/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
// header file of functions being implemented
#include "dcn32/dcn32_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dml/dcn32/display_mode_vba_util_32.h"
#include "dml/dcn32/dcn32_fpu.h"
#include "dc_state_priv.h"
#include "dc_stream_priv.h"
static bool is_dual_plane(enum surface_pixel_format format)
{
return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA;
}
uint32_t dcn32_helper_calculate_mall_bytes_for_cursor(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool ignore_cursor_buf)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
uint32_t cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height;
uint32_t cursor_mall_size_bytes = 0;
switch (pipe_ctx->stream->cursor_attributes.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
cursor_size *= 8;
break;
}
/* only count if cursor is enabled, and if additional allocation needed outside of the
* DCN cursor buffer
*/
if (pipe_ctx->stream->cursor_position.enable && (ignore_cursor_buf ||
cursor_size > 16384)) {
/* cursor_num_mblk = CEILING(num_cursors*cursor_width*cursor_width*cursor_Bpe/mblk_bytes, 1)
* Note: add 1 mblk in case of cursor misalignment
*/
cursor_mall_size_bytes = ((cursor_size + DCN3_2_MALL_MBLK_SIZE_BYTES - 1) /
DCN3_2_MALL_MBLK_SIZE_BYTES + 1) * DCN3_2_MALL_MBLK_SIZE_BYTES;
}
return cursor_mall_size_bytes;
}
/**
* dcn32_helper_calculate_num_ways_for_subvp(): Calculate number of ways needed for SubVP
*
* Gets total allocation required for the phantom viewport calculated by DML in bytes and
* converts to number of cache ways.
*
* @dc: current dc state
* @context: new dc state
*
* Return: number of ways required for SubVP
*/
uint32_t dcn32_helper_calculate_num_ways_for_subvp(
struct dc *dc,
struct dc_state *context)
{
if (context->bw_ctx.bw.dcn.mall_subvp_size_bytes > 0) {
if (dc->debug.force_subvp_num_ways) {
return dc->debug.force_subvp_num_ways;
} else if (dc->res_pool->funcs->calculate_mall_ways_from_bytes) {
return dc->res_pool->funcs->calculate_mall_ways_from_bytes(dc, context->bw_ctx.bw.dcn.mall_subvp_size_bytes);
} else {
return 0;
}
} else {
return 0;
}
}
void dcn32_merge_pipes_for_subvp(struct dc *dc,
struct dc_state *context)
{
uint32_t i;
/* merge pipes if necessary */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// For now merge all pipes for SubVP since pipe split case isn't supported yet
/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
if (pipe->prev_odm_pipe) {
/*split off odm pipe*/
pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
if (pipe->next_odm_pipe)
pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
pipe->bottom_pipe = NULL;
pipe->next_odm_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
pipe->top_pipe = NULL;
pipe->prev_odm_pipe = NULL;
if (pipe->stream_res.dsc)
dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
struct pipe_ctx *top_pipe = pipe->top_pipe;
struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
top_pipe->bottom_pipe = bottom_pipe;
if (bottom_pipe)
bottom_pipe->top_pipe = top_pipe;
pipe->top_pipe = NULL;
pipe->bottom_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
}
}
}
bool dcn32_all_pipes_have_stream_and_plane(struct dc *dc,
struct dc_state *context)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (!pipe->plane_state)
return false;
}
return true;
}
bool dcn32_subvp_in_use(struct dc *dc,
struct dc_state *context)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (dc_state_get_pipe_subvp_type(context, pipe) != SUBVP_NONE)
return true;
}
return false;
}
bool dcn32_mpo_in_use(struct dc_state *context)
{
uint32_t i;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count > 1)
return true;
}
return false;
}
bool dcn32_any_surfaces_rotated(struct dc *dc, struct dc_state *context)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (pipe->plane_state && pipe->plane_state->rotation != ROTATION_ANGLE_0)
return true;
}
return false;
}
bool dcn32_is_center_timing(struct pipe_ctx *pipe)
{
bool is_center_timing = false;
if (pipe->stream) {
if (pipe->stream->timing.v_addressable != pipe->stream->dst.height ||
pipe->stream->timing.v_addressable != pipe->stream->src.height) {
is_center_timing = true;
}
if (pipe->plane_state) {
if (pipe->stream->timing.v_addressable != pipe->plane_state->dst_rect.height &&
pipe->stream->timing.v_addressable != pipe->plane_state->src_rect.height) {
is_center_timing = true;
}
}
}
return is_center_timing;
}
bool dcn32_is_psr_capable(struct pipe_ctx *pipe)
{
bool psr_capable = false;
if (pipe->stream && pipe->stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED) {
psr_capable = true;
}
return psr_capable;
}
static void override_det_for_subvp(struct dc *dc, struct dc_state *context, uint8_t pipe_segments[])
{
uint32_t i;
uint8_t fhd_count = 0;
uint8_t subvp_high_refresh_count = 0;
uint8_t stream_count = 0;
// Do not override if a stream has multiple planes
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count > 1)
return;
if (dc_state_get_stream_subvp_type(context, context->streams[i]) != SUBVP_PHANTOM)
stream_count++;
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->plane_state && dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
if (dcn32_allow_subvp_high_refresh_rate(dc, context, pipe_ctx)) {
if (pipe_ctx->stream->timing.v_addressable == 1080 && pipe_ctx->stream->timing.h_addressable == 1920) {
fhd_count++;
}
subvp_high_refresh_count++;
}
}
}
if (stream_count == 2 && subvp_high_refresh_count == 2 && fhd_count == 1) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->plane_state && dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
if (pipe_ctx->stream->timing.v_addressable == 1080 && pipe_ctx->stream->timing.h_addressable == 1920) {
if (pipe_segments[i] > 4)
pipe_segments[i] = 4;
}
}
}
}
}
/**
* dcn32_determine_det_override(): Determine DET allocation for each pipe
*
* This function determines how much DET to allocate for each pipe. The total number of
* DET segments will be split equally among each of the streams, and after that the DET
* segments per stream will be split equally among the planes for the given stream.
*
* If there is a plane that's driven by more than 1 pipe (i.e. pipe split), then the
* number of DET for that given plane will be split among the pipes driving that plane.
*
*
* High level algorithm:
* 1. Split total DET among number of streams
* 2. For each stream, split DET among the planes
* 3. For each plane, check if there is a pipe split. If yes, split the DET allocation
* among those pipes.
* 4. Assign the DET override to the DML pipes.
*
* @dc: Current DC state
* @context: New DC state to be programmed
* @pipes: Array of DML pipes
*
* Return: void
*/
void dcn32_determine_det_override(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes)
{
uint32_t i, j, k;
uint8_t pipe_plane_count, stream_segments, plane_segments, pipe_segments[MAX_PIPES] = {0};
uint8_t pipe_counted[MAX_PIPES] = {0};
uint8_t pipe_cnt = 0;
struct dc_plane_state *current_plane = NULL;
uint8_t stream_count = 0;
for (i = 0; i < context->stream_count; i++) {
/* Don't count SubVP streams for DET allocation */
if (dc_state_get_stream_subvp_type(context, context->streams[i]) != SUBVP_PHANTOM)
stream_count++;
}
if (stream_count > 0) {
stream_segments = 18 / stream_count;
for (i = 0; i < context->stream_count; i++) {
if (dc_state_get_stream_subvp_type(context, context->streams[i]) == SUBVP_PHANTOM)
continue;
if (context->stream_status[i].plane_count > 0)
plane_segments = stream_segments / context->stream_status[i].plane_count;
else
plane_segments = stream_segments;
for (j = 0; j < dc->res_pool->pipe_count; j++) {
pipe_plane_count = 0;
if (context->res_ctx.pipe_ctx[j].stream == context->streams[i] &&
pipe_counted[j] != 1) {
/* Note: pipe_plane_count indicates the number of pipes to be used for a
* given plane. e.g. pipe_plane_count = 1 means single pipe (i.e. not split),
* pipe_plane_count = 2 means 2:1 split, etc.
*/
pipe_plane_count++;
pipe_counted[j] = 1;
current_plane = context->res_ctx.pipe_ctx[j].plane_state;
for (k = 0; k < dc->res_pool->pipe_count; k++) {
if (k != j && context->res_ctx.pipe_ctx[k].stream == context->streams[i] &&
context->res_ctx.pipe_ctx[k].plane_state == current_plane) {
pipe_plane_count++;
pipe_counted[k] = 1;
}
}
pipe_segments[j] = plane_segments / pipe_plane_count;
for (k = 0; k < dc->res_pool->pipe_count; k++) {
if (k != j && context->res_ctx.pipe_ctx[k].stream == context->streams[i] &&
context->res_ctx.pipe_ctx[k].plane_state == current_plane) {
pipe_segments[k] = plane_segments / pipe_plane_count;
}
}
}
}
}
override_det_for_subvp(dc, context, pipe_segments);
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
pipes[pipe_cnt].pipe.src.det_size_override = pipe_segments[i] * DCN3_2_DET_SEG_SIZE;
pipe_cnt++;
}
} else {
for (i = 0; i < dc->res_pool->pipe_count; i++)
pipes[i].pipe.src.det_size_override = 4 * DCN3_2_DET_SEG_SIZE; //DCN3_2_DEFAULT_DET_SIZE
}
}
void dcn32_set_det_allocations(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes)
{
int i, pipe_cnt;
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *pipe = 0;
bool disable_unbounded_requesting = dc->debug.disable_z9_mpc || dc->debug.disable_unbounded_requesting;
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipe = &res_ctx->pipe_ctx[i];
pipe_cnt++;
}
/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
* the DET available for each pipe). Use the DET override input to maintain our driver
* policy.
*/
if (pipe_cnt == 1) {
pipes[0].pipe.src.det_size_override = DCN3_2_MAX_DET_SIZE;
if (pipe->plane_state && !disable_unbounded_requesting && pipe->plane_state->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
if (!is_dual_plane(pipe->plane_state->format)) {
pipes[0].pipe.src.det_size_override = DCN3_2_DEFAULT_DET_SIZE;
pipes[0].pipe.src.unbounded_req_mode = true;
if (pipe->plane_state->src_rect.width >= 5120 &&
pipe->plane_state->src_rect.height >= 2880)
pipes[0].pipe.src.det_size_override = 320; // 5K or higher
}
}
} else
dcn32_determine_det_override(dc, context, pipes);
}
#define MAX_STRETCHED_V_BLANK 1000 // in micro-seconds (must ensure to match value in FW)
/*
* Scaling factor for v_blank stretch calculations considering timing in
* micro-seconds and pixel clock in 100hz.
* Note: the parenthesis are necessary to ensure the correct order of
* operation where V_SCALE is used.
*/
#define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
static int get_frame_rate_at_max_stretch_100hz(
struct dc_stream_state *fpo_candidate_stream,
uint32_t fpo_vactive_margin_us)
{
struct dc_crtc_timing *timing = NULL;
uint32_t sec_per_100_lines;
uint32_t max_v_blank;
uint32_t curr_v_blank;
uint32_t v_stretch_max;
uint32_t stretched_frame_pix_cnt;
uint32_t scaled_stretched_frame_pix_cnt;
uint32_t scaled_refresh_rate;
uint32_t v_scale;
if (fpo_candidate_stream == NULL)
return 0;
/* check if refresh rate at least 120hz */
timing = &fpo_candidate_stream->timing;
if (timing == NULL)
return 0;
v_scale = 10000 / (MAX_STRETCHED_V_BLANK + fpo_vactive_margin_us);
sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
max_v_blank = sec_per_100_lines / v_scale + 1;
curr_v_blank = timing->v_total - timing->v_addressable;
v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
return scaled_refresh_rate;
}
static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(
struct dc_stream_state *fpo_candidate_stream, uint32_t fpo_vactive_margin_us, int current_refresh_rate)
{
int refresh_rate_max_stretch_100hz;
int min_refresh_100hz;
if (fpo_candidate_stream == NULL)
return false;
refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(fpo_candidate_stream, fpo_vactive_margin_us);
min_refresh_100hz = fpo_candidate_stream->timing.min_refresh_in_uhz / 10000;
if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
return false;
if (fpo_candidate_stream->ctx->dc->config.enable_fpo_flicker_detection == 1 &&
!dc_stream_is_refresh_rate_range_flickerless(fpo_candidate_stream, (refresh_rate_max_stretch_100hz / 100), current_refresh_rate, false))
return false;
return true;
}
static int get_refresh_rate(struct dc_stream_state *fpo_candidate_stream)
{
int refresh_rate = 0;
int h_v_total = 0;
struct dc_crtc_timing *timing = NULL;
if (fpo_candidate_stream == NULL)
return 0;
/* check if refresh rate at least 120hz */
timing = &fpo_candidate_stream->timing;
if (timing == NULL)
return 0;
h_v_total = timing->h_total * timing->v_total;
if (h_v_total == 0)
return 0;
refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
return refresh_rate;
}
/**
* dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch() - Determines if config can
* support FPO
*
* @dc: current dc state
* @context: new dc state
*
* Return: Pointer to FPO stream candidate if config can support FPO, otherwise NULL
*/
struct dc_stream_state *dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
{
int refresh_rate = 0;
const int minimum_refreshrate_supported = 120;
struct dc_stream_state *fpo_candidate_stream = NULL;
bool is_fpo_vactive = false;
uint32_t fpo_vactive_margin_us = 0;
struct dc_stream_status *fpo_stream_status = NULL;
if (context == NULL)
return NULL;
if (dc->debug.disable_fams)
return NULL;
if (!dc->caps.dmub_caps.mclk_sw)
return NULL;
if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
return NULL;
/* For FPO we can support up to 2 display configs if:
* - first display uses FPO
* - Second display switches in VACTIVE */
if (context->stream_count > 2)
return NULL;
else if (context->stream_count == 2) {
DC_FP_START();
dcn32_assign_fpo_vactive_candidate(dc, context, &fpo_candidate_stream);
DC_FP_END();
if (fpo_candidate_stream)
fpo_stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
DC_FP_START();
is_fpo_vactive = dcn32_find_vactive_pipe(dc, context, fpo_candidate_stream, dc->debug.fpo_vactive_min_active_margin_us);
DC_FP_END();
if (!is_fpo_vactive || dc->debug.disable_fpo_vactive)
return NULL;
} else {
fpo_candidate_stream = context->streams[0];
if (fpo_candidate_stream)
fpo_stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
}
/* In DCN32/321, FPO uses per-pipe P-State force.
* If there's no planes, HUBP is power gated and
* therefore programming UCLK_PSTATE_FORCE does
* nothing (P-State will always be asserted naturally
* on a pipe that has HUBP power gated. Therefore we
* only want to enable FPO if the FPO pipe has both
* a stream and a plane.
*/
if (!fpo_candidate_stream || !fpo_stream_status || fpo_stream_status->plane_count == 0)
return NULL;
if (fpo_candidate_stream->sink->edid_caps.panel_patch.disable_fams)
return NULL;
refresh_rate = get_refresh_rate(fpo_candidate_stream);
if (refresh_rate < minimum_refreshrate_supported)
return NULL;
fpo_vactive_margin_us = is_fpo_vactive ? dc->debug.fpo_vactive_margin_us : 0; // For now hardcode the FPO + Vactive stretch margin to be 2000us
if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(fpo_candidate_stream, fpo_vactive_margin_us, refresh_rate))
return NULL;
if (!fpo_candidate_stream->allow_freesync)
return NULL;
if (fpo_candidate_stream->vrr_active_variable &&
((dc->debug.disable_fams_gaming == INGAME_FAMS_DISABLE) ||
(context->stream_count > 1 && !(dc->debug.disable_fams_gaming == INGAME_FAMS_MULTI_DISP_ENABLE))))
return NULL;
return fpo_candidate_stream;
}
bool dcn32_check_native_scaling_for_res(struct pipe_ctx *pipe, unsigned int width, unsigned int height)
{
bool is_native_scaling = false;
if (pipe->stream->timing.h_addressable == width &&
pipe->stream->timing.v_addressable == height &&
pipe->plane_state->src_rect.width == width &&
pipe->plane_state->src_rect.height == height &&
pipe->plane_state->dst_rect.width == width &&
pipe->plane_state->dst_rect.height == height)
is_native_scaling = true;
return is_native_scaling;
}
/**
* disallow_subvp_in_active_plus_blank() - Function to determine disallowed subvp + drr/vblank configs
*
* @pipe: subvp pipe to be used for the subvp + drr/vblank config
*
* Since subvp is being enabled on more configs (such as 1080p60), we want
* to explicitly block any configs that we don't want to enable. We do not
* want to enable any 1080p60 (SubVP) + drr / vblank configs since these
* are already convered by FPO.
*
* Return: True if disallowed, false otherwise
*/
static bool disallow_subvp_in_active_plus_blank(struct pipe_ctx *pipe)
{
bool disallow = false;
if (resource_is_pipe_type(pipe, OPP_HEAD) &&
resource_is_pipe_type(pipe, DPP_PIPE)) {
if (pipe->stream->timing.v_addressable == 1080 && pipe->stream->timing.h_addressable == 1920)
disallow = true;
}
return disallow;
}
/**
* dcn32_subvp_drr_admissable() - Determine if SubVP + DRR config is admissible
*
* @dc: Current DC state
* @context: New DC state to be programmed
*
* SubVP + DRR is admissible under the following conditions:
* - Config must have 2 displays (i.e., 2 non-phantom master pipes)
* - One display is SubVP
* - Other display must have Freesync enabled
* - The potential DRR display must not be PSR capable
*
* Return: True if admissible, false otherwise
*/
bool dcn32_subvp_drr_admissable(struct dc *dc, struct dc_state *context)
{
bool result = false;
uint32_t i;
uint8_t subvp_count = 0;
uint8_t non_subvp_pipes = 0;
bool drr_pipe_found = false;
bool drr_psr_capable = false;
uint64_t refresh_rate = 0;
bool subvp_disallow = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
if (resource_is_pipe_type(pipe, OPP_HEAD) &&
resource_is_pipe_type(pipe, DPP_PIPE)) {
if (pipe_mall_type == SUBVP_MAIN) {
subvp_count++;
subvp_disallow |= disallow_subvp_in_active_plus_blank(pipe);
refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
pipe->stream->timing.v_total * (unsigned long long)pipe->stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
}
if (pipe_mall_type == SUBVP_NONE) {
non_subvp_pipes++;
drr_psr_capable = (drr_psr_capable || dcn32_is_psr_capable(pipe));
if (pipe->stream->ignore_msa_timing_param &&
(pipe->stream->allow_freesync || pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
drr_pipe_found = true;
}
}
}
}
if (subvp_count == 1 && !subvp_disallow && non_subvp_pipes == 1 && drr_pipe_found && !drr_psr_capable &&
((uint32_t)refresh_rate < 120))
result = true;
return result;
}
/**
* dcn32_subvp_vblank_admissable() - Determine if SubVP + Vblank config is admissible
*
* @dc: Current DC state
* @context: New DC state to be programmed
* @vlevel: Voltage level calculated by DML
*
* SubVP + Vblank is admissible under the following conditions:
* - Config must have 2 displays (i.e., 2 non-phantom master pipes)
* - One display is SubVP
* - Other display must not have Freesync capability
* - DML must have output DRAM clock change support as SubVP + Vblank
* - The potential vblank display must not be PSR capable
*
* Return: True if admissible, false otherwise
*/
bool dcn32_subvp_vblank_admissable(struct dc *dc, struct dc_state *context, int vlevel)
{
bool result = false;
uint32_t i;
uint8_t subvp_count = 0;
uint8_t non_subvp_pipes = 0;
bool drr_pipe_found = false;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
bool vblank_psr_capable = false;
uint64_t refresh_rate = 0;
bool subvp_disallow = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
if (resource_is_pipe_type(pipe, OPP_HEAD) &&
resource_is_pipe_type(pipe, DPP_PIPE)) {
if (pipe_mall_type == SUBVP_MAIN) {
subvp_count++;
subvp_disallow |= disallow_subvp_in_active_plus_blank(pipe);
refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
pipe->stream->timing.v_total * (unsigned long long)pipe->stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
}
if (pipe_mall_type == SUBVP_NONE) {
non_subvp_pipes++;
vblank_psr_capable = (vblank_psr_capable || dcn32_is_psr_capable(pipe));
if (pipe->stream->ignore_msa_timing_param &&
(pipe->stream->allow_freesync || pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
drr_pipe_found = true;
}
}
}
}
if (subvp_count == 1 && non_subvp_pipes == 1 && !drr_pipe_found && !vblank_psr_capable &&
((uint32_t)refresh_rate < 120) && !subvp_disallow &&
vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp)
result = true;
return result;
}
void dcn32_update_dml_pipes_odm_policy_based_on_context(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes)
{
int i, pipe_cnt;
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *pipe = NULL;
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
int odm_slice_count = 0;
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipe = &res_ctx->pipe_ctx[i];
odm_slice_count = resource_get_odm_slice_count(pipe);
if (odm_slice_count == 1)
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
else if (odm_slice_count == 2)
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
else if (odm_slice_count == 4)
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
pipe_cnt++;
}
}
void dcn32_override_min_req_dcfclk(struct dc *dc, struct dc_state *context)
{
if (dcn32_subvp_in_use(dc, context) && context->bw_ctx.bw.dcn.clk.dcfclk_khz <= MIN_SUBVP_DCFCLK_KHZ)
context->bw_ctx.bw.dcn.clk.dcfclk_khz = MIN_SUBVP_DCFCLK_KHZ;
}