// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "reg_helper.h"
#include "abm.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "clk_mgr.h"
#include "dsc.h"
#include "link.h"
#include "dce/dmub_hw_lock_mgr.h"
#include "dcn10/dcn10_cm_common.h"
#include "dcn20/dcn20_optc.h"
#include "dcn30/dcn30_cm_common.h"
#include "dcn32/dcn32_hwseq.h"
#include "dcn401_hwseq.h"
#include "dcn401/dcn401_resource.h"
#include "dc_state_priv.h"
#include "link_enc_cfg.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc->ctx->logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
static void dcn401_initialize_min_clocks(struct dc *dc)
{
struct dc_clocks *clocks = &dc->current_state->bw_ctx.bw.dcn.clk;
clocks->dcfclk_deep_sleep_khz = DCN3_2_DCFCLK_DS_INIT_KHZ;
clocks->dcfclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz * 1000;
clocks->socclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].socclk_mhz * 1000;
clocks->dramclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 1000;
clocks->dppclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dppclk_mhz * 1000;
if (dc->debug.disable_boot_optimizations) {
clocks->dispclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz * 1000;
} else {
/* Even though DPG_EN = 1 for the connected display, it still requires the
* correct timing so we cannot set DISPCLK to min freq or it could cause
* audio corruption. Read current DISPCLK from DENTIST and request the same
* freq to ensure that the timing is valid and unchanged.
*/
clocks->dispclk_khz = dc->clk_mgr->funcs->get_dispclk_from_dentist(dc->clk_mgr);
}
clocks->ref_dtbclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dtbclk_mhz * 1000;
clocks->fclk_p_state_change_support = true;
clocks->p_state_change_support = true;
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
dc->current_state,
true);
}
void dcn401_program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
unsigned int i = 0;
struct mpc_grph_gamut_adjustment mpc_adjust;
unsigned int mpcc_id = pipe_ctx->plane_res.mpcc_inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
//For now assert if location is not pre-blend
if (pipe_ctx->plane_state)
ASSERT(pipe_ctx->plane_state->mcm_location == MPCC_MOVABLE_CM_LOCATION_BEFORE);
// program MPCC_MCM_FIRST_GAMUT_REMAP
memset(&mpc_adjust, 0, sizeof(mpc_adjust));
mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
mpc_adjust.mpcc_gamut_remap_block_id = MPCC_MCM_FIRST_GAMUT_REMAP;
if (pipe_ctx->plane_state &&
pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) {
mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
mpc_adjust.temperature_matrix[i] =
pipe_ctx->plane_state->gamut_remap_matrix.matrix[i];
}
mpc->funcs->set_gamut_remap(mpc, mpcc_id, &mpc_adjust);
// program MPCC_MCM_SECOND_GAMUT_REMAP for Bypass / Disable for now
mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
mpc_adjust.mpcc_gamut_remap_block_id = MPCC_MCM_SECOND_GAMUT_REMAP;
mpc->funcs->set_gamut_remap(mpc, mpcc_id, &mpc_adjust);
// program MPCC_OGAM_GAMUT_REMAP same as is currently used on DCN3x
memset(&mpc_adjust, 0, sizeof(mpc_adjust));
mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
mpc_adjust.mpcc_gamut_remap_block_id = MPCC_OGAM_GAMUT_REMAP;
if (pipe_ctx->top_pipe == NULL) {
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
mpc_adjust.temperature_matrix[i] =
pipe_ctx->stream->gamut_remap_matrix.matrix[i];
}
}
mpc->funcs->set_gamut_remap(mpc, mpcc_id, &mpc_adjust);
}
struct ips_ono_region_state dcn401_read_ono_state(struct dc *dc, uint8_t region)
{
struct dce_hwseq *hws = dc->hwseq;
struct ips_ono_region_state state = {0, 0};
switch (region) {
case 0:
/* dccg, dio, dcio */
REG_GET_2(DOMAIN22_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 1:
/* dchubbub, dchvm, dchubbubmem */
REG_GET_2(DOMAIN23_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 2:
/* mpc, opp, optc, dwb */
REG_GET_2(DOMAIN24_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 3:
/* hpo */
REG_GET_2(DOMAIN25_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 4:
/* dchubp0, dpp0 */
REG_GET_2(DOMAIN0_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 5:
/* dsc0 */
REG_GET_2(DOMAIN16_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 6:
/* dchubp1, dpp1 */
REG_GET_2(DOMAIN1_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 7:
/* dsc1 */
REG_GET_2(DOMAIN17_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 8:
/* dchubp2, dpp2 */
REG_GET_2(DOMAIN2_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 9:
/* dsc2 */
REG_GET_2(DOMAIN18_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 10:
/* dchubp3, dpp3 */
REG_GET_2(DOMAIN3_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
case 11:
/* dsc3 */
REG_GET_2(DOMAIN19_PG_STATUS,
DOMAIN_DESIRED_PWR_STATE, &state.desire_pwr_state,
DOMAIN_PGFSM_PWR_STATUS, &state.current_pwr_state);
break;
default:
break;
}
return state;
}
void dcn401_init_hw(struct dc *dc)
{
struct abm **abms = dc->res_pool->multiple_abms;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
int i;
int edp_num;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
uint32_t user_level = MAX_BACKLIGHT_LEVEL;
int current_dchub_ref_freq = 0;
if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->init_clocks) {
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// mark dcmode limits present if any clock has distinct AC and DC values from SMU
dc->caps.dcmode_power_limits_present =
(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.dcfclk_mhz) ||
(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.dispclk_mhz) ||
(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.dtbclk_mhz) ||
(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.fclk_mhz) ||
(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.memclk_mhz) ||
(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.socclk_mhz);
}
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
// Disable DMUB Initialization until IPS state programming is finalized
//if (!dcb->funcs->is_accelerated_mode(dcb)) {
// hws->funcs.bios_golden_init(dc);
//}
// Set default OPTC memory power states
if (dc->debug.enable_mem_low_power.bits.optc) {
// Shutdown when unassigned and light sleep in VBLANK
REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
}
if (dc->debug.enable_mem_low_power.bits.vga) {
// Power down VGA memory
REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
}
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
current_dchub_ref_freq = res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
// Not all ASICs have DCCG sw component
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
/* Check for enabled DIG to identify enabled display */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
link->link_status.link_active = true;
link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
if (link->link_enc->funcs->fec_is_active &&
link->link_enc->funcs->fec_is_active(link->link_enc))
link->fec_state = dc_link_fec_enabled;
}
}
/* enable_power_gating_plane before dsc_pg_control because
* FORCEON = 1 with hw default value on bootup, resume from s3
*/
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(dc->hwseq, true);
/* we want to turn off all dp displays before doing detection */
dc->link_srv->blank_all_dp_displays(dc);
/* If taking control over from VBIOS, we may want to optimize our first
* mode set, so we need to skip powering down pipes until we know which
* pipes we want to use.
* Otherwise, if taking control is not possible, we need to power
* everything down.
*/
if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
/* Disable boot optimizations means power down everything including PHY, DIG,
* and OTG (i.e. the boot is not optimized because we do a full power down).
*/
if (dc->hwss.enable_accelerated_mode && dc->debug.disable_boot_optimizations)
dc->hwss.enable_accelerated_mode(dc, dc->current_state);
else
hws->funcs.init_pipes(dc, dc->current_state);
if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
dcn401_initialize_min_clocks(dc);
/* On HW init, allow idle optimizations after pipes have been turned off.
*
* In certain D3 cases (i.e. BOCO / BOMACO) it's possible that hardware state
* is reset (i.e. not in idle at the time hw init is called), but software state
* still has idle_optimizations = true, so we must disable idle optimizations first
* (i.e. set false), then re-enable (set true).
*/
dc_allow_idle_optimizations(dc, false);
dc_allow_idle_optimizations(dc, true);
}
/* In headless boot cases, DIG may be turned
* on which causes HW/SW discrepancies.
* To avoid this, power down hardware on boot
* if DIG is turned on and seamless boot not enabled
*/
if (!dc->config.seamless_boot_edp_requested) {
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link;
dc_get_edp_links(dc, edp_links, &edp_num);
if (edp_num) {
for (i = 0; i < edp_num; i++) {
edp_link = edp_links[i];
if (edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
dc->hwss.edp_backlight_control &&
hws->funcs.power_down &&
dc->hwss.edp_power_control) {
dc->hwss.edp_backlight_control(edp_link, false);
hws->funcs.power_down(dc);
dc->hwss.edp_power_control(edp_link, false);
}
}
} else {
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
hws->funcs.power_down) {
hws->funcs.power_down(dc);
break;
}
}
}
}
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl) {
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (abms[i] != NULL && abms[i]->funcs != NULL)
abms[i]->funcs->abm_init(abms[i], backlight, user_level);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
dcn401_setup_hpo_hw_control(hws, true);
if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->notify_wm_ranges)
dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, false, false);
if (dc->res_pool->hubbub->funcs->init_crb)
dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0)
dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc);
// Get DMCUB capabilities
if (dc->ctx->dmub_srv) {
dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv);
dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver > 0;
dc->caps.dmub_caps.fams_ver = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver;
dc->debug.fams2_config.bits.enable &= dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver == 2;
if ((!dc->debug.fams2_config.bits.enable && dc->res_pool->funcs->update_bw_bounding_box)
|| res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000 != current_dchub_ref_freq) {
/* update bounding box if FAMS2 disabled, or if dchub clk has changed */
if (dc->clk_mgr)
dc->res_pool->funcs->update_bw_bounding_box(dc,
dc->clk_mgr->bw_params);
}
}
}
static void dcn401_get_mcm_lut_xable_from_pipe_ctx(struct dc *dc, struct pipe_ctx *pipe_ctx,
enum MCM_LUT_XABLE *shaper_xable,
enum MCM_LUT_XABLE *lut3d_xable,
enum MCM_LUT_XABLE *lut1d_xable)
{
enum dc_cm2_shaper_3dlut_setting shaper_3dlut_setting = DC_CM2_SHAPER_3DLUT_SETTING_BYPASS_ALL;
bool lut1d_enable = false;
struct mpc *mpc = dc->res_pool->mpc;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
if (!pipe_ctx->plane_state)
return;
shaper_3dlut_setting = pipe_ctx->plane_state->mcm_shaper_3dlut_setting;
lut1d_enable = pipe_ctx->plane_state->mcm_lut1d_enable;
mpc->funcs->set_movable_cm_location(mpc, MPCC_MOVABLE_CM_LOCATION_BEFORE, mpcc_id);
pipe_ctx->plane_state->mcm_location = MPCC_MOVABLE_CM_LOCATION_BEFORE;
*lut1d_xable = lut1d_enable ? MCM_LUT_ENABLE : MCM_LUT_DISABLE;
switch (shaper_3dlut_setting) {
case DC_CM2_SHAPER_3DLUT_SETTING_BYPASS_ALL:
*lut3d_xable = *shaper_xable = MCM_LUT_DISABLE;
break;
case DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER:
*lut3d_xable = MCM_LUT_DISABLE;
*shaper_xable = MCM_LUT_ENABLE;
break;
case DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT:
*lut3d_xable = *shaper_xable = MCM_LUT_ENABLE;
break;
}
}
void dcn401_populate_mcm_luts(struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_cm2_func_luts mcm_luts,
bool lut_bank_a)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
int mpcc_id = hubp->inst;
struct mpc *mpc = dc->res_pool->mpc;
union mcm_lut_params m_lut_params;
enum dc_cm2_transfer_func_source lut3d_src = mcm_luts.lut3d_data.lut3d_src;
enum hubp_3dlut_fl_format format;
enum hubp_3dlut_fl_mode mode;
enum hubp_3dlut_fl_width width;
enum hubp_3dlut_fl_addressing_mode addr_mode;
enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_y_g;
enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_cb_b;
enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_cr_r;
enum MCM_LUT_XABLE shaper_xable = MCM_LUT_DISABLE;
enum MCM_LUT_XABLE lut3d_xable = MCM_LUT_DISABLE;
enum MCM_LUT_XABLE lut1d_xable = MCM_LUT_DISABLE;
bool is_17x17x17 = true;
bool rval;
dcn401_get_mcm_lut_xable_from_pipe_ctx(dc, pipe_ctx, &shaper_xable, &lut3d_xable, &lut1d_xable);
/* 1D LUT */
if (mcm_luts.lut1d_func && lut3d_xable != MCM_LUT_DISABLE) {
memset(&m_lut_params, 0, sizeof(m_lut_params));
if (mcm_luts.lut1d_func->type == TF_TYPE_HWPWL)
m_lut_params.pwl = &mcm_luts.lut1d_func->pwl;
else if (mcm_luts.lut1d_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
rval = cm3_helper_translate_curve_to_hw_format(
mcm_luts.lut1d_func,
&dpp_base->regamma_params, false);
m_lut_params.pwl = rval ? &dpp_base->regamma_params : NULL;
}
if (m_lut_params.pwl) {
if (mpc->funcs->populate_lut)
mpc->funcs->populate_lut(mpc, MCM_LUT_1DLUT, m_lut_params, lut_bank_a, mpcc_id);
}
if (mpc->funcs->program_lut_mode)
mpc->funcs->program_lut_mode(mpc, MCM_LUT_1DLUT, lut1d_xable, lut_bank_a, mpcc_id);
}
/* Shaper */
if (mcm_luts.shaper) {
memset(&m_lut_params, 0, sizeof(m_lut_params));
if (mcm_luts.shaper->type == TF_TYPE_HWPWL)
m_lut_params.pwl = &mcm_luts.shaper->pwl;
else if (mcm_luts.shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
ASSERT(false);
rval = cm3_helper_translate_curve_to_hw_format(
mcm_luts.shaper,
&dpp_base->regamma_params, true);
m_lut_params.pwl = rval ? &dpp_base->regamma_params : NULL;
}
if (m_lut_params.pwl) {
if (mpc->funcs->populate_lut)
mpc->funcs->populate_lut(mpc, MCM_LUT_SHAPER, m_lut_params, lut_bank_a, mpcc_id);
}
if (mpc->funcs->program_lut_mode)
mpc->funcs->program_lut_mode(mpc, MCM_LUT_SHAPER, shaper_xable, lut_bank_a, mpcc_id);
}
/* 3DLUT */
switch (lut3d_src) {
case DC_CM2_TRANSFER_FUNC_SOURCE_SYSMEM:
memset(&m_lut_params, 0, sizeof(m_lut_params));
if (hubp->funcs->hubp_enable_3dlut_fl)
hubp->funcs->hubp_enable_3dlut_fl(hubp, false);
if (mcm_luts.lut3d_data.lut3d_func && mcm_luts.lut3d_data.lut3d_func->state.bits.initialized) {
m_lut_params.lut3d = &mcm_luts.lut3d_data.lut3d_func->lut_3d;
if (mpc->funcs->populate_lut)
mpc->funcs->populate_lut(mpc, MCM_LUT_3DLUT, m_lut_params, lut_bank_a, mpcc_id);
if (mpc->funcs->program_lut_mode)
mpc->funcs->program_lut_mode(mpc, MCM_LUT_3DLUT, lut3d_xable, lut_bank_a,
mpcc_id);
}
break;
case DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM:
if (mpc->funcs->program_lut_read_write_control)
mpc->funcs->program_lut_read_write_control(mpc, MCM_LUT_3DLUT, lut_bank_a, mpcc_id);
if (mpc->funcs->program_lut_mode)
mpc->funcs->program_lut_mode(mpc, MCM_LUT_3DLUT, lut3d_xable, lut_bank_a, mpcc_id);
if (mpc->funcs->program_3dlut_size)
mpc->funcs->program_3dlut_size(mpc, is_17x17x17, mpcc_id);
if (hubp->funcs->hubp_program_3dlut_fl_addr)
hubp->funcs->hubp_program_3dlut_fl_addr(hubp, mcm_luts.lut3d_data.gpu_mem_params.addr);
switch (mcm_luts.lut3d_data.gpu_mem_params.layout) {
case DC_CM2_GPU_MEM_LAYOUT_3D_SWIZZLE_LINEAR_RGB:
mode = hubp_3dlut_fl_mode_native_1;
addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
break;
case DC_CM2_GPU_MEM_LAYOUT_3D_SWIZZLE_LINEAR_BGR:
mode = hubp_3dlut_fl_mode_native_2;
addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
break;
case DC_CM2_GPU_MEM_LAYOUT_1D_PACKED_LINEAR:
mode = hubp_3dlut_fl_mode_transform;
addr_mode = hubp_3dlut_fl_addressing_mode_simple_linear;
break;
default:
mode = hubp_3dlut_fl_mode_disable;
addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
break;
}
if (hubp->funcs->hubp_program_3dlut_fl_mode)
hubp->funcs->hubp_program_3dlut_fl_mode(hubp, mode);
if (hubp->funcs->hubp_program_3dlut_fl_addressing_mode)
hubp->funcs->hubp_program_3dlut_fl_addressing_mode(hubp, addr_mode);
switch (mcm_luts.lut3d_data.gpu_mem_params.format_params.format) {
case DC_CM2_GPU_MEM_FORMAT_16161616_UNORM_12MSB:
default:
format = hubp_3dlut_fl_format_unorm_12msb_bitslice;
break;
case DC_CM2_GPU_MEM_FORMAT_16161616_UNORM_12LSB:
format = hubp_3dlut_fl_format_unorm_12lsb_bitslice;
break;
case DC_CM2_GPU_MEM_FORMAT_16161616_FLOAT_FP1_5_10:
format = hubp_3dlut_fl_format_float_fp1_5_10;
break;
}
if (hubp->funcs->hubp_program_3dlut_fl_format)
hubp->funcs->hubp_program_3dlut_fl_format(hubp, format);
if (hubp->funcs->hubp_update_3dlut_fl_bias_scale)
hubp->funcs->hubp_update_3dlut_fl_bias_scale(hubp,
mcm_luts.lut3d_data.gpu_mem_params.format_params.float_params.bias,
mcm_luts.lut3d_data.gpu_mem_params.format_params.float_params.scale);
switch (mcm_luts.lut3d_data.gpu_mem_params.component_order) {
case DC_CM2_GPU_MEM_PIXEL_COMPONENT_ORDER_RGBA:
default:
crossbar_bit_slice_cr_r = hubp_3dlut_fl_crossbar_bit_slice_0_15;
crossbar_bit_slice_y_g = hubp_3dlut_fl_crossbar_bit_slice_16_31;
crossbar_bit_slice_cb_b = hubp_3dlut_fl_crossbar_bit_slice_32_47;
break;
}
if (hubp->funcs->hubp_program_3dlut_fl_crossbar)
hubp->funcs->hubp_program_3dlut_fl_crossbar(hubp,
crossbar_bit_slice_y_g,
crossbar_bit_slice_cb_b,
crossbar_bit_slice_cr_r);
switch (mcm_luts.lut3d_data.gpu_mem_params.size) {
case DC_CM2_GPU_MEM_SIZE_171717:
default:
width = hubp_3dlut_fl_width_17;
break;
case DC_CM2_GPU_MEM_SIZE_TRANSFORMED:
width = hubp_3dlut_fl_width_transformed;
break;
}
if (hubp->funcs->hubp_program_3dlut_fl_width)
hubp->funcs->hubp_program_3dlut_fl_width(hubp, width);
if (mpc->funcs->update_3dlut_fast_load_select)
mpc->funcs->update_3dlut_fast_load_select(mpc, mpcc_id, hubp->inst);
if (hubp->funcs->hubp_enable_3dlut_fl)
hubp->funcs->hubp_enable_3dlut_fl(hubp, true);
else {
if (mpc->funcs->program_lut_mode) {
mpc->funcs->program_lut_mode(mpc, MCM_LUT_SHAPER, MCM_LUT_DISABLE, lut_bank_a, mpcc_id);
mpc->funcs->program_lut_mode(mpc, MCM_LUT_3DLUT, MCM_LUT_DISABLE, lut_bank_a, mpcc_id);
mpc->funcs->program_lut_mode(mpc, MCM_LUT_1DLUT, MCM_LUT_DISABLE, lut_bank_a, mpcc_id);
}
}
break;
}
}
void dcn401_trigger_3dlut_dma_load(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
if (hubp->funcs->hubp_enable_3dlut_fl) {
hubp->funcs->hubp_enable_3dlut_fl(hubp, true);
}
}
bool dcn401_set_mcm_luts(struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result;
const struct pwl_params *lut_params = NULL;
bool rval;
mpc->funcs->set_movable_cm_location(mpc, MPCC_MOVABLE_CM_LOCATION_BEFORE, mpcc_id);
pipe_ctx->plane_state->mcm_location = MPCC_MOVABLE_CM_LOCATION_BEFORE;
// 1D LUT
if (plane_state->blend_tf.type == TF_TYPE_HWPWL)
lut_params = &plane_state->blend_tf.pwl;
else if (plane_state->blend_tf.type == TF_TYPE_DISTRIBUTED_POINTS) {
rval = cm3_helper_translate_curve_to_hw_format(&plane_state->blend_tf,
&dpp_base->regamma_params, false);
lut_params = rval ? &dpp_base->regamma_params : NULL;
}
result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
lut_params = NULL;
// Shaper
if (plane_state->in_shaper_func.type == TF_TYPE_HWPWL)
lut_params = &plane_state->in_shaper_func.pwl;
else if (plane_state->in_shaper_func.type == TF_TYPE_DISTRIBUTED_POINTS) {
// TODO: dpp_base replace
rval = cm3_helper_translate_curve_to_hw_format(&plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
lut_params = rval ? &dpp_base->shaper_params : NULL;
}
result &= mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
// 3D
if (mpc->funcs->program_3dlut) {
if (plane_state->lut3d_func.state.bits.initialized == 1)
result &= mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func.lut_3d, mpcc_id);
else
result &= mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
}
return result;
}
bool dcn401_set_output_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
const struct pwl_params *params = NULL;
bool ret = false;
/* program OGAM or 3DLUT only for the top pipe*/
if (resource_is_pipe_type(pipe_ctx, OPP_HEAD)) {
/*program shaper and 3dlut in MPC*/
ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
if (ret == false && mpc->funcs->set_output_gamma) {
if (stream->out_transfer_func.type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func.pwl;
else if (pipe_ctx->stream->out_transfer_func.type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(
&stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/* there are no ROM LUTs in OUTGAM */
if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
}
if (mpc->funcs->set_output_gamma)
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return ret;
}
void dcn401_calculate_dccg_tmds_div_value(struct pipe_ctx *pipe_ctx,
unsigned int *tmds_div)
{
struct dc_stream_state *stream = pipe_ctx->stream;
if (dc_is_tmds_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) {
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
*tmds_div = PIXEL_RATE_DIV_BY_2;
else
*tmds_div = PIXEL_RATE_DIV_BY_4;
} else {
*tmds_div = PIXEL_RATE_DIV_BY_1;
}
if (*tmds_div == PIXEL_RATE_DIV_NA)
ASSERT(false);
}
static void enable_stream_timing_calc(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc,
unsigned int *tmds_div,
int *opp_inst,
int *opp_cnt,
struct pipe_ctx *opp_heads[MAX_PIPES],
bool *manual_mode,
struct drr_params *params,
unsigned int *event_triggers)
{
struct dc_stream_state *stream = pipe_ctx->stream;
int i;
if (dc_is_tmds_signal(stream->signal) || dc_is_virtual_signal(stream->signal))
dcn401_calculate_dccg_tmds_div_value(pipe_ctx, tmds_div);
*opp_cnt = resource_get_opp_heads_for_otg_master(pipe_ctx, &context->res_ctx, opp_heads);
for (i = 0; i < *opp_cnt; i++)
opp_inst[i] = opp_heads[i]->stream_res.opp->inst;
if (dc_is_tmds_signal(stream->signal)) {
stream->link->phy_state.symclk_ref_cnts.otg = 1;
if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
else
stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
}
params->vertical_total_min = stream->adjust.v_total_min;
params->vertical_total_max = stream->adjust.v_total_max;
params->vertical_total_mid = stream->adjust.v_total_mid;
params->vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
// DRR should set trigger event to monitor surface update event
if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
*event_triggers = 0x80;
}
enum dc_status dcn401_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dce_hwseq *hws = dc->hwseq;
struct dc_stream_state *stream = pipe_ctx->stream;
struct drr_params params = {0};
unsigned int event_triggers = 0;
int opp_cnt = 1;
int opp_inst[MAX_PIPES] = {0};
struct pipe_ctx *opp_heads[MAX_PIPES] = {0};
bool manual_mode;
unsigned int tmds_div = PIXEL_RATE_DIV_NA;
unsigned int unused_div = PIXEL_RATE_DIV_NA;
int odm_slice_width;
int last_odm_slice_width;
int i;
if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER))
return DC_OK;
enable_stream_timing_calc(pipe_ctx, context, dc, &tmds_div, opp_inst,
&opp_cnt, opp_heads, &manual_mode, ¶ms, &event_triggers);
if (dc->res_pool->dccg->funcs->set_pixel_rate_div) {
dc->res_pool->dccg->funcs->set_pixel_rate_div(
dc->res_pool->dccg, pipe_ctx->stream_res.tg->inst,
tmds_div, unused_div);
}
/* TODO check if timing_changed, disable stream if timing changed */
if (opp_cnt > 1) {
odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, false);
last_odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, true);
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
odm_slice_width, last_odm_slice_width);
}
/* HW program guide assume display already disable
* by unplug sequence. OTG assume stop.
*/
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width,
pipe_ctx->pipe_dlg_param.pstate_keepout,
pipe_ctx->stream->signal,
true);
for (i = 0; i < opp_cnt; i++) {
opp_heads[i]->stream_res.opp->funcs->opp_pipe_clock_control(
opp_heads[i]->stream_res.opp,
true);
opp_heads[i]->stream_res.opp->funcs->opp_program_left_edge_extra_pixel(
opp_heads[i]->stream_res.opp,
stream->timing.pixel_encoding,
resource_is_pipe_type(opp_heads[i], OTG_MASTER));
}
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
/* VTG is within DCHUB command block. DCFCLK is always on */
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, ¶ms);
/* Event triggers and num frames initialized for DRR, but can be
* later updated for PSR use. Note DRR trigger events are generated
* regardless of whether num frames met.
*/
if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx->stream_res.tg, event_triggers, 2);
/* TODO program crtc source select for non-virtual signal*/
/* TODO program FMT */
/* TODO setup link_enc */
/* TODO set stream attributes */
/* TODO program audio */
/* TODO enable stream if timing changed */
/* TODO unblank stream if DP */
if (dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_PHANTOM) {
if (pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable)
pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg);
}
return DC_OK;
}
static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link)
{
switch (link->link_enc->transmitter) {
case TRANSMITTER_UNIPHY_A:
return PHYD32CLKA;
case TRANSMITTER_UNIPHY_B:
return PHYD32CLKB;
case TRANSMITTER_UNIPHY_C:
return PHYD32CLKC;
case TRANSMITTER_UNIPHY_D:
return PHYD32CLKD;
case TRANSMITTER_UNIPHY_E:
return PHYD32CLKE;
default:
return PHYD32CLKA;
}
}
static void dcn401_enable_stream_calc(
struct pipe_ctx *pipe_ctx,
int *dp_hpo_inst,
enum phyd32clk_clock_source *phyd32clk,
unsigned int *tmds_div,
uint32_t *early_control)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
enum dc_lane_count lane_count =
pipe_ctx->stream->link->cur_link_settings.lane_count;
uint32_t active_total_with_borders;
if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
*dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
*phyd32clk = get_phyd32clk_src(pipe_ctx->stream->link);
if (dc_is_tmds_signal(pipe_ctx->stream->signal))
dcn401_calculate_dccg_tmds_div_value(pipe_ctx, tmds_div);
else
*tmds_div = PIXEL_RATE_DIV_BY_1;
/* enable early control to avoid corruption on DP monitor*/
active_total_with_borders =
timing->h_addressable
+ timing->h_border_left
+ timing->h_border_right;
if (lane_count != 0)
*early_control = active_total_with_borders % lane_count;
if (*early_control == 0)
*early_control = lane_count;
}
void dcn401_enable_stream(struct pipe_ctx *pipe_ctx)
{
uint32_t early_control = 0;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
struct dc_link *link = pipe_ctx->stream->link;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dccg *dccg = dc->res_pool->dccg;
enum phyd32clk_clock_source phyd32clk;
int dp_hpo_inst = 0;
unsigned int tmds_div = PIXEL_RATE_DIV_NA;
unsigned int unused_div = PIXEL_RATE_DIV_NA;
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
dcn401_enable_stream_calc(pipe_ctx, &dp_hpo_inst, &phyd32clk,
&tmds_div, &early_control);
if (dc_is_dp_signal(pipe_ctx->stream->signal) || dc_is_virtual_signal(pipe_ctx->stream->signal)) {
if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
dccg->funcs->set_dpstreamclk(dccg, DPREFCLK, tg->inst, dp_hpo_inst);
dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk);
} else {
/* need to set DTBCLK_P source to DPREFCLK for DP8B10B */
dccg->funcs->set_dtbclk_p_src(dccg, DPREFCLK, tg->inst);
dccg->funcs->enable_symclk_se(dccg, stream_enc->stream_enc_inst,
link_enc->transmitter - TRANSMITTER_UNIPHY_A);
}
}
if (dc->res_pool->dccg->funcs->set_pixel_rate_div) {
dc->res_pool->dccg->funcs->set_pixel_rate_div(
dc->res_pool->dccg,
pipe_ctx->stream_res.tg->inst,
tmds_div,
unused_div);
}
link_hwss->setup_stream_encoder(pipe_ctx);
if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
if (dc->hwss.program_dmdata_engine)
dc->hwss.program_dmdata_engine(pipe_ctx);
}
dc->hwss.update_info_frame(pipe_ctx);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
tg->funcs->set_early_control(tg, early_control);
}
void dcn401_setup_hpo_hw_control(const struct dce_hwseq *hws, bool enable)
{
REG_UPDATE(HPO_TOP_HW_CONTROL, HPO_IO_EN, enable);
}
static bool dcn401_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *test_pipe, *split_pipe;
const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data;
struct rect r1 = scl_data->recout, r2, r2_half;
int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b;
int cur_layer = pipe_ctx->plane_state->layer_index;
/**
* Disable the cursor if there's another pipe above this with a
* plane that contains this pipe's viewport to prevent double cursor
* and incorrect scaling artifacts.
*/
for (test_pipe = pipe_ctx->top_pipe; test_pipe;
test_pipe = test_pipe->top_pipe) {
// Skip invisible layer and pipe-split plane on same layer
if (!test_pipe->plane_state ||
!test_pipe->plane_state->visible ||
test_pipe->plane_state->layer_index == cur_layer)
continue;
r2 = test_pipe->plane_res.scl_data.recout;
r2_r = r2.x + r2.width;
r2_b = r2.y + r2.height;
split_pipe = test_pipe;
/**
* There is another half plane on same layer because of
* pipe-split, merge together per same height.
*/
for (split_pipe = pipe_ctx->top_pipe; split_pipe;
split_pipe = split_pipe->top_pipe)
if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
r2_half = split_pipe->plane_res.scl_data.recout;
r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x;
r2.width = r2.width + r2_half.width;
r2_r = r2.x + r2.width;
break;
}
if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b)
return true;
}
return false;
}
void adjust_hotspot_between_slices_for_2x_magnify(uint32_t cursor_width, struct dc_cursor_position *pos_cpy)
{
if (cursor_width <= 128) {
pos_cpy->x_hotspot /= 2;
pos_cpy->x_hotspot += 1;
} else {
pos_cpy->x_hotspot /= 2;
pos_cpy->x_hotspot += 2;
}
}
void dcn401_set_cursor_position(struct pipe_ctx *pipe_ctx)
{
struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
struct dc_cursor_mi_param param = {
.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz,
.viewport = pipe_ctx->plane_res.scl_data.viewport,
.recout = pipe_ctx->plane_res.scl_data.recout,
.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
.rotation = pipe_ctx->plane_state->rotation,
.mirror = pipe_ctx->plane_state->horizontal_mirror,
.stream = pipe_ctx->stream
};
struct rect odm_slice_src = { 0 };
bool odm_combine_on = (pipe_ctx->next_odm_pipe != NULL) ||
(pipe_ctx->prev_odm_pipe != NULL);
int prev_odm_width = 0;
struct pipe_ctx *prev_odm_pipe = NULL;
bool mpc_combine_on = false;
int bottom_pipe_x_pos = 0;
int x_pos = pos_cpy.x;
int y_pos = pos_cpy.y;
int recout_x_pos = 0;
int recout_y_pos = 0;
if ((pipe_ctx->top_pipe != NULL) || (pipe_ctx->bottom_pipe != NULL)) {
if ((pipe_ctx->plane_state->src_rect.width != pipe_ctx->plane_res.scl_data.viewport.width) ||
(pipe_ctx->plane_state->src_rect.height != pipe_ctx->plane_res.scl_data.viewport.height)) {
mpc_combine_on = true;
}
}
/* DCN4 moved cursor composition after Scaler, so in HW it is in
* recout space and for HW Cursor position programming need to
* translate to recout space.
*
* Cursor X and Y position programmed into HW can't be negative,
* in fact it is X, Y coordinate shifted for the HW Cursor Hot spot
* position that goes into HW X and Y coordinates while HW Hot spot
* X and Y coordinates are length relative to the cursor top left
* corner, hotspot must be smaller than the cursor size.
*
* DMs/DC interface for Cursor position is in stream->src space, and
* DMs supposed to transform Cursor coordinates to stream->src space,
* then here we need to translate Cursor coordinates to stream->dst
* space, as now in HW, Cursor coordinates are in per pipe recout
* space, and for the given pipe valid coordinates are only in range
* from 0,0 - recout width, recout height space.
* If certain pipe combining is in place, need to further adjust per
* pipe to make sure each pipe enabling cursor on its part of the
* screen.
*/
x_pos = pipe_ctx->stream->dst.x + x_pos * pipe_ctx->stream->dst.width /
pipe_ctx->stream->src.width;
y_pos = pipe_ctx->stream->dst.y + y_pos * pipe_ctx->stream->dst.height /
pipe_ctx->stream->src.height;
/* If the cursor's source viewport is clipped then we need to
* translate the cursor to appear in the correct position on
* the screen.
*
* This translation isn't affected by scaling so it needs to be
* done *after* we adjust the position for the scale factor.
*
* This is only done by opt-in for now since there are still
* some usecases like tiled display that might enable the
* cursor on both streams while expecting dc to clip it.
*/
if (pos_cpy.translate_by_source) {
x_pos += pipe_ctx->plane_state->src_rect.x;
y_pos += pipe_ctx->plane_state->src_rect.y;
}
/* Adjust for ODM Combine
* next/prev_odm_offset is to account for scaled modes that have underscan
*/
if (odm_combine_on) {
prev_odm_pipe = pipe_ctx->prev_odm_pipe;
while (prev_odm_pipe != NULL) {
odm_slice_src = resource_get_odm_slice_src_rect(prev_odm_pipe);
prev_odm_width += odm_slice_src.width;
prev_odm_pipe = prev_odm_pipe->prev_odm_pipe;
}
x_pos -= (prev_odm_width);
}
/* If the position is negative then we need to add to the hotspot
* to fix cursor size between ODM slices
*/
if (x_pos < 0) {
pos_cpy.x_hotspot -= x_pos;
if (hubp->curs_attr.attribute_flags.bits.ENABLE_MAGNIFICATION)
adjust_hotspot_between_slices_for_2x_magnify(hubp->curs_attr.width, &pos_cpy);
x_pos = 0;
}
if (y_pos < 0) {
pos_cpy.y_hotspot -= y_pos;
y_pos = 0;
}
/* If the position on bottom MPC pipe is negative then we need to add to the hotspot and
* adjust x_pos on bottom pipe to make cursor visible when crossing between MPC slices.
*/
if (mpc_combine_on &&
pipe_ctx->top_pipe &&
(pipe_ctx == pipe_ctx->top_pipe->bottom_pipe)) {
bottom_pipe_x_pos = x_pos - pipe_ctx->plane_res.scl_data.recout.x;
if (bottom_pipe_x_pos < 0) {
x_pos = pipe_ctx->plane_res.scl_data.recout.x;
pos_cpy.x_hotspot -= bottom_pipe_x_pos;
if (hubp->curs_attr.attribute_flags.bits.ENABLE_MAGNIFICATION)
adjust_hotspot_between_slices_for_2x_magnify(hubp->curs_attr.width, &pos_cpy);
}
}
pos_cpy.x = (uint32_t)x_pos;
pos_cpy.y = (uint32_t)y_pos;
if (pos_cpy.enable && dcn401_can_pipe_disable_cursor(pipe_ctx))
pos_cpy.enable = false;
x_pos = pos_cpy.x - param.recout.x;
y_pos = pos_cpy.y - param.recout.y;
recout_x_pos = x_pos - pos_cpy.x_hotspot;
recout_y_pos = y_pos - pos_cpy.y_hotspot;
if (recout_x_pos >= (int)param.recout.width)
pos_cpy.enable = false; /* not visible beyond right edge*/
if (recout_y_pos >= (int)param.recout.height)
pos_cpy.enable = false; /* not visible beyond bottom edge*/
if (recout_x_pos + (int)hubp->curs_attr.width <= 0)
pos_cpy.enable = false; /* not visible beyond left edge*/
if (recout_y_pos + (int)hubp->curs_attr.height <= 0)
pos_cpy.enable = false; /* not visible beyond top edge*/
hubp->funcs->set_cursor_position(hubp, &pos_cpy, ¶m);
dpp->funcs->set_cursor_position(dpp, &pos_cpy, ¶m, hubp->curs_attr.width, hubp->curs_attr.height);
}
static bool dcn401_check_no_memory_request_for_cab(struct dc *dc)
{
int i;
/* First, check no-memory-request case */
for (i = 0; i < dc->current_state->stream_count; i++) {
if ((dc->current_state->stream_status[i].plane_count) &&
(dc->current_state->streams[i]->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED))
/* Fail eligibility on a visible stream */
return false;
}
return true;
}
static uint32_t dcn401_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
{
int i;
uint8_t num_ways = 0;
uint32_t mall_ss_size_bytes = 0;
mall_ss_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_size_bytes;
// TODO add additional logic for PSR active stream exclusion optimization
// mall_ss_psr_active_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes;
// Include cursor size for CAB allocation
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[i];
if (!pipe->stream || !pipe->plane_state)
continue;
mall_ss_size_bytes += dcn32_helper_calculate_mall_bytes_for_cursor(dc, pipe, false);
}
// Convert number of cache lines required to number of ways
if (dc->debug.force_mall_ss_num_ways > 0)
num_ways = dc->debug.force_mall_ss_num_ways;
else if (dc->res_pool->funcs->calculate_mall_ways_from_bytes)
num_ways = dc->res_pool->funcs->calculate_mall_ways_from_bytes(dc, mall_ss_size_bytes);
else
num_ways = 0;
return num_ways;
}
bool dcn401_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
union dmub_rb_cmd cmd;
uint8_t ways, i;
int j;
bool mall_ss_unsupported = false;
struct dc_plane_state *plane = NULL;
if (!dc->ctx->dmub_srv || !dc->current_state)
return false;
for (i = 0; i < dc->current_state->stream_count; i++) {
/* MALL SS messaging is not supported with PSR at this time */
if (dc->current_state->streams[i] != NULL &&
dc->current_state->streams[i]->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED) {
DC_LOG_MALL("MALL SS not supported with PSR at this time\n");
return false;
}
}
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
if (enable) {
if (dcn401_check_no_memory_request_for_cab(dc)) {
/* 1. Check no memory request case for CAB.
* If no memory request case, send CAB_ACTION NO_DCN_REQ DMUB message
*/
DC_LOG_MALL("sending CAB action NO_DCN_REQ\n");
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
} else {
/* 2. Check if all surfaces can fit in CAB.
* If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
* and configure HUBP's to fetch from MALL
*/
ways = dcn401_calculate_cab_allocation(dc, dc->current_state);
/* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo,
* or TMZ surface, don't try to enter MALL.
*/
for (i = 0; i < dc->current_state->stream_count; i++) {
for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
plane = dc->current_state->stream_status[i].plane_states[j];
if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO ||
plane->address.tmz_surface) {
mall_ss_unsupported = true;
break;
}
}
if (mall_ss_unsupported)
break;
}
if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) {
cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
cmd.cab.cab_alloc_ways = ways;
DC_LOG_MALL("cab allocation: %d ways. CAB action: DCN_SS_FIT_IN_CAB\n", ways);
} else {
cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_NOT_FIT_IN_CAB;
DC_LOG_MALL("frame does not fit in CAB: %d ways required. CAB action: DCN_SS_NOT_FIT_IN_CAB\n", ways);
}
}
} else {
/* Disable CAB */
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
DC_LOG_MALL("idle optimization disabled\n");
}
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
return true;
}
void dcn401_wait_for_dcc_meta_propagation(const struct dc *dc,
const struct pipe_ctx *top_pipe)
{
bool is_wait_needed = false;
const struct pipe_ctx *pipe_ctx = top_pipe;
/* check if any surfaces are updating address while using flip immediate and dcc */
while (pipe_ctx != NULL) {
if (pipe_ctx->plane_state &&
pipe_ctx->plane_state->dcc.enable &&
pipe_ctx->plane_state->flip_immediate &&
pipe_ctx->plane_state->update_flags.bits.addr_update) {
is_wait_needed = true;
break;
}
/* check next pipe */
pipe_ctx = pipe_ctx->bottom_pipe;
}
if (is_wait_needed && dc->debug.dcc_meta_propagation_delay_us > 0) {
udelay(dc->debug.dcc_meta_propagation_delay_us);
}
}
void dcn401_prepare_bandwidth(struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
bool p_state_change_support = context->bw_ctx.bw.dcn.clk.p_state_change_support;
unsigned int compbuf_size = 0;
/* Any transition into P-State support should disable MCLK switching first to avoid hangs */
if (p_state_change_support) {
dc->optimized_required = true;
context->bw_ctx.bw.dcn.clk.p_state_change_support = false;
}
if (dc->clk_mgr->dc_mode_softmax_enabled)
if (dc->clk_mgr->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
context->bw_ctx.bw.dcn.clk.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz);
/* Increase clocks */
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
false);
/* program dchubbub watermarks:
* For assigning wm_optimized_required, use |= operator since we don't want
* to clear the value if the optimize has not happened yet
*/
dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
false);
/* decrease compbuf size */
if (hubbub->funcs->program_compbuf_segments) {
compbuf_size = context->bw_ctx.bw.dcn.arb_regs.compbuf_size;
dc->wm_optimized_required |= (compbuf_size != dc->current_state->bw_ctx.bw.dcn.arb_regs.compbuf_size);
hubbub->funcs->program_compbuf_segments(hubbub, compbuf_size, false);
}
if (dc->debug.fams2_config.bits.enable) {
dcn401_fams2_global_control_lock(dc, context, true);
dcn401_fams2_update_config(dc, context, false);
dcn401_fams2_global_control_lock(dc, context, false);
}
if (p_state_change_support != context->bw_ctx.bw.dcn.clk.p_state_change_support) {
/* After disabling P-State, restore the original value to ensure we get the correct P-State
* on the next optimize. */
context->bw_ctx.bw.dcn.clk.p_state_change_support = p_state_change_support;
}
}
void dcn401_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
int i;
struct hubbub *hubbub = dc->res_pool->hubbub;
/* enable fams2 if needed */
if (dc->debug.fams2_config.bits.enable) {
dcn401_fams2_global_control_lock(dc, context, true);
dcn401_fams2_update_config(dc, context, true);
dcn401_fams2_global_control_lock(dc, context, false);
}
/* program dchubbub watermarks */
hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
true);
if (dc->clk_mgr->dc_mode_softmax_enabled)
if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk);
/* increase compbuf size */
if (hubbub->funcs->program_compbuf_segments)
hubbub->funcs->program_compbuf_segments(hubbub, context->bw_ctx.bw.dcn.arb_regs.compbuf_size, true);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
true);
if (context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) {
for (i = 0; i < dc->res_pool->pipe_count; ++i) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank
&& pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max
&& pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total)
pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp,
pipe_ctx->dlg_regs.min_dst_y_next_start);
}
}
}
void dcn401_fams2_global_control_lock(struct dc *dc,
struct dc_state *context,
bool lock)
{
/* use always for now */
union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
if (!dc->ctx || !dc->ctx->dmub_srv || !dc->debug.fams2_config.bits.enable)
return;
hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
hw_lock_cmd.bits.lock = lock;
hw_lock_cmd.bits.should_release = !lock;
dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}
void dcn401_fams2_global_control_lock_fast(union block_sequence_params *params)
{
struct dc *dc = params->fams2_global_control_lock_fast_params.dc;
bool lock = params->fams2_global_control_lock_fast_params.lock;
if (params->fams2_global_control_lock_fast_params.is_required) {
union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
hw_lock_cmd.bits.lock = lock;
hw_lock_cmd.bits.should_release = !lock;
dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}
}
void dcn401_fams2_update_config(struct dc *dc, struct dc_state *context, bool enable)
{
bool fams2_required;
if (!dc->ctx || !dc->ctx->dmub_srv || !dc->debug.fams2_config.bits.enable)
return;
fams2_required = context->bw_ctx.bw.dcn.fams2_global_config.features.bits.enable;
dc_dmub_srv_fams2_update_config(dc, context, enable && fams2_required);
}
static void update_dsc_for_odm_change(struct dc *dc, struct dc_state *context,
struct pipe_ctx *otg_master)
{
int i;
struct pipe_ctx *old_pipe;
struct pipe_ctx *new_pipe;
struct pipe_ctx *old_opp_heads[MAX_PIPES];
struct pipe_ctx *old_otg_master;
int old_opp_head_count = 0;
old_otg_master = &dc->current_state->res_ctx.pipe_ctx[otg_master->pipe_idx];
if (resource_is_pipe_type(old_otg_master, OTG_MASTER)) {
old_opp_head_count = resource_get_opp_heads_for_otg_master(old_otg_master,
&dc->current_state->res_ctx,
old_opp_heads);
} else {
// DC cannot assume that the current state and the new state
// share the same OTG pipe since this is not true when called
// in the context of a commit stream not checked. Hence, set
// old_otg_master to NULL to skip the DSC configuration.
old_otg_master = NULL;
}
if (otg_master->stream_res.dsc)
dcn32_update_dsc_on_stream(otg_master,
otg_master->stream->timing.flags.DSC);
if (old_otg_master && old_otg_master->stream_res.dsc) {
for (i = 0; i < old_opp_head_count; i++) {
old_pipe = old_opp_heads[i];
new_pipe = &context->res_ctx.pipe_ctx[old_pipe->pipe_idx];
if (old_pipe->stream_res.dsc && !new_pipe->stream_res.dsc)
old_pipe->stream_res.dsc->funcs->dsc_disconnect(
old_pipe->stream_res.dsc);
}
}
}
void dcn401_update_odm(struct dc *dc, struct dc_state *context,
struct pipe_ctx *otg_master)
{
struct pipe_ctx *opp_heads[MAX_PIPES];
int opp_inst[MAX_PIPES] = {0};
int opp_head_count;
int odm_slice_width = resource_get_odm_slice_dst_width(otg_master, false);
int last_odm_slice_width = resource_get_odm_slice_dst_width(otg_master, true);
int i;
opp_head_count = resource_get_opp_heads_for_otg_master(
otg_master, &context->res_ctx, opp_heads);
for (i = 0; i < opp_head_count; i++)
opp_inst[i] = opp_heads[i]->stream_res.opp->inst;
if (opp_head_count > 1)
otg_master->stream_res.tg->funcs->set_odm_combine(
otg_master->stream_res.tg,
opp_inst, opp_head_count,
odm_slice_width, last_odm_slice_width);
else
otg_master->stream_res.tg->funcs->set_odm_bypass(
otg_master->stream_res.tg,
&otg_master->stream->timing);
for (i = 0; i < opp_head_count; i++) {
opp_heads[i]->stream_res.opp->funcs->opp_pipe_clock_control(
opp_heads[i]->stream_res.opp,
true);
opp_heads[i]->stream_res.opp->funcs->opp_program_left_edge_extra_pixel(
opp_heads[i]->stream_res.opp,
opp_heads[i]->stream->timing.pixel_encoding,
resource_is_pipe_type(opp_heads[i], OTG_MASTER));
}
update_dsc_for_odm_change(dc, context, otg_master);
if (!resource_is_pipe_type(otg_master, DPP_PIPE))
/*
* blank pattern is generated by OPP, reprogram blank pattern
* due to OPP count change
*/
dc->hwseq->funcs.blank_pixel_data(dc, otg_master, true);
}
void dcn401_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = {0};
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
/* calculate parameters for unblank */
params.opp_cnt = resource_get_odm_slice_count(pipe_ctx);
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
params.pix_per_cycle = pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle;
if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
pipe_ctx->stream_res.hpo_dp_stream_enc,
pipe_ctx->stream_res.tg->inst);
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
hws->funcs.edp_backlight_control(link, true);
}
void dcn401_hardware_release(struct dc *dc)
{
dc_dmub_srv_fams2_update_config(dc, dc->current_state, false);
/* If pstate unsupported, or still supported
* by firmware, force it supported by dcn
*/
if (dc->current_state) {
if ((!dc->clk_mgr->clks.p_state_change_support ||
dc->current_state->bw_ctx.bw.dcn.fams2_global_config.features.bits.enable) &&
dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, true, true);
dc->current_state->bw_ctx.bw.dcn.clk.p_state_change_support = true;
dc->clk_mgr->funcs->update_clocks(dc->clk_mgr, dc->current_state, true);
}
}
void dcn401_wait_for_det_buffer_update(struct dc *dc, struct dc_state *context, struct pipe_ctx *otg_master)
{
struct pipe_ctx *opp_heads[MAX_PIPES];
struct pipe_ctx *dpp_pipes[MAX_PIPES];
struct hubbub *hubbub = dc->res_pool->hubbub;
int dpp_count = 0;
if (!otg_master->stream)
return;
int slice_count = resource_get_opp_heads_for_otg_master(otg_master,
&context->res_ctx, opp_heads);
for (int slice_idx = 0; slice_idx < slice_count; slice_idx++) {
if (opp_heads[slice_idx]->plane_state) {
dpp_count = resource_get_dpp_pipes_for_opp_head(
opp_heads[slice_idx],
&context->res_ctx,
dpp_pipes);
for (int dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
struct pipe_ctx *dpp_pipe = dpp_pipes[dpp_idx];
if (dpp_pipe && hubbub &&
dpp_pipe->plane_res.hubp &&
hubbub->funcs->wait_for_det_update)
hubbub->funcs->wait_for_det_update(hubbub, dpp_pipe->plane_res.hubp->inst);
}
}
}
}
void dcn401_interdependent_update_lock(struct dc *dc,
struct dc_state *context, bool lock)
{
unsigned int i = 0;
struct pipe_ctx *pipe = NULL;
struct timing_generator *tg = NULL;
bool pipe_unlocked[MAX_PIPES] = {0};
if (lock) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
tg = pipe->stream_res.tg;
if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
!tg->funcs->is_tg_enabled(tg) ||
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM)
continue;
dc->hwss.pipe_control_lock(dc, pipe, true);
}
} else {
/* Unlock pipes based on the change in DET allocation instead of pipe index
* Prevents over allocation of DET during unlock process
* e.g. 2 pipe config with different streams with a max of 20 DET segments
* Before: After:
* - Pipe0: 10 DET segments - Pipe0: 12 DET segments
* - Pipe1: 10 DET segments - Pipe1: 8 DET segments
* If Pipe0 gets updated first, 22 DET segments will be allocated
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
tg = pipe->stream_res.tg;
int current_pipe_idx = i;
if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
!tg->funcs->is_tg_enabled(tg) ||
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
pipe_unlocked[i] = true;
continue;
}
// If the same stream exists in old context, ensure the OTG_MASTER pipes for the same stream get compared
struct pipe_ctx *old_otg_master = resource_get_otg_master_for_stream(&dc->current_state->res_ctx, pipe->stream);
if (old_otg_master)
current_pipe_idx = old_otg_master->pipe_idx;
if (resource_calculate_det_for_stream(context, pipe) <
resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[current_pipe_idx])) {
dc->hwss.pipe_control_lock(dc, pipe, false);
pipe_unlocked[i] = true;
dcn401_wait_for_det_buffer_update(dc, context, pipe);
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (pipe_unlocked[i])
continue;
pipe = &context->res_ctx.pipe_ctx[i];
dc->hwss.pipe_control_lock(dc, pipe, false);
}
}
}
void dcn401_program_outstanding_updates(struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
/* update compbuf if required */
if (hubbub->funcs->program_compbuf_segments)
hubbub->funcs->program_compbuf_segments(hubbub, context->bw_ctx.bw.dcn.arb_regs.compbuf_size, true);
}