// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dcn401_optc.h"
#include "dcn30/dcn30_optc.h"
#include "dcn31/dcn31_optc.h"
#include "dcn32/dcn32_optc.h"
#include "reg_helper.h"
#include "dc.h"
#include "dcn_calc_math.h"
#include "dc_dmub_srv.h"
#define REG(reg)\
optc1->tg_regs->reg
#define CTX \
optc1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
optc1->tg_shift->field_name, optc1->tg_mask->field_name
/*
* OPTC uses ODM_MEM sub block to merge pixel data coming from different OPPs
* into unified memory location per horizontal line. ODM_MEM contains shared
* memory resources global to the ASIC. Each memory resource is capable of
* storing 2048 pixels independent from actual pixel data size. Total number of
* memory allocated must be even. The memory resource allocation is described in
* a memory bit map per OPTC instance. Driver has to make sure that there is no
* double allocation across different OPTC instances. Bit offset in the map
* represents memory instance id. Driver allocates a memory instance to the
* current OPTC by setting the bit with offset associated with the desired
* memory instance to 1 in the current OPTC memory map register.
*
* It is upto software to decide how to allocate the shared memory resources
* across different OPTC instances. Driver understands that the total number
* of memory available is always 2 times the max number of OPP pipes. So each
* OPP pipe can be mapped 2 pieces of memory. However there exists cases such as
* 11520x2160 which could use 6 pieces of memory for 2 OPP pipes i.e. 3 pieces
* for each OPP pipe.
*
* Driver will reserve the first and second preferred memory instances for each
* OPP pipe. For example, OPP0's first and second preferred memory is ODM_MEM0
* and ODM_MEM1. OPP1's first and second preferred memory is ODM_MEM2 and
* ODM_MEM3 so on so forth.
*
* Driver will first allocate from first preferred memory instances associated
* with current OPP pipes in use. If needed driver will then allocate from
* second preferred memory instances associated with current OPP pipes in use.
* Finally if still needed, driver will allocate from second preferred memory
* instances not associated with current OPP pipes. So if memory instances are
* enough other OPTCs can still allocate from their OPPs' first preferred memory
* instances without worrying about double allocation.
*/
static uint32_t decide_odm_mem_bit_map(int *opp_id, int opp_cnt, int h_active)
{
bool first_preferred_memory_for_opp[MAX_PIPES] = {0};
bool second_preferred_memory_for_opp[MAX_PIPES] = {0};
uint32_t memory_bit_map = 0;
int total_required = ((h_active + 4095) / 4096) * 2;
int total_allocated = 0;
int i;
for (i = 0; i < opp_cnt; i++) {
first_preferred_memory_for_opp[opp_id[i]] = true;
total_allocated++;
if (total_required == total_allocated)
break;
}
if (total_required > total_allocated) {
for (i = 0; i < opp_cnt; i++) {
second_preferred_memory_for_opp[opp_id[i]] = true;
total_allocated++;
if (total_required == total_allocated)
break;
}
}
if (total_required > total_allocated) {
for (i = 0; i < MAX_PIPES; i++) {
if (second_preferred_memory_for_opp[i] == false) {
second_preferred_memory_for_opp[i] = true;
total_allocated++;
if (total_required == total_allocated)
break;
}
}
}
ASSERT(total_required == total_allocated);
for (i = 0; i < MAX_PIPES; i++) {
if (first_preferred_memory_for_opp[i])
memory_bit_map |= 0x1 << (i * 2);
if (second_preferred_memory_for_opp[i])
memory_bit_map |= 0x2 << (i * 2);
}
return memory_bit_map;
}
static void optc401_set_odm_combine(struct timing_generator *optc, int *opp_id,
int opp_cnt, int segment_width, int last_segment_width)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t h_active = segment_width * (opp_cnt - 1) + last_segment_width;
uint32_t odm_mem_bit_map = decide_odm_mem_bit_map(
opp_id, opp_cnt, h_active);
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, odm_mem_bit_map);
switch (opp_cnt) {
case 2: /* ODM Combine 2:1 */
REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 1,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, segment_width);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY2);
break;
case 3: /* ODM Combine 3:1 */
REG_SET_4(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 2,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1],
OPTC_SEG2_SRC_SEL, opp_id[2]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, segment_width);
REG_UPDATE(OPTC_WIDTH_CONTROL2,
OPTC_SEGMENT_WIDTH_LAST,
last_segment_width);
/* In ODM combine 3:1 mode ODM packs 4 pixels per data transfer
* so OTG_H_TIMING_DIV_MODE should be configured to
* H_TIMING_DIV_BY4 even though ODM combines 3 OPP inputs, it
* outputs 4 pixels from single OPP at a time.
*/
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
break;
case 4: /* ODM Combine 4:1 */
REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 3,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1],
OPTC_SEG2_SRC_SEL, opp_id[2],
OPTC_SEG3_SRC_SEL, opp_id[3]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, segment_width);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
break;
default:
ASSERT(false);
}
;
optc1->opp_count = opp_cnt;
}
static void optc401_set_h_timing_div_manual_mode(struct timing_generator *optc, bool manual_mode)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE_MANUAL, manual_mode ? 1 : 0);
}
/**
* optc401_enable_crtc() - Enable CRTC
* @optc: Pointer to the timing generator structure
*
* This function calls ASIC Control Object to enable Timing generator.
*
* Return: Always returns true
*/
static bool optc401_enable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* opp instance for OTG, 1 to 1 mapping and odm will adjust */
REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, optc->inst);
/* VTG enable first is for HW workaround */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 1);
REG_SEQ_START();
/* Enable CRTC */
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 2,
OTG_MASTER_EN, 1);
REG_SEQ_SUBMIT();
REG_SEQ_WAIT_DONE();
return true;
}
/* disable_crtc */
static bool optc401_disable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, 0xf,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf,
OPTC_NUM_OF_INPUT_SEGMENT, 0);
REG_UPDATE(OPTC_MEMORY_CONFIG,
OPTC_MEM_SEL, 0);
/* disable otg request until end of the first line
* in the vertical blank region
*/
REG_UPDATE(OTG_CONTROL,
OTG_MASTER_EN, 0);
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_BUSY, 0,
1, 150000);
return true;
}
static void optc401_phantom_crtc_post_enable(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* Disable immediately. */
REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 0, OTG_MASTER_EN, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000);
}
static void optc401_disable_phantom_otg(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, 0xf,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf,
OPTC_NUM_OF_INPUT_SEGMENT, 0);
REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
}
static void optc401_set_odm_bypass(struct timing_generator *optc,
const struct dc_crtc_timing *dc_crtc_timing)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 0,
OPTC_SEG0_SRC_SEL, optc->inst,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf
);
h_div = optc->funcs->is_two_pixels_per_container(dc_crtc_timing);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, h_div);
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, 0);
optc1->opp_count = 1;
}
/* only to be used when FAMS2 is disabled or unsupported */
void optc401_setup_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
struct dc *dc = optc->ctx->dc;
if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams)
/* FAMS */
dc_dmub_srv_set_drr_manual_trigger_cmd(dc, optc->inst);
else {
/*
* MIN_MASK_EN is gone and MASK is now always enabled.
*
* To get it to it work with manual trigger we need to make sure
* we program the correct bit.
*/
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, 1,
OTG_V_TOTAL_MAX_SEL, 1,
OTG_FORCE_LOCK_ON_EVENT, 0,
OTG_SET_V_TOTAL_MIN_MASK, (1 << 1)); /* TRIGA */
}
}
void optc401_set_drr(
struct timing_generator *optc,
const struct drr_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
struct dc *dc = optc->ctx->dc;
struct drr_params amended_params = { 0 };
bool program_manual_trigger = false;
if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
amended_params.vertical_total_max = params->vertical_total_max - 1;
amended_params.vertical_total_min = params->vertical_total_min - 1;
if (params->vertical_total_mid != 0) {
amended_params.vertical_total_mid = params->vertical_total_mid - 1;
amended_params.vertical_total_mid_frame_num = params->vertical_total_mid_frame_num;
}
program_manual_trigger = true;
}
dc_dmub_srv_fams2_drr_update(dc, optc->inst,
amended_params.vertical_total_min,
amended_params.vertical_total_max,
amended_params.vertical_total_mid,
amended_params.vertical_total_mid_frame_num,
program_manual_trigger);
} else {
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
if (params->vertical_total_mid != 0) {
REG_SET(OTG_V_TOTAL_MID, 0,
OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
OTG_VTOTAL_MID_FRAME_NUM,
(uint8_t)params->vertical_total_mid_frame_num);
}
optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
optc401_setup_manual_trigger(optc);
} else {
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_SET_V_TOTAL_MIN_MASK, 0,
OTG_V_TOTAL_MIN_SEL, 0,
OTG_V_TOTAL_MAX_SEL, 0,
OTG_FORCE_LOCK_ON_EVENT, 0);
optc->funcs->set_vtotal_min_max(optc, 0, 0);
}
}
}
static void optc401_set_out_mux(struct timing_generator *optc, enum otg_out_mux_dest dest)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* 00 - OTG_CONTROL_OTG_OUT_MUX_0 : Connects to DIO.
01 - OTG_CONTROL_OTG_OUT_MUX_1 : Reserved.
02 - OTG_CONTROL_OTG_OUT_MUX_2 : Connects to HPO.
*/
REG_UPDATE(OTG_CONTROL, OTG_OUT_MUX, dest);
}
void optc401_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
{
struct dc *dc = optc->ctx->dc;
if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
/* FAMS2 */
dc_dmub_srv_fams2_drr_update(dc, optc->inst,
vtotal_min,
vtotal_max,
0,
0,
false);
} else if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams) {
/* FAMS */
dc_dmub_srv_drr_update_cmd(dc, optc->inst, vtotal_min, vtotal_max);
} else {
optc1_set_vtotal_min_max(optc, vtotal_min, vtotal_max);
}
}
static void optc401_program_global_sync(
struct timing_generator *optc,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
int pstate_keepout)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
optc1->vready_offset = vready_offset;
optc1->vstartup_start = vstartup_start;
optc1->vupdate_offset = vupdate_offset;
optc1->vupdate_width = vupdate_width;
optc1->pstate_keepout = pstate_keepout;
if (optc1->vstartup_start == 0) {
BREAK_TO_DEBUGGER();
return;
}
REG_SET(OTG_VSTARTUP_PARAM, 0,
VSTARTUP_START, optc1->vstartup_start);
REG_SET_2(OTG_VUPDATE_PARAM, 0,
VUPDATE_OFFSET, optc1->vupdate_offset,
VUPDATE_WIDTH, optc1->vupdate_width);
REG_SET(OTG_VREADY_PARAM, 0,
VREADY_OFFSET, optc1->vready_offset);
REG_UPDATE(OTG_PSTATE_REGISTER, OTG_PSTATE_KEEPOUT_START, pstate_keepout);
}
static struct timing_generator_funcs dcn401_tg_funcs = {
.validate_timing = optc1_validate_timing,
.program_timing = optc1_program_timing,
.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
.program_global_sync = optc401_program_global_sync,
.enable_crtc = optc401_enable_crtc,
.disable_crtc = optc401_disable_crtc,
.phantom_crtc_post_enable = optc401_phantom_crtc_post_enable,
.disable_phantom_crtc = optc401_disable_phantom_otg,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = optc1_is_counter_moving,
.get_position = optc1_get_position,
.get_frame_count = optc1_get_vblank_counter,
.get_scanoutpos = optc1_get_crtc_scanoutpos,
.get_otg_active_size = optc1_get_otg_active_size,
.set_early_control = optc1_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = optc1_wait_for_state,
.set_blank_color = optc3_program_blank_color,
.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
.triplebuffer_lock = optc3_triplebuffer_lock,
.triplebuffer_unlock = optc2_triplebuffer_unlock,
.enable_reset_trigger = optc1_enable_reset_trigger,
.enable_crtc_reset = optc1_enable_crtc_reset,
.disable_reset_trigger = optc1_disable_reset_trigger,
.lock = optc3_lock,
.unlock = optc1_unlock,
.lock_doublebuffer_enable = optc3_lock_doublebuffer_enable,
.lock_doublebuffer_disable = optc3_lock_doublebuffer_disable,
.enable_optc_clock = optc1_enable_optc_clock,
.set_drr = optc401_set_drr,
.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
.set_vtotal_min_max = optc401_set_vtotal_min_max,
.set_static_screen_control = optc1_set_static_screen_control,
.program_stereo = optc1_program_stereo,
.is_stereo_left_eye = optc1_is_stereo_left_eye,
.tg_init = optc3_tg_init,
.is_tg_enabled = optc1_is_tg_enabled,
.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
.clear_optc_underflow = optc1_clear_optc_underflow,
.setup_global_swap_lock = NULL,
.get_crc = optc1_get_crc,
.configure_crc = optc1_configure_crc,
.set_dsc_config = optc3_set_dsc_config,
.get_dsc_status = optc2_get_dsc_status,
.set_dwb_source = NULL,
.set_odm_bypass = optc401_set_odm_bypass,
.set_odm_combine = optc401_set_odm_combine,
.wait_odm_doublebuffer_pending_clear = optc32_wait_odm_doublebuffer_pending_clear,
.set_h_timing_div_manual_mode = optc401_set_h_timing_div_manual_mode,
.get_optc_source = optc2_get_optc_source,
.set_out_mux = optc401_set_out_mux,
.set_drr_trigger_window = optc3_set_drr_trigger_window,
.set_vtotal_change_limit = optc3_set_vtotal_change_limit,
.set_gsl = optc2_set_gsl,
.set_gsl_source_select = optc2_set_gsl_source_select,
.set_vtg_params = optc1_set_vtg_params,
.program_manual_trigger = optc2_program_manual_trigger,
.setup_manual_trigger = optc2_setup_manual_trigger,
.get_hw_timing = optc1_get_hw_timing,
.is_two_pixels_per_container = optc1_is_two_pixels_per_container,
.get_double_buffer_pending = optc32_get_double_buffer_pending,
};
void dcn401_timing_generator_init(struct optc *optc1)
{
optc1->base.funcs = &dcn401_tg_funcs;
optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
optc1->min_h_blank = 32;
optc1->min_v_blank = 3;
optc1->min_v_blank_interlace = 5;
optc1->min_h_sync_width = 4;
optc1->min_v_sync_width = 1;
}