// SPDX-License-Identifier: GPL-2.0
/*
* Alchemy clocks.
*
* Exposes all configurable internal clock sources to the clk framework.
*
* We have:
* - Root source, usually 12MHz supplied by an external crystal
* - 3 PLLs which generate multiples of root rate [AUX, CPU, AUX2]
*
* Dividers:
* - 6 clock dividers with:
* * selectable source [one of the PLLs],
* * output divided between [2 .. 512 in steps of 2] (!Au1300)
* or [1 .. 256 in steps of 1] (Au1300),
* * can be enabled individually.
*
* - up to 6 "internal" (fixed) consumers which:
* * take either AUXPLL or one of the above 6 dividers as input,
* * divide this input by 1, 2, or 4 (and 3 on Au1300).
* * can be disabled separately.
*
* Misc clocks:
* - sysbus clock: CPU core clock (CPUPLL) divided by 2, 3 or 4.
* depends on board design and should be set by bootloader, read-only.
* - peripheral clock: half the rate of sysbus clock, source for a lot
* of peripheral blocks, read-only.
* - memory clock: clk rate to main memory chips, depends on board
* design and is read-only,
* - lrclk: the static bus clock signal for synchronous operation.
* depends on board design, must be set by bootloader,
* but may be required to correctly configure devices attached to
* the static bus. The Au1000/1500/1100 manuals call it LCLK, on
* later models it's called RCLK.
*/
#include <linux/init.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <asm/mach-au1x00/au1000.h>
/* Base clock: 12MHz is the default in all databooks, and I haven't
* found any board yet which uses a different rate.
*/
#define ALCHEMY_ROOTCLK_RATE 12000000
/*
* the internal sources which can be driven by the PLLs and dividers.
* Names taken from the databooks, refer to them for more information,
* especially which ones are share a clock line.
*/
static const char * const alchemy_au1300_intclknames[] = {
"lcd_intclk", "gpemgp_clk", "maempe_clk", "maebsa_clk",
"EXTCLK0", "EXTCLK1"
};
static const char * const alchemy_au1200_intclknames[] = {
"lcd_intclk", NULL, NULL, NULL, "EXTCLK0", "EXTCLK1"
};
static const char * const alchemy_au1550_intclknames[] = {
"usb_clk", "psc0_intclk", "psc1_intclk", "pci_clko",
"EXTCLK0", "EXTCLK1"
};
static const char * const alchemy_au1100_intclknames[] = {
"usb_clk", "lcd_intclk", NULL, "i2s_clk", "EXTCLK0", "EXTCLK1"
};
static const char * const alchemy_au1500_intclknames[] = {
NULL, "usbd_clk", "usbh_clk", "pci_clko", "EXTCLK0", "EXTCLK1"
};
static const char * const alchemy_au1000_intclknames[] = {
"irda_clk", "usbd_clk", "usbh_clk", "i2s_clk", "EXTCLK0",
"EXTCLK1"
};
/* aliases for a few on-chip sources which are either shared
* or have gone through name changes.
*/
static struct clk_aliastable {
char *alias;
char *base;
int cputype;
} alchemy_clk_aliases[] __initdata = {
{ "usbh_clk", "usb_clk", ALCHEMY_CPU_AU1100 },
{ "usbd_clk", "usb_clk", ALCHEMY_CPU_AU1100 },
{ "irda_clk", "usb_clk", ALCHEMY_CPU_AU1100 },
{ "usbh_clk", "usb_clk", ALCHEMY_CPU_AU1550 },
{ "usbd_clk", "usb_clk", ALCHEMY_CPU_AU1550 },
{ "psc2_intclk", "usb_clk", ALCHEMY_CPU_AU1550 },
{ "psc3_intclk", "EXTCLK0", ALCHEMY_CPU_AU1550 },
{ "psc0_intclk", "EXTCLK0", ALCHEMY_CPU_AU1200 },
{ "psc1_intclk", "EXTCLK1", ALCHEMY_CPU_AU1200 },
{ "psc0_intclk", "EXTCLK0", ALCHEMY_CPU_AU1300 },
{ "psc2_intclk", "EXTCLK0", ALCHEMY_CPU_AU1300 },
{ "psc1_intclk", "EXTCLK1", ALCHEMY_CPU_AU1300 },
{ "psc3_intclk", "EXTCLK1", ALCHEMY_CPU_AU1300 },
{ NULL, NULL, 0 },
};
#define IOMEM(x) ((void __iomem *)(KSEG1ADDR(CPHYSADDR(x))))
/* access locks to SYS_FREQCTRL0/1 and SYS_CLKSRC registers */
static spinlock_t alchemy_clk_fg0_lock;
static spinlock_t alchemy_clk_fg1_lock;
static DEFINE_SPINLOCK(alchemy_clk_csrc_lock);
/* CPU Core clock *****************************************************/
static unsigned long alchemy_clk_cpu_recalc(struct clk_hw *hw,
unsigned long parent_rate)
{
unsigned long t;
/*
* On early Au1000, sys_cpupll was write-only. Since these
* silicon versions of Au1000 are not sold, we don't bend
* over backwards trying to determine the frequency.
*/
if (unlikely(au1xxx_cpu_has_pll_wo()))
t = 396000000;
else {
t = alchemy_rdsys(AU1000_SYS_CPUPLL) & 0x7f;
if (alchemy_get_cputype() < ALCHEMY_CPU_AU1300)
t &= 0x3f;
t *= parent_rate;
}
return t;
}
void __init alchemy_set_lpj(void)
{
preset_lpj = alchemy_clk_cpu_recalc(NULL, ALCHEMY_ROOTCLK_RATE);
preset_lpj /= 2 * HZ;
}
static const struct clk_ops alchemy_clkops_cpu = {
.recalc_rate = alchemy_clk_cpu_recalc,
};
static struct clk __init *alchemy_clk_setup_cpu(const char *parent_name,
int ctype)
{
struct clk_init_data id;
struct clk_hw *h;
struct clk *clk;
h = kzalloc(sizeof(*h), GFP_KERNEL);
if (!h)
return ERR_PTR(-ENOMEM);
id.name = ALCHEMY_CPU_CLK;
id.parent_names = &parent_name;
id.num_parents = 1;
id.flags = 0;
id.ops = &alchemy_clkops_cpu;
h->init = &id;
clk = clk_register(NULL, h);
if (IS_ERR(clk)) {
pr_err("failed to register clock\n");
kfree(h);
}
return clk;
}
/* AUXPLLs ************************************************************/
struct alchemy_auxpll_clk {
struct clk_hw hw;
unsigned long reg; /* au1300 has also AUXPLL2 */
int maxmult; /* max multiplier */
};
#define to_auxpll_clk(x) container_of(x, struct alchemy_auxpll_clk, hw)
static unsigned long alchemy_clk_aux_recalc(struct clk_hw *hw,
unsigned long parent_rate)
{
struct alchemy_auxpll_clk *a = to_auxpll_clk(hw);
return (alchemy_rdsys(a->reg) & 0xff) * parent_rate;
}
static int alchemy_clk_aux_setr(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct alchemy_auxpll_clk *a = to_auxpll_clk(hw);
unsigned long d = rate;
if (rate)
d /= parent_rate;
else
d = 0;
/* minimum is 84MHz, max is 756-1032 depending on variant */
if (((d < 7) && (d != 0)) || (d > a->maxmult))
return -EINVAL;
alchemy_wrsys(d, a->reg);
return 0;
}
static long alchemy_clk_aux_roundr(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
struct alchemy_auxpll_clk *a = to_auxpll_clk(hw);
unsigned long mult;
if (!rate || !*parent_rate)
return 0;
mult = rate / (*parent_rate);
if (mult && (mult < 7))
mult = 7;
if (mult > a->maxmult)
mult = a->maxmult;
return (*parent_rate) * mult;
}
static const struct clk_ops alchemy_clkops_aux = {
.recalc_rate = alchemy_clk_aux_recalc,
.set_rate = alchemy_clk_aux_setr,
.round_rate = alchemy_clk_aux_roundr,
};
static struct clk __init *alchemy_clk_setup_aux(const char *parent_name,
char *name, int maxmult,
unsigned long reg)
{
struct clk_init_data id;
struct clk *c;
struct alchemy_auxpll_clk *a;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return ERR_PTR(-ENOMEM);
id.name = name;
id.parent_names = &parent_name;
id.num_parents = 1;
id.flags = CLK_GET_RATE_NOCACHE;
id.ops = &alchemy_clkops_aux;
a->reg = reg;
a->maxmult = maxmult;
a->hw.init = &id;
c = clk_register(NULL, &a->hw);
if (!IS_ERR(c))
clk_register_clkdev(c, name, NULL);
else
kfree(a);
return c;
}
/* sysbus_clk *********************************************************/
static struct clk __init *alchemy_clk_setup_sysbus(const char *pn)
{
unsigned long v = (alchemy_rdsys(AU1000_SYS_POWERCTRL) & 3) + 2;
struct clk *c;
c = clk_register_fixed_factor(NULL, ALCHEMY_SYSBUS_CLK,
pn, 0, 1, v);
if (!IS_ERR(c))
clk_register_clkdev(c, ALCHEMY_SYSBUS_CLK, NULL);
return c;
}
/* Peripheral Clock ***************************************************/
static struct clk __init *alchemy_clk_setup_periph(const char *pn)
{
/* Peripheral clock runs at half the rate of sysbus clk */
struct clk *c;
c = clk_register_fixed_factor(NULL, ALCHEMY_PERIPH_CLK,
pn, 0, 1, 2);
if (!IS_ERR(c))
clk_register_clkdev(c, ALCHEMY_PERIPH_CLK, NULL);
return c;
}
/* mem clock **********************************************************/
static struct clk __init *alchemy_clk_setup_mem(const char *pn, int ct)
{
void __iomem *addr = IOMEM(AU1000_MEM_PHYS_ADDR);
unsigned long v;
struct clk *c;
int div;
switch (ct) {
case ALCHEMY_CPU_AU1550:
case ALCHEMY_CPU_AU1200:
v = __raw_readl(addr + AU1550_MEM_SDCONFIGB);
div = (v & (1 << 15)) ? 1 : 2;
break;
case ALCHEMY_CPU_AU1300:
v = __raw_readl(addr + AU1550_MEM_SDCONFIGB);
div = (v & (1 << 31)) ? 1 : 2;
break;
case ALCHEMY_CPU_AU1000:
case ALCHEMY_CPU_AU1500:
case ALCHEMY_CPU_AU1100:
default:
div = 2;
break;
}
c = clk_register_fixed_factor(NULL, ALCHEMY_MEM_CLK, pn,
0, 1, div);
if (!IS_ERR(c))
clk_register_clkdev(c, ALCHEMY_MEM_CLK, NULL);
return c;
}
/* lrclk: external synchronous static bus clock ***********************/
static struct clk __init *alchemy_clk_setup_lrclk(const char *pn, int t)
{
/* Au1000, Au1500: MEM_STCFG0[11]: If bit is set, lrclk=pclk/5,
* otherwise lrclk=pclk/4.
* All other variants: MEM_STCFG0[15:13] = divisor.
* L/RCLK = periph_clk / (divisor + 1)
* On Au1000, Au1500, Au1100 it's called LCLK,
* on later models it's called RCLK, but it's the same thing.
*/
struct clk *c;
unsigned long v = alchemy_rdsmem(AU1000_MEM_STCFG0);
switch (t) {
case ALCHEMY_CPU_AU1000:
case ALCHEMY_CPU_AU1500:
v = 4 + ((v >> 11) & 1);
break;
default: /* all other models */
v = ((v >> 13) & 7) + 1;
}
c = clk_register_fixed_factor(NULL, ALCHEMY_LR_CLK,
pn, 0, 1, v);
if (!IS_ERR(c))
clk_register_clkdev(c, ALCHEMY_LR_CLK, NULL);
return c;
}
/* Clock dividers and muxes *******************************************/
/* data for fgen and csrc mux-dividers */
struct alchemy_fgcs_clk {
struct clk_hw hw;
spinlock_t *reglock; /* register lock */
unsigned long reg; /* SYS_FREQCTRL0/1 */
int shift; /* offset in register */
int parent; /* parent before disable [Au1300] */
int isen; /* is it enabled? */
int *dt; /* dividertable for csrc */
};
#define to_fgcs_clk(x) container_of(x, struct alchemy_fgcs_clk, hw)
static long alchemy_calc_div(unsigned long rate, unsigned long prate,
int scale, int maxdiv, unsigned long *rv)
{
long div1, div2;
div1 = prate / rate;
if ((prate / div1) > rate)
div1++;
if (scale == 2) { /* only div-by-multiple-of-2 possible */
if (div1 & 1)
div1++; /* stay <=prate */
}
div2 = (div1 / scale) - 1; /* value to write to register */
if (div2 > maxdiv)
div2 = maxdiv;
if (rv)
*rv = div2;
div1 = ((div2 + 1) * scale);
return div1;
}
static int alchemy_clk_fgcs_detr(struct clk_hw *hw,
struct clk_rate_request *req,
int scale, int maxdiv)
{
struct clk_hw *pc, *bpc, *free;
long tdv, tpr, pr, nr, br, bpr, diff, lastdiff;
int j;
lastdiff = INT_MAX;
bpr = 0;
bpc = NULL;
br = -EINVAL;
free = NULL;
/* look at the rates each enabled parent supplies and select
* the one that gets closest to but not over the requested rate.
*/
for (j = 0; j < 7; j++) {
pc = clk_hw_get_parent_by_index(hw, j);
if (!pc)
break;
/* if this parent is currently unused, remember it.
* XXX: we would actually want clk_has_active_children()
* but this is a good-enough approximation for now.
*/
if (!clk_hw_is_prepared(pc)) {
if (!free)
free = pc;
}
pr = clk_hw_get_rate(pc);
if (pr < req->rate)
continue;
/* what can hardware actually provide */
tdv = alchemy_calc_div(req->rate, pr, scale, maxdiv, NULL);
nr = pr / tdv;
diff = req->rate - nr;
if (nr > req->rate)
continue;
if (diff < lastdiff) {
lastdiff = diff;
bpr = pr;
bpc = pc;
br = nr;
}
if (diff == 0)
break;
}
/* if we couldn't get the exact rate we wanted from the enabled
* parents, maybe we can tell an available disabled/inactive one
* to give us a rate we can divide down to the requested rate.
*/
if (lastdiff && free) {
for (j = (maxdiv == 4) ? 1 : scale; j <= maxdiv; j += scale) {
tpr = req->rate * j;
if (tpr < 0)
break;
pr = clk_hw_round_rate(free, tpr);
tdv = alchemy_calc_div(req->rate, pr, scale, maxdiv,
NULL);
nr = pr / tdv;
diff = req->rate - nr;
if (nr > req->rate)
continue;
if (diff < lastdiff) {
lastdiff = diff;
bpr = pr;
bpc = free;
br = nr;
}
if (diff == 0)
break;
}
}
if (br < 0)
return br;
req->best_parent_rate = bpr;
req->best_parent_hw = bpc;
req->rate = br;
return 0;
}
static int alchemy_clk_fgv1_en(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v, flags;
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v |= (1 << 1) << c->shift;
alchemy_wrsys(v, c->reg);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static int alchemy_clk_fgv1_isen(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v = alchemy_rdsys(c->reg) >> (c->shift + 1);
return v & 1;
}
static void alchemy_clk_fgv1_dis(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v, flags;
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v &= ~((1 << 1) << c->shift);
alchemy_wrsys(v, c->reg);
spin_unlock_irqrestore(c->reglock, flags);
}
static int alchemy_clk_fgv1_setp(struct clk_hw *hw, u8 index)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v, flags;
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
if (index)
v |= (1 << c->shift);
else
v &= ~(1 << c->shift);
alchemy_wrsys(v, c->reg);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static u8 alchemy_clk_fgv1_getp(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
return (alchemy_rdsys(c->reg) >> c->shift) & 1;
}
static int alchemy_clk_fgv1_setr(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long div, v, flags, ret;
int sh = c->shift + 2;
if (!rate || !parent_rate || rate > (parent_rate / 2))
return -EINVAL;
ret = alchemy_calc_div(rate, parent_rate, 2, 512, &div);
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v &= ~(0xff << sh);
v |= div << sh;
alchemy_wrsys(v, c->reg);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static unsigned long alchemy_clk_fgv1_recalc(struct clk_hw *hw,
unsigned long parent_rate)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v = alchemy_rdsys(c->reg) >> (c->shift + 2);
v = ((v & 0xff) + 1) * 2;
return parent_rate / v;
}
static int alchemy_clk_fgv1_detr(struct clk_hw *hw,
struct clk_rate_request *req)
{
return alchemy_clk_fgcs_detr(hw, req, 2, 512);
}
/* Au1000, Au1100, Au15x0, Au12x0 */
static const struct clk_ops alchemy_clkops_fgenv1 = {
.recalc_rate = alchemy_clk_fgv1_recalc,
.determine_rate = alchemy_clk_fgv1_detr,
.set_rate = alchemy_clk_fgv1_setr,
.set_parent = alchemy_clk_fgv1_setp,
.get_parent = alchemy_clk_fgv1_getp,
.enable = alchemy_clk_fgv1_en,
.disable = alchemy_clk_fgv1_dis,
.is_enabled = alchemy_clk_fgv1_isen,
};
static void __alchemy_clk_fgv2_en(struct alchemy_fgcs_clk *c)
{
unsigned long v = alchemy_rdsys(c->reg);
v &= ~(3 << c->shift);
v |= (c->parent & 3) << c->shift;
alchemy_wrsys(v, c->reg);
c->isen = 1;
}
static int alchemy_clk_fgv2_en(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long flags;
/* enable by setting the previous parent clock */
spin_lock_irqsave(c->reglock, flags);
__alchemy_clk_fgv2_en(c);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static int alchemy_clk_fgv2_isen(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
return ((alchemy_rdsys(c->reg) >> c->shift) & 3) != 0;
}
static void alchemy_clk_fgv2_dis(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v, flags;
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v &= ~(3 << c->shift); /* set input mux to "disabled" state */
alchemy_wrsys(v, c->reg);
c->isen = 0;
spin_unlock_irqrestore(c->reglock, flags);
}
static int alchemy_clk_fgv2_setp(struct clk_hw *hw, u8 index)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long flags;
spin_lock_irqsave(c->reglock, flags);
c->parent = index + 1; /* value to write to register */
if (c->isen)
__alchemy_clk_fgv2_en(c);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static u8 alchemy_clk_fgv2_getp(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long flags, v;
spin_lock_irqsave(c->reglock, flags);
v = c->parent - 1;
spin_unlock_irqrestore(c->reglock, flags);
return v;
}
/* fg0-2 and fg4-6 share a "scale"-bit. With this bit cleared, the
* dividers behave exactly as on previous models (dividers are multiples
* of 2); with the bit set, dividers are multiples of 1, halving their
* range, but making them also much more flexible.
*/
static int alchemy_clk_fgv2_setr(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
int sh = c->shift + 2;
unsigned long div, v, flags, ret;
if (!rate || !parent_rate || rate > parent_rate)
return -EINVAL;
v = alchemy_rdsys(c->reg) & (1 << 30); /* test "scale" bit */
ret = alchemy_calc_div(rate, parent_rate, v ? 1 : 2,
v ? 256 : 512, &div);
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v &= ~(0xff << sh);
v |= (div & 0xff) << sh;
alchemy_wrsys(v, c->reg);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static unsigned long alchemy_clk_fgv2_recalc(struct clk_hw *hw,
unsigned long parent_rate)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
int sh = c->shift + 2;
unsigned long v, t;
v = alchemy_rdsys(c->reg);
t = parent_rate / (((v >> sh) & 0xff) + 1);
if ((v & (1 << 30)) == 0) /* test scale bit */
t /= 2;
return t;
}
static int alchemy_clk_fgv2_detr(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
int scale, maxdiv;
if (alchemy_rdsys(c->reg) & (1 << 30)) {
scale = 1;
maxdiv = 256;
} else {
scale = 2;
maxdiv = 512;
}
return alchemy_clk_fgcs_detr(hw, req, scale, maxdiv);
}
/* Au1300 larger input mux, no separate disable bit, flexible divider */
static const struct clk_ops alchemy_clkops_fgenv2 = {
.recalc_rate = alchemy_clk_fgv2_recalc,
.determine_rate = alchemy_clk_fgv2_detr,
.set_rate = alchemy_clk_fgv2_setr,
.set_parent = alchemy_clk_fgv2_setp,
.get_parent = alchemy_clk_fgv2_getp,
.enable = alchemy_clk_fgv2_en,
.disable = alchemy_clk_fgv2_dis,
.is_enabled = alchemy_clk_fgv2_isen,
};
static const char * const alchemy_clk_fgv1_parents[] = {
ALCHEMY_CPU_CLK, ALCHEMY_AUXPLL_CLK
};
static const char * const alchemy_clk_fgv2_parents[] = {
ALCHEMY_AUXPLL2_CLK, ALCHEMY_CPU_CLK, ALCHEMY_AUXPLL_CLK
};
static const char * const alchemy_clk_fgen_names[] = {
ALCHEMY_FG0_CLK, ALCHEMY_FG1_CLK, ALCHEMY_FG2_CLK,
ALCHEMY_FG3_CLK, ALCHEMY_FG4_CLK, ALCHEMY_FG5_CLK };
static int __init alchemy_clk_init_fgens(int ctype)
{
struct clk *c;
struct clk_init_data id;
struct alchemy_fgcs_clk *a;
unsigned long v;
int i, ret;
switch (ctype) {
case ALCHEMY_CPU_AU1000...ALCHEMY_CPU_AU1200:
id.ops = &alchemy_clkops_fgenv1;
id.parent_names = alchemy_clk_fgv1_parents;
id.num_parents = 2;
break;
case ALCHEMY_CPU_AU1300:
id.ops = &alchemy_clkops_fgenv2;
id.parent_names = alchemy_clk_fgv2_parents;
id.num_parents = 3;
break;
default:
return -ENODEV;
}
id.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE;
a = kcalloc(6, sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
spin_lock_init(&alchemy_clk_fg0_lock);
spin_lock_init(&alchemy_clk_fg1_lock);
ret = 0;
for (i = 0; i < 6; i++) {
id.name = alchemy_clk_fgen_names[i];
a->shift = 10 * (i < 3 ? i : i - 3);
if (i > 2) {
a->reg = AU1000_SYS_FREQCTRL1;
a->reglock = &alchemy_clk_fg1_lock;
} else {
a->reg = AU1000_SYS_FREQCTRL0;
a->reglock = &alchemy_clk_fg0_lock;
}
/* default to first parent if bootloader has set
* the mux to disabled state.
*/
if (ctype == ALCHEMY_CPU_AU1300) {
v = alchemy_rdsys(a->reg);
a->parent = (v >> a->shift) & 3;
if (!a->parent) {
a->parent = 1;
a->isen = 0;
} else
a->isen = 1;
}
a->hw.init = &id;
c = clk_register(NULL, &a->hw);
if (IS_ERR(c))
ret++;
else
clk_register_clkdev(c, id.name, NULL);
a++;
}
return ret;
}
/* internal sources muxes *********************************************/
static int alchemy_clk_csrc_isen(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v = alchemy_rdsys(c->reg);
return (((v >> c->shift) >> 2) & 7) != 0;
}
static void __alchemy_clk_csrc_en(struct alchemy_fgcs_clk *c)
{
unsigned long v = alchemy_rdsys(c->reg);
v &= ~((7 << 2) << c->shift);
v |= ((c->parent & 7) << 2) << c->shift;
alchemy_wrsys(v, c->reg);
c->isen = 1;
}
static int alchemy_clk_csrc_en(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long flags;
/* enable by setting the previous parent clock */
spin_lock_irqsave(c->reglock, flags);
__alchemy_clk_csrc_en(c);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static void alchemy_clk_csrc_dis(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v, flags;
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v &= ~((3 << 2) << c->shift); /* mux to "disabled" state */
alchemy_wrsys(v, c->reg);
c->isen = 0;
spin_unlock_irqrestore(c->reglock, flags);
}
static int alchemy_clk_csrc_setp(struct clk_hw *hw, u8 index)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long flags;
spin_lock_irqsave(c->reglock, flags);
c->parent = index + 1; /* value to write to register */
if (c->isen)
__alchemy_clk_csrc_en(c);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static u8 alchemy_clk_csrc_getp(struct clk_hw *hw)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
return c->parent - 1;
}
static unsigned long alchemy_clk_csrc_recalc(struct clk_hw *hw,
unsigned long parent_rate)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long v = (alchemy_rdsys(c->reg) >> c->shift) & 3;
return parent_rate / c->dt[v];
}
static int alchemy_clk_csrc_setr(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
unsigned long d, v, flags;
int i;
if (!rate || !parent_rate || rate > parent_rate)
return -EINVAL;
d = (parent_rate + (rate / 2)) / rate;
if (d > 4)
return -EINVAL;
if ((d == 3) && (c->dt[2] != 3))
d = 4;
for (i = 0; i < 4; i++)
if (c->dt[i] == d)
break;
if (i >= 4)
return -EINVAL; /* oops */
spin_lock_irqsave(c->reglock, flags);
v = alchemy_rdsys(c->reg);
v &= ~(3 << c->shift);
v |= (i & 3) << c->shift;
alchemy_wrsys(v, c->reg);
spin_unlock_irqrestore(c->reglock, flags);
return 0;
}
static int alchemy_clk_csrc_detr(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct alchemy_fgcs_clk *c = to_fgcs_clk(hw);
int scale = c->dt[2] == 3 ? 1 : 2; /* au1300 check */
return alchemy_clk_fgcs_detr(hw, req, scale, 4);
}
static const struct clk_ops alchemy_clkops_csrc = {
.recalc_rate = alchemy_clk_csrc_recalc,
.determine_rate = alchemy_clk_csrc_detr,
.set_rate = alchemy_clk_csrc_setr,
.set_parent = alchemy_clk_csrc_setp,
.get_parent = alchemy_clk_csrc_getp,
.enable = alchemy_clk_csrc_en,
.disable = alchemy_clk_csrc_dis,
.is_enabled = alchemy_clk_csrc_isen,
};
static const char * const alchemy_clk_csrc_parents[] = {
/* disabled at index 0 */ ALCHEMY_AUXPLL_CLK,
ALCHEMY_FG0_CLK, ALCHEMY_FG1_CLK, ALCHEMY_FG2_CLK,
ALCHEMY_FG3_CLK, ALCHEMY_FG4_CLK, ALCHEMY_FG5_CLK
};
/* divider tables */
static int alchemy_csrc_dt1[] = { 1, 4, 1, 2 }; /* rest */
static int alchemy_csrc_dt2[] = { 1, 4, 3, 2 }; /* Au1300 */
static int __init alchemy_clk_setup_imux(int ctype)
{
struct alchemy_fgcs_clk *a;
const char * const *names;
struct clk_init_data id;
unsigned long v;
int i, ret, *dt;
struct clk *c;
id.ops = &alchemy_clkops_csrc;
id.parent_names = alchemy_clk_csrc_parents;
id.num_parents = 7;
id.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE;
dt = alchemy_csrc_dt1;
switch (ctype) {
case ALCHEMY_CPU_AU1000:
names = alchemy_au1000_intclknames;
break;
case ALCHEMY_CPU_AU1500:
names = alchemy_au1500_intclknames;
break;
case ALCHEMY_CPU_AU1100:
names = alchemy_au1100_intclknames;
break;
case ALCHEMY_CPU_AU1550:
names = alchemy_au1550_intclknames;
break;
case ALCHEMY_CPU_AU1200:
names = alchemy_au1200_intclknames;
break;
case ALCHEMY_CPU_AU1300:
dt = alchemy_csrc_dt2;
names = alchemy_au1300_intclknames;
break;
default:
return -ENODEV;
}
a = kcalloc(6, sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
ret = 0;
for (i = 0; i < 6; i++) {
id.name = names[i];
if (!id.name)
goto next;
a->shift = i * 5;
a->reg = AU1000_SYS_CLKSRC;
a->reglock = &alchemy_clk_csrc_lock;
a->dt = dt;
/* default to first parent clock if mux is initially
* set to disabled state.
*/
v = alchemy_rdsys(a->reg);
a->parent = ((v >> a->shift) >> 2) & 7;
if (!a->parent) {
a->parent = 1;
a->isen = 0;
} else
a->isen = 1;
a->hw.init = &id;
c = clk_register(NULL, &a->hw);
if (IS_ERR(c))
ret++;
else
clk_register_clkdev(c, id.name, NULL);
next:
a++;
}
return ret;
}
/**********************************************************************/
#define ERRCK(x) \
if (IS_ERR(x)) { \
ret = PTR_ERR(x); \
goto out; \
}
static int __init alchemy_clk_init(void)
{
int ctype = alchemy_get_cputype(), ret, i;
struct clk_aliastable *t = alchemy_clk_aliases;
struct clk *c;
/* Root of the Alchemy clock tree: external 12MHz crystal osc */
c = clk_register_fixed_rate(NULL, ALCHEMY_ROOT_CLK, NULL,
0, ALCHEMY_ROOTCLK_RATE);
ERRCK(c)
/* CPU core clock */
c = alchemy_clk_setup_cpu(ALCHEMY_ROOT_CLK, ctype);
ERRCK(c)
/* AUXPLLs: max 1GHz on Au1300, 748MHz on older models */
i = (ctype == ALCHEMY_CPU_AU1300) ? 84 : 63;
c = alchemy_clk_setup_aux(ALCHEMY_ROOT_CLK, ALCHEMY_AUXPLL_CLK,
i, AU1000_SYS_AUXPLL);
ERRCK(c)
if (ctype == ALCHEMY_CPU_AU1300) {
c = alchemy_clk_setup_aux(ALCHEMY_ROOT_CLK,
ALCHEMY_AUXPLL2_CLK, i,
AU1300_SYS_AUXPLL2);
ERRCK(c)
}
/* sysbus clock: cpu core clock divided by 2, 3 or 4 */
c = alchemy_clk_setup_sysbus(ALCHEMY_CPU_CLK);
ERRCK(c)
/* peripheral clock: runs at half rate of sysbus clk */
c = alchemy_clk_setup_periph(ALCHEMY_SYSBUS_CLK);
ERRCK(c)
/* SDR/DDR memory clock */
c = alchemy_clk_setup_mem(ALCHEMY_SYSBUS_CLK, ctype);
ERRCK(c)
/* L/RCLK: external static bus clock for synchronous mode */
c = alchemy_clk_setup_lrclk(ALCHEMY_PERIPH_CLK, ctype);
ERRCK(c)
/* Frequency dividers 0-5 */
ret = alchemy_clk_init_fgens(ctype);
if (ret) {
ret = -ENODEV;
goto out;
}
/* diving muxes for internal sources */
ret = alchemy_clk_setup_imux(ctype);
if (ret) {
ret = -ENODEV;
goto out;
}
/* set up aliases drivers might look for */
while (t->base) {
if (t->cputype == ctype)
clk_add_alias(t->alias, NULL, t->base, NULL);
t++;
}
pr_info("Alchemy clocktree installed\n");
return 0;
out:
return ret;
}
postcore_initcall(alchemy_clk_init);