// SPDX-License-Identifier: GPL-2.0
/*
* Count register synchronisation.
*
* Derived from arch/x86/kernel/tsc_sync.c
* Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
*/
#include <linux/kernel.h>
#include <linux/irqflags.h>
#include <linux/cpumask.h>
#include <linux/atomic.h>
#include <linux/nmi.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <asm/r4k-timer.h>
#include <asm/mipsregs.h>
#include <asm/time.h>
#define COUNTON 100
#define NR_LOOPS 3
#define LOOP_TIMEOUT 20
/*
* Entry/exit counters that make sure that both CPUs
* run the measurement code at once:
*/
static atomic_t start_count;
static atomic_t stop_count;
static atomic_t test_runs;
/*
* We use a raw spinlock in this exceptional case, because
* we want to have the fastest, inlined, non-debug version
* of a critical section, to be able to prove counter time-warps:
*/
static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static uint32_t last_counter;
static uint32_t max_warp;
static int nr_warps;
static int random_warps;
/*
* Counter warp measurement loop running on both CPUs.
*/
static uint32_t check_counter_warp(void)
{
uint32_t start, now, prev, end, cur_max_warp = 0;
int i, cur_warps = 0;
start = read_c0_count();
end = start + (uint32_t) mips_hpt_frequency / 1000 * LOOP_TIMEOUT;
for (i = 0; ; i++) {
/*
* We take the global lock, measure counter, save the
* previous counter that was measured (possibly on
* another CPU) and update the previous counter timestamp.
*/
arch_spin_lock(&sync_lock);
prev = last_counter;
now = read_c0_count();
last_counter = now;
arch_spin_unlock(&sync_lock);
/*
* Be nice every now and then (and also check whether
* measurement is done [we also insert a 10 million
* loops safety exit, so we dont lock up in case the
* counter is totally broken]):
*/
if (unlikely(!(i & 7))) {
if (now > end || i > 10000000)
break;
cpu_relax();
touch_nmi_watchdog();
}
/*
* Outside the critical section we can now see whether
* we saw a time-warp of the counter going backwards:
*/
if (unlikely(prev > now)) {
arch_spin_lock(&sync_lock);
max_warp = max(max_warp, prev - now);
cur_max_warp = max_warp;
/*
* Check whether this bounces back and forth. Only
* one CPU should observe time going backwards.
*/
if (cur_warps != nr_warps)
random_warps++;
nr_warps++;
cur_warps = nr_warps;
arch_spin_unlock(&sync_lock);
}
}
WARN(!(now-start),
"Warning: zero counter calibration delta: %d [max: %d]\n",
now-start, end-start);
return cur_max_warp;
}
/*
* The freshly booted CPU initiates this via an async SMP function call.
*/
static void check_counter_sync_source(void *__cpu)
{
unsigned int cpu = (unsigned long)__cpu;
int cpus = 2;
atomic_set(&test_runs, NR_LOOPS);
retry:
/* Wait for the target to start. */
while (atomic_read(&start_count) != cpus - 1)
cpu_relax();
/*
* Trigger the target to continue into the measurement too:
*/
atomic_inc(&start_count);
check_counter_warp();
while (atomic_read(&stop_count) != cpus-1)
cpu_relax();
/*
* If the test was successful set the number of runs to zero and
* stop. If not, decrement the number of runs an check if we can
* retry. In case of random warps no retry is attempted.
*/
if (!nr_warps) {
atomic_set(&test_runs, 0);
pr_info("Counter synchronization [CPU#%d -> CPU#%u]: passed\n",
smp_processor_id(), cpu);
} else if (atomic_dec_and_test(&test_runs) || random_warps) {
/* Force it to 0 if random warps brought us here */
atomic_set(&test_runs, 0);
pr_info("Counter synchronization [CPU#%d -> CPU#%u]:\n",
smp_processor_id(), cpu);
pr_info("Measured %d cycles counter warp between CPUs", max_warp);
if (random_warps)
pr_warn("Counter warped randomly between CPUs\n");
}
/*
* Reset it - just in case we boot another CPU later:
*/
atomic_set(&start_count, 0);
random_warps = 0;
nr_warps = 0;
max_warp = 0;
last_counter = 0;
/*
* Let the target continue with the bootup:
*/
atomic_inc(&stop_count);
/*
* Retry, if there is a chance to do so.
*/
if (atomic_read(&test_runs) > 0)
goto retry;
}
/*
* Freshly booted CPUs call into this:
*/
void synchronise_count_slave(int cpu)
{
uint32_t cur_max_warp, gbl_max_warp, count;
int cpus = 2;
if (!cpu_has_counter || !mips_hpt_frequency)
return;
/* Kick the control CPU into the counter synchronization function */
smp_call_function_single(cpumask_first(cpu_online_mask),
check_counter_sync_source,
(unsigned long *)(unsigned long)cpu, 0);
retry:
/*
* Register this CPU's participation and wait for the
* source CPU to start the measurement:
*/
atomic_inc(&start_count);
while (atomic_read(&start_count) != cpus)
cpu_relax();
cur_max_warp = check_counter_warp();
/*
* Store the maximum observed warp value for a potential retry:
*/
gbl_max_warp = max_warp;
/*
* Ok, we are done:
*/
atomic_inc(&stop_count);
/*
* Wait for the source CPU to print stuff:
*/
while (atomic_read(&stop_count) != cpus)
cpu_relax();
/*
* Reset it for the next sync test:
*/
atomic_set(&stop_count, 0);
/*
* Check the number of remaining test runs. If not zero, the test
* failed and a retry with adjusted counter is possible. If zero the
* test was either successful or failed terminally.
*/
if (!atomic_read(&test_runs)) {
/* Arrange for an interrupt in a short while */
write_c0_compare(read_c0_count() + COUNTON);
return;
}
/*
* If the warp value of this CPU is 0, then the other CPU
* observed time going backwards so this counter was ahead and
* needs to move backwards.
*/
if (!cur_max_warp)
cur_max_warp = -gbl_max_warp;
count = read_c0_count();
count += cur_max_warp;
write_c0_count(count);
pr_debug("Counter compensate: CPU%u observed %d warp\n", cpu, cur_max_warp);
goto retry;
}