/* SPDX-License-Identifier: MIT */
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "resource.h"
#include "dcn35_dccg.h"
#define TO_DCN_DCCG(dccg)\
container_of(dccg, struct dcn_dccg, base)
#define REG(reg) \
(dccg_dcn->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name
#define CTX \
dccg_dcn->base.ctx
#define DC_LOGGER \
dccg->ctx->logger
enum symclk_fe_source {
SYMCLK_FE_SYMCLK_A = 0, // Select functional clock from backend symclk A
SYMCLK_FE_SYMCLK_B,
SYMCLK_FE_SYMCLK_C,
SYMCLK_FE_SYMCLK_D,
SYMCLK_FE_SYMCLK_E,
SYMCLK_FE_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum symclk_be_source {
SYMCLK_BE_PHYCLK = 0, // Select phy clk when sym_clk_enable = 1
SYMCLK_BE_DPIACLK_810 = 4,
SYMCLK_BE_DPIACLK_162 = 5,
SYMCLK_BE_DPIACLK_540 = 6,
SYMCLK_BE_DPIACLK_270 = 7,
SYMCLK_BE_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum physymclk_source {
PHYSYMCLK_PHYCLK = 0, // Select symclk as source of clock which is output to PHY through DCIO.
PHYSYMCLK_PHYD18CLK, // Select phyd18clk as the source of clock which is output to PHY through DCIO.
PHYSYMCLK_PHYD32CLK, // Select phyd32clk as the source of clock which is output to PHY through DCIO.
PHYSYMCLK_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum dtbclk_source {
DTBCLK_DPREFCLK = 0, // Selects source for DTBCLK_P# as DPREFCLK (src sel 0 and 1 are same)
DTBCLK_DPREFCLK_0, // Selects source for DTBCLK_P# as DPREFCLK (src sel 0 and 1 are same)
DTBCLK_DTBCLK0, // Selects source for DTBCLK_P# as DTBCLK0
DTBCLK_DTBCLK1, // Selects source for DTBCLK_P# as DTBCLK0
DTBCLK_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum dppclk_clock_source {
DPP_REFCLK = 0, // refclk is selected
DPP_DCCG_DTO, // Functional clock selected is DTO tuned DPPCLK
};
enum dp_stream_clk_source {
DP_STREAM_DTBCLK_P0 = 0, // Selects functional for DP_STREAM_CLK as DTBCLK_P#
DP_STREAM_DTBCLK_P1,
DP_STREAM_DTBCLK_P2,
DP_STREAM_DTBCLK_P3,
DP_STREAM_DTBCLK_P4,
DP_STREAM_DTBCLK_P5,
DP_STREAM_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum hdmi_char_clk {
HDMI_CHAR_PHYAD18CLK = 0, // Selects functional for hdmi_char_clk as UNIPHYA PHYD18CLK
HDMI_CHAR_PHYBD18CLK,
HDMI_CHAR_PHYCD18CLK,
HDMI_CHAR_PHYDD18CLK,
HDMI_CHAR_PHYED18CLK,
HDMI_CHAR_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum hdmi_stream_clk_source {
HDMI_STREAM_DTBCLK_P0 = 0, // Selects functional for HDMI_STREAM_CLK as DTBCLK_P#
HDMI_STREAM_DTBCLK_P1,
HDMI_STREAM_DTBCLK_P2,
HDMI_STREAM_DTBCLK_P3,
HDMI_STREAM_DTBCLK_P4,
HDMI_STREAM_DTBCLK_P5,
HDMI_STREAM_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum symclk32_se_clk_source {
SYMCLK32_SE_PHYAD32CLK = 0, // Selects functional for SYMCLK32 as UNIPHYA PHYD32CLK
SYMCLK32_SE_PHYBD32CLK,
SYMCLK32_SE_PHYCD32CLK,
SYMCLK32_SE_PHYDD32CLK,
SYMCLK32_SE_PHYED32CLK,
SYMCLK32_SE_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum symclk32_le_clk_source {
SYMCLK32_LE_PHYAD32CLK = 0, // Selects functional for SYMCLK32 as UNIPHYA PHYD32CLK
SYMCLK32_LE_PHYBD32CLK,
SYMCLK32_LE_PHYCD32CLK,
SYMCLK32_LE_PHYDD32CLK,
SYMCLK32_LE_PHYED32CLK,
SYMCLK32_LE_REFCLK = 0xFF, // Arbitrary value to pass refclk selection in software
};
enum dsc_clk_source {
DSC_CLK_REF_CLK = 0, // Ref clock selected for DSC_CLK
DSC_DTO_TUNED_CK_GPU_DISCLK_3, // DTO divided clock selected as functional clock
};
static void dccg35_set_dsc_clk_rcg(struct dccg *dccg, int inst, bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc && enable)
return;
switch (inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK0_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK1_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK2_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK3_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_symclk32_se_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se && enable)
return;
/* SYMCLK32_ROOT_SE#_GATE_DISABLE will clock gate in DCCG */
/* SYMCLK32_SE#_GATE_DISABLE will clock gate in HPO only */
switch (inst) {
case 0:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE0_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE1_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE2_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE3_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_symclk32_le_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le && enable)
return;
switch (inst) {
case 0:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_LE0_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_LE0_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_LE1_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_LE1_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_physymclk_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk && enable)
return;
switch (inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYASYMCLK_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYBSYMCLK_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYCSYMCLK_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYDSYMCLK_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 4:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYESYMCLK_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_symclk_fe_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk_fe && enable)
return;
switch (inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKA_FE_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKA_FE_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKB_FE_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKB_FE_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKC_FE_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKC_FE_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKD_FE_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKD_FE_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 4:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKE_FE_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKE_FE_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_symclk_be_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* TBD add symclk_be in rcg control bits */
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk_fe && enable)
return;
switch (inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKA_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKA_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKB_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKB_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKC_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKC_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKD_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKD_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 4:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
SYMCLKE_GATE_DISABLE, enable ? 0 : 1);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5,
SYMCLKE_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_dtbclk_p_rcg(struct dccg *dccg, int inst, bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dpp && enable)
return;
switch (inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void dccg35_set_dppclk_rcg(struct dccg *dccg,
int inst, bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dpp && enable)
return;
switch (inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK0_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK1_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK2_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK3_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void dccg35_set_dpstreamclk_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream && enable)
return;
switch (inst) {
case 0:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL5,
DPSTREAMCLK0_GATE_DISABLE, enable ? 0 : 1,
DPSTREAMCLK0_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL5,
DPSTREAMCLK1_GATE_DISABLE, enable ? 0 : 1,
DPSTREAMCLK1_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL5,
DPSTREAMCLK2_GATE_DISABLE, enable ? 0 : 1,
DPSTREAMCLK2_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL5,
DPSTREAMCLK3_GATE_DISABLE, enable ? 0 : 1,
DPSTREAMCLK3_ROOT_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_smclk32_se_rcg(
struct dccg *dccg,
int inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se && enable)
return;
switch (inst) {
case 0:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE0_GATE_DISABLE, enable ? 0 : 1);
break;
case 1:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE1_GATE_DISABLE, enable ? 0 : 1);
break;
case 2:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE2_GATE_DISABLE, enable ? 0 : 1);
break;
case 3:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, enable ? 0 : 1,
SYMCLK32_ROOT_SE3_GATE_DISABLE, enable ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_dsc_clk_src_new(struct dccg *dccg, int inst, enum dsc_clk_source src)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* DSCCLK#_EN=0 switches to refclock from functional clock */
switch (inst) {
case 0:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, src);
break;
case 1:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, src);
break;
case 2:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, src);
break;
case 3:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, src);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_symclk32_se_src_new(
struct dccg *dccg,
int inst,
enum symclk32_se_clk_source src
)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE0_SRC_SEL, (src == SYMCLK32_SE_REFCLK) ? 0 : src,
SYMCLK32_SE0_EN, (src == SYMCLK32_SE_REFCLK) ? 0 : 1);
break;
case 1:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE1_SRC_SEL, (src == SYMCLK32_SE_REFCLK) ? 0 : src,
SYMCLK32_SE1_EN, (src == SYMCLK32_SE_REFCLK) ? 0 : 1);
break;
case 2:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE2_SRC_SEL, (src == SYMCLK32_SE_REFCLK) ? 0 : src,
SYMCLK32_SE2_EN, (src == SYMCLK32_SE_REFCLK) ? 0 : 1);
break;
case 3:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE3_SRC_SEL, (src == SYMCLK32_SE_REFCLK) ? 0 : src,
SYMCLK32_SE3_EN, (src == SYMCLK32_SE_REFCLK) ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static int
dccg35_is_symclk32_se_src_functional_le_new(struct dccg *dccg, int symclk_32_se_inst, int symclk_32_le_inst)
{
uint32_t en;
uint32_t src_sel;
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_GET_2(SYMCLK32_SE_CNTL, SYMCLK32_SE3_SRC_SEL, &src_sel, SYMCLK32_SE3_EN, &en);
if (en == 1 && src_sel == symclk_32_le_inst)
return 1;
return 0;
}
static void dccg35_set_symclk32_le_src_new(
struct dccg *dccg,
int inst,
enum symclk32_le_clk_source src)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE_2(SYMCLK32_LE_CNTL,
SYMCLK32_LE0_SRC_SEL, (src == SYMCLK32_LE_REFCLK) ? 0 : src,
SYMCLK32_LE0_EN, (src == SYMCLK32_LE_REFCLK) ? 0 : 1);
break;
case 1:
REG_UPDATE_2(SYMCLK32_LE_CNTL,
SYMCLK32_LE1_SRC_SEL, (src == SYMCLK32_LE_REFCLK) ? 0 : src,
SYMCLK32_LE1_EN, (src == SYMCLK32_LE_REFCLK) ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dcn35_set_dppclk_src_new(struct dccg *dccg,
int inst, enum dppclk_clock_source src)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE(DPPCLK_CTRL, DPPCLK0_EN, src);
break;
case 1:
REG_UPDATE(DPPCLK_CTRL, DPPCLK1_EN, src);
break;
case 2:
REG_UPDATE(DPPCLK_CTRL, DPPCLK2_EN, src);
break;
case 3:
REG_UPDATE(DPPCLK_CTRL, DPPCLK3_EN, src);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void dccg35_set_dtbclk_p_src_new(
struct dccg *dccg,
enum dtbclk_source src,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* If DTBCLK_P#_EN is 0 refclock is selected as functional clock
* If DTBCLK_P#_EN is 1 functional clock is selected as DTBCLK_P#_SRC_SEL
*/
switch (inst) {
case 0:
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P0_SRC_SEL, (src == DTBCLK_REFCLK) ? 0 : src,
DTBCLK_P0_EN, (src == DTBCLK_REFCLK) ? 0 : 1);
break;
case 1:
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P1_SRC_SEL, (src == DTBCLK_REFCLK) ? 0 : src,
DTBCLK_P1_EN, (src == DTBCLK_REFCLK) ? 0 : 1);
break;
case 2:
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P2_SRC_SEL, (src == DTBCLK_REFCLK) ? 0 : src,
DTBCLK_P2_EN, (src == DTBCLK_REFCLK) ? 0 : 1);
break;
case 3:
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P3_SRC_SEL, (src == DTBCLK_REFCLK) ? 0 : src,
DTBCLK_P3_EN, (src == DTBCLK_REFCLK) ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_dpstreamclk_src_new(
struct dccg *dccg,
enum dp_stream_clk_source src,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK0_EN,
(src == DP_STREAM_REFCLK) ? 0 : 1,
DPSTREAMCLK0_SRC_SEL,
(src == DP_STREAM_REFCLK) ? 0 : src);
break;
case 1:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK1_EN,
(src == DP_STREAM_REFCLK) ? 0 : 1,
DPSTREAMCLK1_SRC_SEL,
(src == DP_STREAM_REFCLK) ? 0 : src);
break;
case 2:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK2_EN,
(src == DP_STREAM_REFCLK) ? 0 : 1,
DPSTREAMCLK2_SRC_SEL,
(src == DP_STREAM_REFCLK) ? 0 : src);
break;
case 3:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK3_EN,
(src == DP_STREAM_REFCLK) ? 0 : 1,
DPSTREAMCLK3_SRC_SEL,
(src == DP_STREAM_REFCLK) ? 0 : src);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_physymclk_src_new(
struct dccg *dccg,
enum physymclk_source src,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL, PHYASYMCLK_EN,
(src == PHYSYMCLK_REFCLK) ? 0 : 1,
PHYASYMCLK_SRC_SEL,
(src == PHYSYMCLK_REFCLK) ? 0 : src);
break;
case 1:
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL, PHYBSYMCLK_EN,
(src == PHYSYMCLK_REFCLK) ? 0 : 1,
PHYBSYMCLK_SRC_SEL,
(src == PHYSYMCLK_REFCLK) ? 0 : src);
break;
case 2:
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL, PHYCSYMCLK_EN,
(src == PHYSYMCLK_REFCLK) ? 0 : 1,
PHYCSYMCLK_SRC_SEL,
(src == PHYSYMCLK_REFCLK) ? 0 : src);
break;
case 3:
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL, PHYDSYMCLK_EN,
(src == PHYSYMCLK_REFCLK) ? 0 : 1,
PHYDSYMCLK_SRC_SEL,
(src == PHYSYMCLK_REFCLK) ? 0 : src);
break;
case 4:
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL, PHYESYMCLK_EN,
(src == PHYSYMCLK_REFCLK) ? 0 : 1,
PHYESYMCLK_SRC_SEL,
(src == PHYSYMCLK_REFCLK) ? 0 : src);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_symclk_be_src_new(
struct dccg *dccg,
enum symclk_be_source src,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_CLOCK_ENABLE, (src == SYMCLK_BE_REFCLK) ? 0 : 1,
SYMCLKA_SRC_SEL, (src == SYMCLK_BE_REFCLK) ? 0 : src);
break;
case 1:
REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_CLOCK_ENABLE, (src == SYMCLK_BE_REFCLK) ? 0 : 1,
SYMCLKB_SRC_SEL, (src == SYMCLK_BE_REFCLK) ? 0 : src);
break;
case 2:
REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_CLOCK_ENABLE, (src == SYMCLK_BE_REFCLK) ? 0 : 1,
SYMCLKC_SRC_SEL, (src == SYMCLK_BE_REFCLK) ? 0 : src);
break;
case 3:
REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_CLOCK_ENABLE, (src == SYMCLK_BE_REFCLK) ? 0 : 1,
SYMCLKD_SRC_SEL, (src == SYMCLK_BE_REFCLK) ? 0 : src);
break;
case 4:
REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_CLOCK_ENABLE, (src == SYMCLK_BE_REFCLK) ? 0 : 1,
SYMCLKE_SRC_SEL, (src == SYMCLK_BE_REFCLK) ? 0 : src);
break;
}
}
static int dccg35_is_symclk_fe_src_functional_be(struct dccg *dccg,
int symclk_fe_inst,
int symclk_be_inst)
{
uint32_t en = 0;
uint32_t src_sel = 0;
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (symclk_fe_inst) {
case 0:
REG_GET_2(SYMCLKA_CLOCK_ENABLE, SYMCLKA_FE_SRC_SEL, &src_sel, SYMCLKA_FE_EN, &en);
break;
case 1:
REG_GET_2(SYMCLKB_CLOCK_ENABLE, SYMCLKB_FE_SRC_SEL, &src_sel, SYMCLKB_FE_EN, &en);
break;
case 2:
REG_GET_2(SYMCLKC_CLOCK_ENABLE, SYMCLKC_FE_SRC_SEL, &src_sel, SYMCLKC_FE_EN, &en);
break;
case 3:
REG_GET_2(SYMCLKD_CLOCK_ENABLE, SYMCLKD_FE_SRC_SEL, &src_sel, SYMCLKD_FE_EN, &en);
break;
case 4:
REG_GET_2(SYMCLKE_CLOCK_ENABLE, SYMCLKE_FE_SRC_SEL, &src_sel, SYMCLKE_FE_EN, &en);
break;
}
if (en == 1 && src_sel == symclk_be_inst)
return 1;
return 0;
}
static void dccg35_set_symclk_fe_src_new(struct dccg *dccg, enum symclk_fe_source src, int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_FE_EN, (src == SYMCLK_FE_REFCLK) ? 0 : 1,
SYMCLKA_FE_SRC_SEL, (src == SYMCLK_FE_REFCLK) ? 0 : src);
break;
case 1:
REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_FE_EN, (src == SYMCLK_FE_REFCLK) ? 0 : 1,
SYMCLKB_FE_SRC_SEL, (src == SYMCLK_FE_REFCLK) ? 0 : src);
break;
case 2:
REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_FE_EN, (src == SYMCLK_FE_REFCLK) ? 0 : 1,
SYMCLKC_FE_SRC_SEL, (src == SYMCLK_FE_REFCLK) ? 0 : src);
break;
case 3:
REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_FE_EN, (src == SYMCLK_FE_REFCLK) ? 0 : 1,
SYMCLKD_FE_SRC_SEL, (src == SYMCLK_FE_REFCLK) ? 0 : src);
break;
case 4:
REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_FE_EN, (src == SYMCLK_FE_REFCLK) ? 0 : 1,
SYMCLKE_FE_SRC_SEL, (src == SYMCLK_FE_REFCLK) ? 0 : src);
break;
}
}
static uint32_t dccg35_is_fe_rcg(struct dccg *dccg, int inst)
{
uint32_t enable = 0;
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_GET(DCCG_GATE_DISABLE_CNTL5,
SYMCLKA_FE_ROOT_GATE_DISABLE, &enable);
break;
case 1:
REG_GET(DCCG_GATE_DISABLE_CNTL5,
SYMCLKB_FE_ROOT_GATE_DISABLE, &enable);
break;
case 2:
REG_GET(DCCG_GATE_DISABLE_CNTL5,
SYMCLKC_FE_ROOT_GATE_DISABLE, &enable);
break;
case 3:
REG_GET(DCCG_GATE_DISABLE_CNTL5,
SYMCLKD_FE_ROOT_GATE_DISABLE, &enable);
break;
case 4:
REG_GET(DCCG_GATE_DISABLE_CNTL5,
SYMCLKE_FE_ROOT_GATE_DISABLE, &enable);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
return enable;
}
static uint32_t dccg35_is_symclk32_se_rcg(struct dccg *dccg, int inst)
{
uint32_t disable_l1 = 0;
uint32_t disable_l2 = 0;
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (inst) {
case 0:
REG_GET_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, &disable_l1,
SYMCLK32_ROOT_SE0_GATE_DISABLE, &disable_l2);
break;
case 1:
REG_GET_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, &disable_l1,
SYMCLK32_ROOT_SE1_GATE_DISABLE, &disable_l2);
break;
case 2:
REG_GET_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, &disable_l1,
SYMCLK32_ROOT_SE2_GATE_DISABLE, &disable_l2);
break;
case 3:
REG_GET_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, &disable_l1,
SYMCLK32_ROOT_SE3_GATE_DISABLE, &disable_l2);
break;
default:
BREAK_TO_DEBUGGER();
return 0;
}
/* return true if either block level or DCCG level gating is active */
return (disable_l1 | disable_l2);
}
static void dccg35_enable_symclk_fe_new(
struct dccg *dccg,
int inst,
enum symclk_fe_source src)
{
dccg35_set_symclk_fe_rcg(dccg, inst, false);
dccg35_set_symclk_fe_src_new(dccg, src, inst);
}
static void dccg35_disable_symclk_fe_new(
struct dccg *dccg,
int inst)
{
dccg35_set_symclk_fe_src_new(dccg, SYMCLK_FE_REFCLK, inst);
dccg35_set_symclk_fe_rcg(dccg, inst, true);
}
static void dccg35_enable_symclk_be_new(
struct dccg *dccg,
int inst,
enum symclk_be_source src)
{
dccg35_set_symclk_be_rcg(dccg, inst, false);
dccg35_set_symclk_be_src_new(dccg, inst, src);
}
static void dccg35_disable_symclk_be_new(
struct dccg *dccg,
int inst)
{
int i;
/* Switch from functional clock to refclock */
dccg35_set_symclk_be_src_new(dccg, inst, SYMCLK_BE_REFCLK);
/* Check if any other SE connected LE and disable them */
for (i = 0; i < 4; i++) {
/* Make sure FE is not already in RCG */
if (dccg35_is_fe_rcg(dccg, i) == 0) {
if (dccg35_is_symclk_fe_src_functional_be(dccg, i, inst))
dccg35_disable_symclk_fe_new(dccg, i);
}
}
/* Safe to RCG SYMCLK*/
dccg35_set_symclk_be_rcg(dccg, inst, true);
}
static void dccg35_enable_symclk32_se_new(
struct dccg *dccg,
int inst,
enum symclk32_se_clk_source src)
{
dccg35_set_symclk32_se_rcg(dccg, inst, false);
dccg35_set_symclk32_se_src_new(dccg, inst, src);
}
static void dccg35_disable_symclk32_se_new(
struct dccg *dccg,
int inst)
{
dccg35_set_symclk32_se_src_new(dccg, SYMCLK32_SE_REFCLK, inst);
dccg35_set_symclk32_se_rcg(dccg, inst, true);
}
static void dccg35_enable_symclk32_le_new(
struct dccg *dccg,
int inst,
enum symclk32_le_clk_source src)
{
dccg35_set_symclk32_le_rcg(dccg, inst, false);
dccg35_set_symclk32_le_src_new(dccg, inst, src);
}
static void dccg35_disable_symclk32_le_new(
struct dccg *dccg,
int inst)
{
int i;
/* Switch from functional clock to refclock */
dccg35_set_symclk32_le_src_new(dccg, inst, SYMCLK32_LE_REFCLK);
/* Check if any SE are connected and disable SE as well */
for (i = 0; i < 4; i++) {
/* Make sure FE is not already in RCG */
if (dccg35_is_symclk32_se_rcg(dccg, i) == 0) {
/* Disable and SE connected to this LE before RCG */
if (dccg35_is_symclk32_se_src_functional_le_new(dccg, i, inst))
dccg35_disable_symclk32_se_new(dccg, i);
}
}
/* Safe to RCG SYM32_LE*/
dccg35_set_symclk32_le_rcg(dccg, inst, true);
}
static void dccg35_enable_physymclk_new(struct dccg *dccg,
int inst,
enum physymclk_source src)
{
dccg35_set_physymclk_rcg(dccg, inst, false);
dccg35_set_physymclk_src_new(dccg, src, inst);
}
static void dccg35_disable_physymclk_new(struct dccg *dccg,
int inst)
{
dccg35_set_physymclk_src_new(dccg, PHYSYMCLK_REFCLK, inst);
dccg35_set_physymclk_rcg(dccg, inst, true);
}
static void dccg35_enable_dpp_clk_new(
struct dccg *dccg,
int inst,
enum dppclk_clock_source src)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* Sanitize inst before use in array de-ref */
if (inst < 0) {
BREAK_TO_DEBUGGER();
return;
}
dccg35_set_dppclk_rcg(dccg, inst, false);
dcn35_set_dppclk_src_new(dccg, inst, src);
/* Switch DPP clock to DTO */
REG_SET_2(DPPCLK_DTO_PARAM[inst], 0,
DPPCLK0_DTO_PHASE, 0xFF,
DPPCLK0_DTO_MODULO, 0xFF);
}
static void dccg35_disable_dpp_clk_new(
struct dccg *dccg,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* Sanitize inst before use in array de-ref */
if (inst < 0) {
BREAK_TO_DEBUGGER();
return;
}
dcn35_set_dppclk_src_new(dccg, inst, DPP_REFCLK);
REG_SET_2(DPPCLK_DTO_PARAM[inst], 0,
DPPCLK0_DTO_PHASE, 0,
DPPCLK0_DTO_MODULO, 1);
dccg35_set_dppclk_rcg(dccg, inst, true);
}
static void dccg35_disable_dscclk_new(struct dccg *dccg,
int inst)
{
dccg35_set_dsc_clk_src_new(dccg, inst, DSC_CLK_REF_CLK);
dccg35_set_dsc_clk_rcg(dccg, inst, true);
}
static void dccg35_enable_dscclk_new(struct dccg *dccg,
int inst,
enum dsc_clk_source src)
{
dccg35_set_dsc_clk_rcg(dccg, inst, false);
dccg35_set_dsc_clk_src_new(dccg, inst, src);
}
static void dccg35_enable_dtbclk_p_new(struct dccg *dccg,
enum dtbclk_source src,
int inst)
{
dccg35_set_dtbclk_p_rcg(dccg, inst, false);
dccg35_set_dtbclk_p_src_new(dccg, src, inst);
}
static void dccg35_disable_dtbclk_p_new(struct dccg *dccg,
int inst)
{
dccg35_set_dtbclk_p_src_new(dccg, DTBCLK_REFCLK, inst);
dccg35_set_dtbclk_p_rcg(dccg, inst, true);
}
static void dccg35_disable_dpstreamclk_new(struct dccg *dccg,
int inst)
{
dccg35_set_dpstreamclk_src_new(dccg, DP_STREAM_REFCLK, inst);
dccg35_set_dpstreamclk_rcg(dccg, inst, true);
}
static void dccg35_enable_dpstreamclk_new(struct dccg *dccg,
enum dp_stream_clk_source src,
int inst)
{
dccg35_set_dpstreamclk_rcg(dccg, inst, false);
dccg35_set_dpstreamclk_src_new(dccg, src, inst);
}
static void dccg35_trigger_dio_fifo_resync(struct dccg *dccg)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t dispclk_rdivider_value = 0;
REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_RDIVIDER, &dispclk_rdivider_value);
if (dispclk_rdivider_value != 0)
REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, dispclk_rdivider_value);
}
static void dcn35_set_dppclk_enable(struct dccg *dccg,
uint32_t dpp_inst, uint32_t enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (dpp_inst) {
case 0:
REG_UPDATE(DPPCLK_CTRL, DPPCLK0_EN, enable);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK0_ROOT_GATE_DISABLE, enable);
break;
case 1:
REG_UPDATE(DPPCLK_CTRL, DPPCLK1_EN, enable);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK1_ROOT_GATE_DISABLE, enable);
break;
case 2:
REG_UPDATE(DPPCLK_CTRL, DPPCLK2_EN, enable);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK2_ROOT_GATE_DISABLE, enable);
break;
case 3:
REG_UPDATE(DPPCLK_CTRL, DPPCLK3_EN, enable);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK3_ROOT_GATE_DISABLE, enable);
break;
default:
break;
}
}
static void dccg35_update_dpp_dto(struct dccg *dccg, int dpp_inst,
int req_dppclk)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->dpp_clock_gated[dpp_inst]) {
/*
* Do not update the DPPCLK DTO if the clock is stopped.
*/
return;
}
if (dccg->ref_dppclk && req_dppclk) {
int ref_dppclk = dccg->ref_dppclk;
int modulo, phase;
// phase / modulo = dpp pipe clk / dpp global clk
modulo = 0xff; // use FF at the end
phase = ((modulo * req_dppclk) + ref_dppclk - 1) / ref_dppclk;
if (phase > 0xff) {
ASSERT(false);
phase = 0xff;
}
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, phase,
DPPCLK0_DTO_MODULO, modulo);
dcn35_set_dppclk_enable(dccg, dpp_inst, true);
} else
dcn35_set_dppclk_enable(dccg, dpp_inst, false);
dccg->pipe_dppclk_khz[dpp_inst] = req_dppclk;
}
static void dccg35_set_dppclk_root_clock_gating(struct dccg *dccg,
uint32_t dpp_inst, uint32_t enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dpp)
return;
switch (dpp_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK0_ROOT_GATE_DISABLE, enable);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK1_ROOT_GATE_DISABLE, enable);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK2_ROOT_GATE_DISABLE, enable);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK3_ROOT_GATE_DISABLE, enable);
break;
default:
break;
}
}
static void dccg35_get_pixel_rate_div(
struct dccg *dccg,
uint32_t otg_inst,
uint32_t *k1,
uint32_t *k2)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t val_k1 = PIXEL_RATE_DIV_NA, val_k2 = PIXEL_RATE_DIV_NA;
*k1 = PIXEL_RATE_DIV_NA;
*k2 = PIXEL_RATE_DIV_NA;
switch (otg_inst) {
case 0:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG0_PIXEL_RATE_DIVK1, &val_k1,
OTG0_PIXEL_RATE_DIVK2, &val_k2);
break;
case 1:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG1_PIXEL_RATE_DIVK1, &val_k1,
OTG1_PIXEL_RATE_DIVK2, &val_k2);
break;
case 2:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG2_PIXEL_RATE_DIVK1, &val_k1,
OTG2_PIXEL_RATE_DIVK2, &val_k2);
break;
case 3:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG3_PIXEL_RATE_DIVK1, &val_k1,
OTG3_PIXEL_RATE_DIVK2, &val_k2);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
*k1 = val_k1;
*k2 = val_k2;
}
static void dccg35_set_pixel_rate_div(
struct dccg *dccg,
uint32_t otg_inst,
enum pixel_rate_div k1,
enum pixel_rate_div k2)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t cur_k1 = PIXEL_RATE_DIV_NA;
uint32_t cur_k2 = PIXEL_RATE_DIV_NA;
// Don't program 0xF into the register field. Not valid since
// K1 / K2 field is only 1 / 2 bits wide
if (k1 == PIXEL_RATE_DIV_NA || k2 == PIXEL_RATE_DIV_NA) {
BREAK_TO_DEBUGGER();
return;
}
dccg35_get_pixel_rate_div(dccg, otg_inst, &cur_k1, &cur_k2);
if (k1 == cur_k1 && k2 == cur_k2)
return;
switch (otg_inst) {
case 0:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG0_PIXEL_RATE_DIVK1, k1,
OTG0_PIXEL_RATE_DIVK2, k2);
break;
case 1:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG1_PIXEL_RATE_DIVK1, k1,
OTG1_PIXEL_RATE_DIVK2, k2);
break;
case 2:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG2_PIXEL_RATE_DIVK1, k1,
OTG2_PIXEL_RATE_DIVK2, k2);
break;
case 3:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG3_PIXEL_RATE_DIVK1, k1,
OTG3_PIXEL_RATE_DIVK2, k2);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_dtbclk_p_src(
struct dccg *dccg,
enum streamclk_source src,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t p_src_sel = 0; /* selects dprefclk */
if (src == DTBCLK0)
p_src_sel = 2; /* selects dtbclk0 */
switch (otg_inst) {
case 0:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P0_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P0_SRC_SEL, p_src_sel,
DTBCLK_P0_EN, 1);
break;
case 1:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P1_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P1_SRC_SEL, p_src_sel,
DTBCLK_P1_EN, 1);
break;
case 2:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P2_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P2_SRC_SEL, p_src_sel,
DTBCLK_P2_EN, 1);
break;
case 3:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P3_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P3_SRC_SEL, p_src_sel,
DTBCLK_P3_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
/* Controls the generation of pixel valid for OTG in (OTG -> HPO case) */
static void dccg35_set_dtbclk_dto(
struct dccg *dccg,
const struct dtbclk_dto_params *params)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* DTO Output Rate / Pixel Rate = 1/4 */
int req_dtbclk_khz = params->pixclk_khz / 4;
if (params->ref_dtbclk_khz && req_dtbclk_khz) {
uint32_t modulo, phase;
switch (params->otg_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, 1);
break;
}
// phase / modulo = dtbclk / dtbclk ref
modulo = params->ref_dtbclk_khz * 1000;
phase = req_dtbclk_khz * 1000;
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 1);
REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1,
1, 100);
/* program OTG_PIXEL_RATE_DIV for DIVK1 and DIVK2 fields */
dccg35_set_pixel_rate_div(dccg, params->otg_inst, PIXEL_RATE_DIV_BY_1, PIXEL_RATE_DIV_BY_1);
/* The recommended programming sequence to enable DTBCLK DTO to generate
* valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should
* be set only after DTO is enabled
*/
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
PIPE_DTO_SRC_SEL[params->otg_inst], 2);
} else {
switch (params->otg_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, 0);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, 0);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, 0);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, 0);
break;
}
REG_UPDATE_2(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 0,
PIPE_DTO_SRC_SEL[params->otg_inst], params->is_hdmi ? 0 : 1);
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0);
}
}
static void dccg35_set_dpstreamclk(
struct dccg *dccg,
enum streamclk_source src,
int otg_inst,
int dp_hpo_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set the dtbclk_p source */
dccg35_set_dtbclk_p_src(dccg, src, otg_inst);
/* enabled to select one of the DTBCLKs for pipe */
switch (dp_hpo_inst) {
case 0:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK0_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK0_SRC_SEL, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK0_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1);
break;
case 1:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK1_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK1_SRC_SEL, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK1_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1);
break;
case 2:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK2_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK2_SRC_SEL, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK2_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1);
break;
case 3:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK3_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK3_SRC_SEL, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK3_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_dpstreamclk_root_clock_gating(
struct dccg *dccg,
int dp_hpo_inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (dp_hpo_inst) {
case 0:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK0_ROOT_GATE_DISABLE, enable ? 1 : 0);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK0_GATE_DISABLE, enable ? 1 : 0);
}
break;
case 1:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK1_ROOT_GATE_DISABLE, enable ? 1 : 0);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK1_GATE_DISABLE, enable ? 1 : 0);
}
break;
case 2:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK2_ROOT_GATE_DISABLE, enable ? 1 : 0);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK2_GATE_DISABLE, enable ? 1 : 0);
}
break;
case 3:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK3_ROOT_GATE_DISABLE, enable ? 1 : 0);
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK3_GATE_DISABLE, enable ? 1 : 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_physymclk_root_clock_gating(
struct dccg *dccg,
int phy_inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
return;
switch (phy_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYASYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYBSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYCSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYDSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 4:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYESYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_physymclk(
struct dccg *dccg,
int phy_inst,
enum physymclk_clock_source clk_src,
bool force_enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* Force PHYSYMCLK on and Select phyd32clk as the source of clock which is output to PHY through DCIO */
switch (phy_inst) {
case 0:
if (force_enable) {
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL,
PHYASYMCLK_EN, 1,
PHYASYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL,
PHYASYMCLK_EN, 0,
PHYASYMCLK_SRC_SEL, 0);
}
break;
case 1:
if (force_enable) {
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL,
PHYBSYMCLK_EN, 1,
PHYBSYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL,
PHYBSYMCLK_EN, 0,
PHYBSYMCLK_SRC_SEL, 0);
}
break;
case 2:
if (force_enable) {
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL,
PHYCSYMCLK_EN, 1,
PHYCSYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL,
PHYCSYMCLK_EN, 0,
PHYCSYMCLK_SRC_SEL, 0);
}
break;
case 3:
if (force_enable) {
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL,
PHYDSYMCLK_EN, 1,
PHYDSYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL,
PHYDSYMCLK_EN, 0,
PHYDSYMCLK_SRC_SEL, 0);
}
break;
case 4:
if (force_enable) {
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL,
PHYESYMCLK_EN, 1,
PHYESYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL,
PHYESYMCLK_EN, 0,
PHYESYMCLK_SRC_SEL, 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_valid_pixel_rate(
struct dccg *dccg,
int ref_dtbclk_khz,
int otg_inst,
int pixclk_khz)
{
struct dtbclk_dto_params dto_params = {0};
dto_params.ref_dtbclk_khz = ref_dtbclk_khz;
dto_params.otg_inst = otg_inst;
dto_params.pixclk_khz = pixclk_khz;
dto_params.is_hdmi = true;
dccg35_set_dtbclk_dto(dccg, &dto_params);
}
static void dccg35_dpp_root_clock_control(
struct dccg *dccg,
unsigned int dpp_inst,
bool clock_on)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->dpp_clock_gated[dpp_inst] == clock_on)
return;
if (clock_on) {
/* turn off the DTO and leave phase/modulo at max */
dcn35_set_dppclk_enable(dccg, dpp_inst, 1);
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, 0xFF,
DPPCLK0_DTO_MODULO, 0xFF);
} else {
dcn35_set_dppclk_enable(dccg, dpp_inst, 0);
/* turn on the DTO to generate a 0hz clock */
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, 0,
DPPCLK0_DTO_MODULO, 1);
}
dccg->dpp_clock_gated[dpp_inst] = !clock_on;
}
static void dccg35_disable_symclk32_se(
struct dccg *dccg,
int hpo_se_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set refclk as the source for symclk32_se */
switch (hpo_se_inst) {
case 0:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE0_SRC_SEL, 0,
SYMCLK32_SE0_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE0_GATE_DISABLE, 0);
}
break;
case 1:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE1_SRC_SEL, 0,
SYMCLK32_SE1_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE1_GATE_DISABLE, 0);
}
break;
case 2:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE2_SRC_SEL, 0,
SYMCLK32_SE2_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE2_GATE_DISABLE, 0);
}
break;
case 3:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE3_SRC_SEL, 0,
SYMCLK32_SE3_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE3_GATE_DISABLE, 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_init_cb(struct dccg *dccg)
{
(void)dccg;
/* Any RCG should be done when driver enter low power mode*/
}
void dccg35_init(struct dccg *dccg)
{
int otg_inst;
/* Set HPO stream encoder to use refclk to avoid case where PHY is
* disabled and SYMCLK32 for HPO SE is sourced from PHYD32CLK which
* will cause DCN to hang.
*/
for (otg_inst = 0; otg_inst < 4; otg_inst++)
dccg35_disable_symclk32_se(dccg, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
for (otg_inst = 0; otg_inst < 2; otg_inst++) {
dccg31_disable_symclk32_le(dccg, otg_inst);
dccg31_set_symclk32_le_root_clock_gating(dccg, otg_inst, false);
}
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
// for (otg_inst = 0; otg_inst < 4; otg_inst++)
// dccg35_disable_symclk_se(dccg, otg_inst, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
for (otg_inst = 0; otg_inst < 4; otg_inst++) {
dccg35_set_dpstreamclk(dccg, REFCLK, otg_inst,
otg_inst);
dccg35_set_dpstreamclk_root_clock_gating(dccg, otg_inst, false);
}
/*
dccg35_enable_global_fgcg_rep(
dccg, dccg->ctx->dc->debug.enable_fine_grain_clock_gating.bits
.dccg_global_fgcg_rep);*/
}
void dccg35_enable_global_fgcg_rep(struct dccg *dccg, bool value)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(DCCG_GLOBAL_FGCG_REP_CNTL, DCCG_GLOBAL_FGCG_REP_DIS, !value);
}
static void dccg35_enable_dscclk(struct dccg *dccg, int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
//Disable DTO
switch (inst) {
case 0:
REG_UPDATE_2(DSCCLK0_DTO_PARAM,
DSCCLK0_DTO_PHASE, 0,
DSCCLK0_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK0_ROOT_GATE_DISABLE, 1);
break;
case 1:
REG_UPDATE_2(DSCCLK1_DTO_PARAM,
DSCCLK1_DTO_PHASE, 0,
DSCCLK1_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK1_ROOT_GATE_DISABLE, 1);
break;
case 2:
REG_UPDATE_2(DSCCLK2_DTO_PARAM,
DSCCLK2_DTO_PHASE, 0,
DSCCLK2_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK2_ROOT_GATE_DISABLE, 1);
break;
case 3:
REG_UPDATE_2(DSCCLK3_DTO_PARAM,
DSCCLK3_DTO_PHASE, 0,
DSCCLK3_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK3_ROOT_GATE_DISABLE, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_disable_dscclk(struct dccg *dccg,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
return;
switch (inst) {
case 0:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, 0);
REG_UPDATE_2(DSCCLK0_DTO_PARAM,
DSCCLK0_DTO_PHASE, 0,
DSCCLK0_DTO_MODULO, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK0_ROOT_GATE_DISABLE, 0);
break;
case 1:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, 0);
REG_UPDATE_2(DSCCLK1_DTO_PARAM,
DSCCLK1_DTO_PHASE, 0,
DSCCLK1_DTO_MODULO, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK1_ROOT_GATE_DISABLE, 0);
break;
case 2:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, 0);
REG_UPDATE_2(DSCCLK2_DTO_PARAM,
DSCCLK2_DTO_PHASE, 0,
DSCCLK2_DTO_MODULO, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK2_ROOT_GATE_DISABLE, 0);
break;
case 3:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, 0);
REG_UPDATE_2(DSCCLK3_DTO_PARAM,
DSCCLK3_DTO_PHASE, 0,
DSCCLK3_DTO_MODULO, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK3_ROOT_GATE_DISABLE, 0);
break;
default:
return;
}
}
static void dccg35_enable_symclk_se(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (link_enc_inst) {
case 0:
REG_UPDATE(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_CLOCK_ENABLE, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_ROOT_GATE_DISABLE, 1);
break;
case 1:
REG_UPDATE(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_CLOCK_ENABLE, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_ROOT_GATE_DISABLE, 1);
break;
case 2:
REG_UPDATE(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_CLOCK_ENABLE, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_ROOT_GATE_DISABLE, 1);
break;
case 3:
REG_UPDATE(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_CLOCK_ENABLE, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_ROOT_GATE_DISABLE, 1);
break;
case 4:
REG_UPDATE(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_CLOCK_ENABLE, 1);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_ROOT_GATE_DISABLE, 1);
break;
}
switch (stream_enc_inst) {
case 0:
REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_FE_EN, 1,
SYMCLKA_FE_SRC_SEL, link_enc_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_FE_ROOT_GATE_DISABLE, 1);
break;
case 1:
REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_FE_EN, 1,
SYMCLKB_FE_SRC_SEL, link_enc_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_FE_ROOT_GATE_DISABLE, 1);
break;
case 2:
REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_FE_EN, 1,
SYMCLKC_FE_SRC_SEL, link_enc_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_FE_ROOT_GATE_DISABLE, 1);
break;
case 3:
REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_FE_EN, 1,
SYMCLKD_FE_SRC_SEL, link_enc_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_FE_ROOT_GATE_DISABLE, 1);
break;
case 4:
REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_FE_EN, 1,
SYMCLKE_FE_SRC_SEL, link_enc_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_FE_ROOT_GATE_DISABLE, 1);
break;
}
}
/*get other front end connected to this backend*/
static uint8_t dccg35_get_number_enabled_symclk_fe_connected_to_be(struct dccg *dccg, uint32_t link_enc_inst)
{
uint8_t num_enabled_symclk_fe = 0;
uint32_t fe_clk_en[5] = {0}, be_clk_sel[5] = {0};
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_GET_2(SYMCLKA_CLOCK_ENABLE, SYMCLKA_FE_EN, &fe_clk_en[0],
SYMCLKA_FE_SRC_SEL, &be_clk_sel[0]);
REG_GET_2(SYMCLKB_CLOCK_ENABLE, SYMCLKB_FE_EN, &fe_clk_en[1],
SYMCLKB_FE_SRC_SEL, &be_clk_sel[1]);
REG_GET_2(SYMCLKC_CLOCK_ENABLE, SYMCLKC_FE_EN, &fe_clk_en[2],
SYMCLKC_FE_SRC_SEL, &be_clk_sel[2]);
REG_GET_2(SYMCLKD_CLOCK_ENABLE, SYMCLKD_FE_EN, &fe_clk_en[3],
SYMCLKD_FE_SRC_SEL, &be_clk_sel[3]);
REG_GET_2(SYMCLKE_CLOCK_ENABLE, SYMCLKE_FE_EN, &fe_clk_en[4],
SYMCLKE_FE_SRC_SEL, &be_clk_sel[4]);
uint8_t i;
for (i = 0; i < ARRAY_SIZE(fe_clk_en); i++) {
if (fe_clk_en[i] && be_clk_sel[i] == link_enc_inst)
num_enabled_symclk_fe++;
}
return num_enabled_symclk_fe;
}
static void dccg35_disable_symclk_se(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst)
{
uint8_t num_enabled_symclk_fe = 0;
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (stream_enc_inst) {
case 0:
REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_FE_EN, 0,
SYMCLKA_FE_SRC_SEL, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_FE_ROOT_GATE_DISABLE, 0);
break;
case 1:
REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_FE_EN, 0,
SYMCLKB_FE_SRC_SEL, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_FE_ROOT_GATE_DISABLE, 0);
break;
case 2:
REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_FE_EN, 0,
SYMCLKC_FE_SRC_SEL, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_FE_ROOT_GATE_DISABLE, 0);
break;
case 3:
REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_FE_EN, 0,
SYMCLKD_FE_SRC_SEL, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_FE_ROOT_GATE_DISABLE, 0);
break;
case 4:
REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_FE_EN, 0,
SYMCLKE_FE_SRC_SEL, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_FE_ROOT_GATE_DISABLE, 0);
break;
}
/*check other enabled symclk fe connected to this be */
num_enabled_symclk_fe = dccg35_get_number_enabled_symclk_fe_connected_to_be(dccg, link_enc_inst);
/*only turn off backend clk if other front end attached to this backend are all off,
for mst, only turn off the backend if this is the last front end*/
if (num_enabled_symclk_fe == 0) {
switch (link_enc_inst) {
case 0:
REG_UPDATE(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_CLOCK_ENABLE, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_ROOT_GATE_DISABLE, 0);
break;
case 1:
REG_UPDATE(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_CLOCK_ENABLE, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_ROOT_GATE_DISABLE, 0);
break;
case 2:
REG_UPDATE(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_CLOCK_ENABLE, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_ROOT_GATE_DISABLE, 0);
break;
case 3:
REG_UPDATE(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_CLOCK_ENABLE, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_ROOT_GATE_DISABLE, 0);
break;
case 4:
REG_UPDATE(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_CLOCK_ENABLE, 0);
// if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_ROOT_GATE_DISABLE, 0);
break;
}
}
}
static void dccg35_set_dpstreamclk_cb(
struct dccg *dccg,
enum streamclk_source src,
int otg_inst,
int dp_hpo_inst)
{
enum dtbclk_source dtb_clk_src;
enum dp_stream_clk_source dp_stream_clk_src;
switch (src) {
case REFCLK:
dtb_clk_src = DTBCLK_REFCLK;
dp_stream_clk_src = DP_STREAM_REFCLK;
break;
case DPREFCLK:
dtb_clk_src = DTBCLK_DPREFCLK;
dp_stream_clk_src = (enum dp_stream_clk_source)otg_inst;
break;
case DTBCLK0:
dtb_clk_src = DTBCLK_DTBCLK0;
dp_stream_clk_src = (enum dp_stream_clk_source)otg_inst;
break;
default:
BREAK_TO_DEBUGGER();
return;
}
if (dtb_clk_src == DTBCLK_REFCLK &&
dp_stream_clk_src == DP_STREAM_REFCLK) {
dccg35_disable_dtbclk_p_new(dccg, otg_inst);
dccg35_disable_dpstreamclk_new(dccg, dp_hpo_inst);
} else {
dccg35_enable_dtbclk_p_new(dccg, dtb_clk_src, otg_inst);
dccg35_enable_dpstreamclk_new(dccg,
dp_stream_clk_src,
dp_hpo_inst);
}
}
static void dccg35_set_dpstreamclk_root_clock_gating_cb(
struct dccg *dccg,
int dp_hpo_inst,
bool power_on)
{
/* power_on set indicates we need to ungate
* Currently called from optimize_bandwidth and prepare_bandwidth calls
* Since clock source is not passed restore to refclock on ungate
* Instance 0 is implied here since only one streamclock resource
* Redundant as gating when enabled is acheived through set_dpstreamclk
*/
if (power_on)
dccg35_enable_dpstreamclk_new(dccg,
DP_STREAM_REFCLK,
dp_hpo_inst);
else
dccg35_disable_dpstreamclk_new(dccg, dp_hpo_inst);
}
static void dccg35_update_dpp_dto_cb(struct dccg *dccg, int dpp_inst,
int req_dppclk)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->dpp_clock_gated[dpp_inst]) {
/*
* Do not update the DPPCLK DTO if the clock is stopped.
*/
return;
}
if (dccg->ref_dppclk && req_dppclk) {
int ref_dppclk = dccg->ref_dppclk;
int modulo, phase;
// phase / modulo = dpp pipe clk / dpp global clk
modulo = 0xff; // use FF at the end
phase = ((modulo * req_dppclk) + ref_dppclk - 1) / ref_dppclk;
if (phase > 0xff) {
ASSERT(false);
phase = 0xff;
}
/* Enable DPP CLK DTO output */
dccg35_enable_dpp_clk_new(dccg, dpp_inst, DPP_DCCG_DTO);
/* Program DTO */
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, phase,
DPPCLK0_DTO_MODULO, modulo);
} else
dccg35_disable_dpp_clk_new(dccg, dpp_inst);
dccg->pipe_dppclk_khz[dpp_inst] = req_dppclk;
}
static void dccg35_dpp_root_clock_control_cb(
struct dccg *dccg,
unsigned int dpp_inst,
bool power_on)
{
if (dccg->dpp_clock_gated[dpp_inst] == power_on)
return;
/* power_on set indicates we need to ungate
* Currently called from optimize_bandwidth and prepare_bandwidth calls
* Since clock source is not passed restore to refclock on ungate
* Redundant as gating when enabled is acheived through update_dpp_dto
*/
dccg35_set_dppclk_rcg(dccg, dpp_inst, !power_on);
dccg->dpp_clock_gated[dpp_inst] = !power_on;
}
static void dccg35_enable_symclk32_se_cb(
struct dccg *dccg,
int inst,
enum phyd32clk_clock_source phyd32clk)
{
dccg35_enable_symclk32_se_new(dccg, inst, (enum symclk32_se_clk_source)phyd32clk);
}
static void dccg35_disable_symclk32_se_cb(struct dccg *dccg, int inst)
{
dccg35_disable_symclk32_se_new(dccg, inst);
}
static void dccg35_enable_symclk32_le_cb(
struct dccg *dccg,
int inst,
enum phyd32clk_clock_source src)
{
dccg35_enable_symclk32_le_new(dccg, inst, (enum symclk32_le_clk_source) src);
}
static void dccg35_disable_symclk32_le_cb(struct dccg *dccg, int inst)
{
dccg35_disable_symclk32_le_new(dccg, inst);
}
static void dccg35_set_symclk32_le_root_clock_gating_cb(
struct dccg *dccg,
int inst,
bool power_on)
{
/* power_on set indicates we need to ungate
* Currently called from optimize_bandwidth and prepare_bandwidth calls
* Since clock source is not passed restore to refclock on ungate
* Redundant as gating when enabled is acheived through disable_symclk32_le
*/
if (power_on)
dccg35_enable_symclk32_le_new(dccg, inst, SYMCLK32_LE_REFCLK);
else
dccg35_disable_symclk32_le_new(dccg, inst);
}
static void dccg35_set_physymclk_cb(
struct dccg *dccg,
int inst,
enum physymclk_clock_source clk_src,
bool force_enable)
{
/* force_enable = 0 indicates we can switch to ref clock */
if (force_enable)
dccg35_enable_physymclk_new(dccg, inst, (enum physymclk_source)clk_src);
else
dccg35_disable_physymclk_new(dccg, inst);
}
static void dccg35_set_physymclk_root_clock_gating_cb(
struct dccg *dccg,
int inst,
bool power_on)
{
/* Redundant RCG already done in disable_physymclk
* power_on = 1 indicates we need to ungate
*/
if (power_on)
dccg35_enable_physymclk_new(dccg, inst, PHYSYMCLK_REFCLK);
else
dccg35_disable_physymclk_new(dccg, inst);
}
static void dccg35_set_symclk32_le_root_clock_gating(
struct dccg *dccg,
int inst,
bool power_on)
{
/* power_on set indicates we need to ungate
* Currently called from optimize_bandwidth and prepare_bandwidth calls
* Since clock source is not passed restore to refclock on ungate
* Redundant as gating when enabled is acheived through disable_symclk32_le
*/
if (power_on)
dccg35_enable_symclk32_le_new(dccg, inst, SYMCLK32_LE_REFCLK);
else
dccg35_disable_symclk32_le_new(dccg, inst);
}
static void dccg35_set_dtbclk_p_src_cb(
struct dccg *dccg,
enum streamclk_source src,
uint32_t inst)
{
if (src == DTBCLK0)
dccg35_enable_dtbclk_p_new(dccg, DTBCLK_DTBCLK0, inst);
else
dccg35_disable_dtbclk_p_new(dccg, inst);
}
static void dccg35_set_dtbclk_dto_cb(
struct dccg *dccg,
const struct dtbclk_dto_params *params)
{
/* set_dtbclk_p_src typ called earlier to switch to DTBCLK
* if params->ref_dtbclk_khz and req_dtbclk_khz are 0 switch to ref-clock
*/
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* DTO Output Rate / Pixel Rate = 1/4 */
int req_dtbclk_khz = params->pixclk_khz / 4;
if (params->ref_dtbclk_khz && req_dtbclk_khz) {
uint32_t modulo, phase;
dccg35_enable_dtbclk_p_new(dccg, DTBCLK_DTBCLK0, params->otg_inst);
// phase / modulo = dtbclk / dtbclk ref
modulo = params->ref_dtbclk_khz * 1000;
phase = req_dtbclk_khz * 1000;
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 1);
REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1,
1, 100);
/* program OTG_PIXEL_RATE_DIV for DIVK1 and DIVK2 fields */
dccg35_set_pixel_rate_div(dccg, params->otg_inst, PIXEL_RATE_DIV_BY_1, PIXEL_RATE_DIV_BY_1);
/* The recommended programming sequence to enable DTBCLK DTO to generate
* valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should
* be set only after DTO is enabled
*/
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
PIPE_DTO_SRC_SEL[params->otg_inst], 2);
} else {
dccg35_disable_dtbclk_p_new(dccg, params->otg_inst);
REG_UPDATE_2(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 0,
PIPE_DTO_SRC_SEL[params->otg_inst], params->is_hdmi ? 0 : 1);
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0);
}
}
static void dccg35_disable_dscclk_cb(struct dccg *dccg,
int inst)
{
dccg35_disable_dscclk_new(dccg, inst);
}
static void dccg35_enable_dscclk_cb(struct dccg *dccg, int inst)
{
dccg35_enable_dscclk_new(dccg, inst, DSC_DTO_TUNED_CK_GPU_DISCLK_3);
}
static void dccg35_enable_symclk_se_cb(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst)
{
/* Switch to functional clock if already not selected */
dccg35_enable_symclk_be_new(dccg, SYMCLK_BE_PHYCLK, link_enc_inst);
dccg35_enable_symclk_fe_new(dccg, stream_enc_inst, (enum symclk_fe_source) link_enc_inst);
}
static void dccg35_disable_symclk_se_cb(
struct dccg *dccg,
uint32_t stream_enc_inst,
uint32_t link_enc_inst)
{
dccg35_disable_symclk_fe_new(dccg, stream_enc_inst);
/* DMU PHY sequence switches SYMCLK_BE (link_enc_inst) to ref clock once PHY is turned off */
}
void dccg35_root_gate_disable_control(struct dccg *dccg, uint32_t pipe_idx, uint32_t disable_clock_gating)
{
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) {
dccg35_set_dppclk_root_clock_gating(dccg, pipe_idx, disable_clock_gating);
}
}
static const struct dccg_funcs dccg35_funcs_new = {
.update_dpp_dto = dccg35_update_dpp_dto_cb,
.dpp_root_clock_control = dccg35_dpp_root_clock_control_cb,
.get_dccg_ref_freq = dccg31_get_dccg_ref_freq,
.dccg_init = dccg35_init_cb,
.set_dpstreamclk = dccg35_set_dpstreamclk_cb,
.set_dpstreamclk_root_clock_gating = dccg35_set_dpstreamclk_root_clock_gating_cb,
.enable_symclk32_se = dccg35_enable_symclk32_se_cb,
.disable_symclk32_se = dccg35_disable_symclk32_se_cb,
.enable_symclk32_le = dccg35_enable_symclk32_le_cb,
.disable_symclk32_le = dccg35_disable_symclk32_le_cb,
.set_symclk32_le_root_clock_gating = dccg35_set_symclk32_le_root_clock_gating_cb,
.set_physymclk = dccg35_set_physymclk_cb,
.set_physymclk_root_clock_gating = dccg35_set_physymclk_root_clock_gating_cb,
.set_dtbclk_dto = dccg35_set_dtbclk_dto_cb,
.set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto,
.set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en,
.otg_add_pixel = dccg31_otg_add_pixel,
.otg_drop_pixel = dccg31_otg_drop_pixel,
.set_dispclk_change_mode = dccg31_set_dispclk_change_mode,
.disable_dsc = dccg35_disable_dscclk_cb,
.enable_dsc = dccg35_enable_dscclk_cb,
.set_pixel_rate_div = dccg35_set_pixel_rate_div,
.get_pixel_rate_div = dccg35_get_pixel_rate_div,
.trigger_dio_fifo_resync = dccg35_trigger_dio_fifo_resync,
.set_valid_pixel_rate = dccg35_set_valid_pixel_rate,
.enable_symclk_se = dccg35_enable_symclk_se_cb,
.disable_symclk_se = dccg35_disable_symclk_se_cb,
.set_dtbclk_p_src = dccg35_set_dtbclk_p_src_cb,
};
static const struct dccg_funcs dccg35_funcs = {
.update_dpp_dto = dccg35_update_dpp_dto,
.dpp_root_clock_control = dccg35_dpp_root_clock_control,
.get_dccg_ref_freq = dccg31_get_dccg_ref_freq,
.dccg_init = dccg35_init,
.set_dpstreamclk = dccg35_set_dpstreamclk,
.set_dpstreamclk_root_clock_gating = dccg35_set_dpstreamclk_root_clock_gating,
.enable_symclk32_se = dccg31_enable_symclk32_se,
.disable_symclk32_se = dccg35_disable_symclk32_se,
.enable_symclk32_le = dccg31_enable_symclk32_le,
.disable_symclk32_le = dccg31_disable_symclk32_le,
.set_symclk32_le_root_clock_gating = dccg31_set_symclk32_le_root_clock_gating,
.set_physymclk = dccg35_set_physymclk,
.set_physymclk_root_clock_gating = dccg35_set_physymclk_root_clock_gating,
.set_dtbclk_dto = dccg35_set_dtbclk_dto,
.set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto,
.set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en,
.otg_add_pixel = dccg31_otg_add_pixel,
.otg_drop_pixel = dccg31_otg_drop_pixel,
.set_dispclk_change_mode = dccg31_set_dispclk_change_mode,
.disable_dsc = dccg35_disable_dscclk,
.enable_dsc = dccg35_enable_dscclk,
.set_pixel_rate_div = dccg35_set_pixel_rate_div,
.get_pixel_rate_div = dccg35_get_pixel_rate_div,
.trigger_dio_fifo_resync = dccg35_trigger_dio_fifo_resync,
.set_valid_pixel_rate = dccg35_set_valid_pixel_rate,
.enable_symclk_se = dccg35_enable_symclk_se,
.disable_symclk_se = dccg35_disable_symclk_se,
.set_dtbclk_p_src = dccg35_set_dtbclk_p_src,
.dccg_root_gate_disable_control = dccg35_root_gate_disable_control,
};
struct dccg *dccg35_create(
struct dc_context *ctx,
const struct dccg_registers *regs,
const struct dccg_shift *dccg_shift,
const struct dccg_mask *dccg_mask)
{
struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL);
struct dccg *base;
if (dccg_dcn == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
(void)&dccg35_disable_symclk_be_new;
(void)&dccg35_set_symclk32_le_root_clock_gating;
(void)&dccg35_set_smclk32_se_rcg;
(void)&dccg35_funcs_new;
base = &dccg_dcn->base;
base->ctx = ctx;
base->funcs = &dccg35_funcs;
dccg_dcn->regs = regs;
dccg_dcn->dccg_shift = dccg_shift;
dccg_dcn->dccg_mask = dccg_mask;
return &dccg_dcn->base;
}