(void) {
timer_alarm_handler(SIGALRM, NULL, NULL);
}
void timer_set_signal_handler(void)
{
set_handler(SIGALRM);
}
void set_sigstack(void *sig_stack, int size)
{
stack_t stack = {
.ss_flags = 0,
.ss_sp = sig_stack,
.ss_size = size
};
if (sigaltstack(&stack, NULL) != 0)
panic("enabling signal stack failed, errno = %d\n", errno);
}
static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
{
uml_pm_wake();
}
void register_pm_wake_signal(void)
{
set_handler(SIGUSR1);
}
static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
[SIGSEGV] = sig_handler,
[SIGBUS] = sig_handler,
[SIGILL] = sig_handler,
[SIGFPE] = sig_handler,
[SIGTRAP] = sig_handler,
[SIGIO] = sig_handler,
[SIGWINCH] = sig_handler,
[SIGALRM] = timer_alarm_handler,
[SIGUSR1] = sigusr1_handler,
};
static void hard_handler(int sig, siginfo_t *si, void *p)
{
ucontext_t *uc = p;
mcontext_t *mc = &uc->uc_mcontext;
unsigned long pending = 1UL << sig;
do {
int nested, bail;
/*
* pending comes back with one bit set for each
* interrupt that arrived while setting up the stack,
* plus a bit for this interrupt, plus the zero bit is
* set if this is a nested interrupt.
* If bail is true, then we interrupted another
* handler setting up the stack. In this case, we
* have to return, and the upper handler will deal
* with this interrupt.
*/
bail = to_irq_stack(&pending);
if (bail)
return;
nested = pending & 1;
pending &= ~1;
while ((sig = ffs(pending)) != 0){
sig--;
pending &= ~(1 << sig);
(*handlers[sig])(sig, (struct siginfo *)si, mc);
}
/*
* Again, pending comes back with a mask of signals
* that arrived while tearing down the stack. If this
* is non-zero, we just go back, set up the stack
* again, and handle the new interrupts.
*/
if (!nested)
pending = from_irq_stack(nested);
} while (pending);
}
void set_handler(int sig)
{
struct sigaction action;
int flags = SA_SIGINFO | SA_ONSTACK;
sigset_t sig_mask;
action.sa_sigaction = hard_handler;
/* block irq ones */
sigemptyset(&action.sa_mask);
sigaddset(&action.sa_mask, SIGIO);
sigaddset(&action.sa_mask, SIGWINCH);
sigaddset(&action.sa_mask, SIGALRM);
if (sig == SIGSEGV)
flags |= SA_NODEFER;
if (sigismember(&action.sa_mask, sig))
flags |= SA_RESTART; /* if it's an irq signal */
action.sa_flags = flags;
action.sa_restorer = NULL;
if (sigaction(sig, &action, NULL) < 0)
panic("sigaction failed - errno = %d\n", errno);
sigemptyset(&sig_mask);
sigaddset(&sig_mask, sig);
if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
panic("sigprocmask failed - errno = %d\n", errno);
}
void send_sigio_to_self(void)
{
kill(os_getpid(), SIGIO);
}
int change_sig(int signal, int on)
{
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, signal);
if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
return -errno;
return 0;
}
void block_signals(void)
{
signals_enabled = 0;
/*
* This must return with signals disabled, so this barrier
* ensures that writes are flushed out before the return.
* This might matter if gcc figures out how to inline this and
* decides to shuffle this code into the caller.
*/
barrier();
}
void unblock_signals(void)
{
int save_pending;
if (signals_enabled == 1)
return;
signals_enabled = 1;
#ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
deliver_time_travel_irqs();
#endif
/*
* We loop because the IRQ handler returns with interrupts off. So,
* interrupts may have arrived and we need to re-enable them and
* recheck signals_pending.
*/
while (1) {
/*
* Save and reset save_pending after enabling signals. This
* way, signals_pending won't be changed while we're reading it.
*
* Setting signals_enabled and reading signals_pending must
* happen in this order, so have the barrier here.
*/
barrier();
save_pending = signals_pending;
if (save_pending == 0)
return;
signals_pending = 0;
/*
* We have pending interrupts, so disable signals, as the
* handlers expect them off when they are called. They will
* be enabled again above. We need to trace this, as we're
* expected to be enabling interrupts already, but any more
* tracing that happens inside the handlers we call for the
* pending signals will mess up the tracing state.
*/
signals_enabled = 0;
um_trace_signals_off();
/*
* Deal with SIGIO first because the alarm handler might
* schedule, leaving the pending SIGIO stranded until we come
* back here.
*
* SIGIO's handler doesn't use siginfo or mcontext,
* so they can be NULL.
*/
if (save_pending & SIGIO_MASK)
sig_handler_common(SIGIO, NULL, NULL);
/* Do not reenter the handler */
if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
timer_real_alarm_handler(NULL);
/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
return;
/* Re-enable signals and trace that we're doing so. */
um_trace_signals_on();
signals_enabled = 1;
}
}
int um_set_signals(int enable)
{
int ret;
if (signals_enabled == enable)
return enable;
ret = signals_enabled;
if (enable)
unblock_signals();
else block_signals();
return ret;
}
int um_set_signals_trace(int enable)
{
int ret;
if (signals_enabled == enable)
return enable;
ret = signals_enabled;
if (enable)
unblock_signals_trace();
else
block_signals_trace();
return ret;
}
#ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
void mark_sigio_pending(void)
{
/*
* It would seem that this should be atomic so
* it isn't a read-modify-write with a signal
* that could happen in the middle, losing the
* value set by the signal.
*
* However, this function is only called when in
* time-travel=ext simulation mode, in which case
* the only signal ever pending is SIGIO, which
* is blocked while this can be called, and the
* timer signal (SIGALRM) cannot happen.
*/
signals_pending |= SIGIO_MASK;
}
void block_signals_hard(void)
{
signals_blocked++;
barrier();
}
void unblock_signals_hard(void)
{
static bool unblocking;
if (!signals_blocked)
panic("unblocking signals while not blocked");
if (--signals_blocked)
return;
/*
* Must be set to 0 before we check pending so the
* SIGIO handler will run as normal unless we're still
* going to process signals_blocked_pending.
*/
barrier();
/*
* Note that block_signals_hard()/unblock_signals_hard() can be called
* within the unblock_signals()/sigio_run_timetravel_handlers() below.
* This would still be prone to race conditions since it's actually a
* call _within_ e.g. vu_req_read_message(), where we observed this
* issue, which loops. Thus, if the inner call handles the recorded
* pending signals, we can get out of the inner call with the real
* signal hander no longer blocked, and still have a race. Thus don't
* handle unblocking in the inner call, if it happens, but only in
* the outermost call - 'unblocking' serves as an ownership for the
* signals_blocked_pending decrement.
*/
if (unblocking)
return;
unblocking = true;
while (__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) {
if (signals_enabled) {
/* signals are enabled so we can touch this */
signals_pending |= SIGIO_MASK;
/*
* this is a bit inefficient, but that's
* not really important
*/
block_signals();
unblock_signals();
} else {
/*
* we need to run time-travel handlers even
* if not enabled
*/
sigio_run_timetravel_handlers();
}
/*
* The decrement of signals_blocked_pending must be atomic so
* that the signal handler will either happen before or after
* the decrement, not during a read-modify-write:
* - If it happens before, it can increment it and we'll
* decrement it and do another round in the loop.
* - If it happens after it'll see 0 for both signals_blocked
* and signals_blocked_pending and thus run the handler as
* usual (subject to signals_enabled, but that's unrelated.)
*
* Note that a call to unblock_signals_hard() within the calls
* to unblock_signals() or sigio_run_timetravel_handlers() above
* will do nothing due to the 'unblocking' state, so this cannot
* underflow as the only one decrementing will be the outermost
* one.
*/
if (__atomic_sub_fetch(&signals_blocked_pending, 1,
__ATOMIC_SEQ_CST) < 0)
panic("signals_blocked_pending underflow");
}
unblocking = false;
}
#endif
int os_is_signal_stack(void)
{
stack_t ss;
sigaltstack(NULL, &ss);
return ss.ss_flags & SS_ONSTACK;
}