/*
* Copyright 2014 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <linux/pm_runtime.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_rlc.h"
#include "amdgpu_ras.h"
#include "amdgpu_reset.h"
#include "amdgpu_xcp.h"
#include "amdgpu_xgmi.h"
/* delay 0.1 second to enable gfx off feature */
#define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
#define GFX_OFF_NO_DELAY 0
/*
* GPU GFX IP block helpers function.
*/
int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
int pipe, int queue)
{
int bit = 0;
bit += mec * adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
bit += pipe * adev->gfx.mec.num_queue_per_pipe;
bit += queue;
return bit;
}
void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
int *mec, int *pipe, int *queue)
{
*queue = bit % adev->gfx.mec.num_queue_per_pipe;
*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
% adev->gfx.mec.num_pipe_per_mec;
*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
/ adev->gfx.mec.num_pipe_per_mec;
}
bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
int xcc_id, int mec, int pipe, int queue)
{
return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
}
int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
int me, int pipe, int queue)
{
int bit = 0;
bit += me * adev->gfx.me.num_pipe_per_me
* adev->gfx.me.num_queue_per_pipe;
bit += pipe * adev->gfx.me.num_queue_per_pipe;
bit += queue;
return bit;
}
void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
int *me, int *pipe, int *queue)
{
*queue = bit % adev->gfx.me.num_queue_per_pipe;
*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
% adev->gfx.me.num_pipe_per_me;
*me = (bit / adev->gfx.me.num_queue_per_pipe)
/ adev->gfx.me.num_pipe_per_me;
}
bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
int me, int pipe, int queue)
{
return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
adev->gfx.me.queue_bitmap);
}
/**
* amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
*
* @mask: array in which the per-shader array disable masks will be stored
* @max_se: number of SEs
* @max_sh: number of SHs
*
* The bitmask of CUs to be disabled in the shader array determined by se and
* sh is stored in mask[se * max_sh + sh].
*/
void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
{
unsigned int se, sh, cu;
const char *p;
memset(mask, 0, sizeof(*mask) * max_se * max_sh);
if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
return;
p = amdgpu_disable_cu;
for (;;) {
char *next;
int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
if (ret < 3) {
DRM_ERROR("amdgpu: could not parse disable_cu\n");
return;
}
if (se < max_se && sh < max_sh && cu < 16) {
DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
mask[se * max_sh + sh] |= 1u << cu;
} else {
DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
se, sh, cu);
}
next = strchr(p, ',');
if (!next)
break;
p = next + 1;
}
}
static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
{
return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
}
static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
{
if (amdgpu_compute_multipipe != -1) {
DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
amdgpu_compute_multipipe);
return amdgpu_compute_multipipe == 1;
}
if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
return true;
/* FIXME: spreading the queues across pipes causes perf regressions
* on POLARIS11 compute workloads */
if (adev->asic_type == CHIP_POLARIS11)
return false;
return adev->gfx.mec.num_mec > 1;
}
bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
int queue = ring->queue;
int pipe = ring->pipe;
/* Policy: use pipe1 queue0 as high priority graphics queue if we
* have more than one gfx pipe.
*/
if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
int me = ring->me;
int bit;
bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
if (ring == &adev->gfx.gfx_ring[bit])
return true;
}
return false;
}
bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
/* Policy: use 1st queue as high priority compute queue if we
* have more than one compute queue.
*/
if (adev->gfx.num_compute_rings > 1 &&
ring == &adev->gfx.compute_ring[0])
return true;
return false;
}
void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
{
int i, j, queue, pipe;
bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
adev->gfx.mec.num_queue_per_pipe,
adev->gfx.num_compute_rings);
int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
if (multipipe_policy) {
/* policy: make queues evenly cross all pipes on MEC1 only
* for multiple xcc, just use the original policy for simplicity */
for (j = 0; j < num_xcc; j++) {
for (i = 0; i < max_queues_per_mec; i++) {
pipe = i % adev->gfx.mec.num_pipe_per_mec;
queue = (i / adev->gfx.mec.num_pipe_per_mec) %
adev->gfx.mec.num_queue_per_pipe;
set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
adev->gfx.mec_bitmap[j].queue_bitmap);
}
}
} else {
/* policy: amdgpu owns all queues in the given pipe */
for (j = 0; j < num_xcc; j++) {
for (i = 0; i < max_queues_per_mec; ++i)
set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
}
}
for (j = 0; j < num_xcc; j++) {
dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
}
}
void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
{
int i, queue, pipe;
bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
adev->gfx.me.num_queue_per_pipe;
if (multipipe_policy) {
/* policy: amdgpu owns the first queue per pipe at this stage
* will extend to mulitple queues per pipe later */
for (i = 0; i < max_queues_per_me; i++) {
pipe = i % adev->gfx.me.num_pipe_per_me;
queue = (i / adev->gfx.me.num_pipe_per_me) %
adev->gfx.me.num_queue_per_pipe;
set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
adev->gfx.me.queue_bitmap);
}
} else {
for (i = 0; i < max_queues_per_me; ++i)
set_bit(i, adev->gfx.me.queue_bitmap);
}
/* update the number of active graphics rings */
adev->gfx.num_gfx_rings =
bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
}
static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
struct amdgpu_ring *ring, int xcc_id)
{
int queue_bit;
int mec, pipe, queue;
queue_bit = adev->gfx.mec.num_mec
* adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
while (--queue_bit >= 0) {
if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
continue;
amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
/*
* 1. Using pipes 2/3 from MEC 2 seems cause problems.
* 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
* only can be issued on queue 0.
*/
if ((mec == 1 && pipe > 1) || queue != 0)
continue;
ring->me = mec + 1;
ring->pipe = pipe;
ring->queue = queue;
return 0;
}
dev_err(adev->dev, "Failed to find a queue for KIQ\n");
return -EINVAL;
}
int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_irq_src *irq = &kiq->irq;
struct amdgpu_ring *ring = &kiq->ring;
int r = 0;
spin_lock_init(&kiq->ring_lock);
ring->adev = NULL;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->xcc_id = xcc_id;
ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
ring->doorbell_index =
(adev->doorbell_index.kiq +
xcc_id * adev->doorbell_index.xcc_doorbell_range)
<< 1;
r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
if (r)
return r;
ring->eop_gpu_addr = kiq->eop_gpu_addr;
ring->no_scheduler = true;
snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
(unsigned char)xcc_id, (unsigned char)ring->me,
(unsigned char)ring->pipe, (unsigned char)ring->queue);
r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
return r;
}
void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
{
amdgpu_ring_fini(ring);
}
void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
}
int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
unsigned int hpd_size, int xcc_id)
{
int r;
u32 *hpd;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
&kiq->eop_gpu_addr, (void **)&hpd);
if (r) {
dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
return r;
}
memset(hpd, 0, hpd_size);
r = amdgpu_bo_reserve(kiq->eop_obj, true);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
amdgpu_bo_kunmap(kiq->eop_obj);
amdgpu_bo_unreserve(kiq->eop_obj);
return 0;
}
/* create MQD for each compute/gfx queue */
int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
unsigned int mqd_size, int xcc_id)
{
int r, i, j;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *ring = &kiq->ring;
u32 domain = AMDGPU_GEM_DOMAIN_GTT;
#if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
domain |= AMDGPU_GEM_DOMAIN_VRAM;
#endif
/* create MQD for KIQ */
if (!adev->enable_mes_kiq && !ring->mqd_obj) {
/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
* otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
* deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
* KIQ MQD no matter SRIOV or Bare-metal
*/
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
return r;
}
/* prepare MQD backup */
kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
if (!kiq->mqd_backup) {
dev_warn(adev->dev,
"no memory to create MQD backup for ring %s\n", ring->name);
return -ENOMEM;
}
}
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
/* create MQD for each KGQ */
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
if (!ring->mqd_obj) {
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
domain, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
return r;
}
ring->mqd_size = mqd_size;
/* prepare MQD backup */
adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.me.mqd_backup[i]) {
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
return -ENOMEM;
}
}
}
}
/* create MQD for each KCQ */
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
ring = &adev->gfx.compute_ring[j];
if (!ring->mqd_obj) {
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
domain, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
return r;
}
ring->mqd_size = mqd_size;
/* prepare MQD backup */
adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.mec.mqd_backup[j]) {
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
return -ENOMEM;
}
}
}
return 0;
}
void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_ring *ring = NULL;
int i, j;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
kfree(adev->gfx.me.mqd_backup[i]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
ring = &adev->gfx.compute_ring[j];
kfree(adev->gfx.mec.mqd_backup[j]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
ring = &kiq->ring;
kfree(kiq->mqd_backup);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
int i, r = 0;
int j;
if (adev->enable_mes) {
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
amdgpu_mes_unmap_legacy_queue(adev,
&adev->gfx.compute_ring[j],
RESET_QUEUES, 0, 0);
}
return 0;
}
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
spin_lock(&kiq->ring_lock);
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
adev->gfx.num_compute_rings)) {
spin_unlock(&kiq->ring_lock);
return -ENOMEM;
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
kiq->pmf->kiq_unmap_queues(kiq_ring,
&adev->gfx.compute_ring[j],
RESET_QUEUES, 0, 0);
}
/**
* This is workaround: only skip kiq_ring test
* during ras recovery in suspend stage for gfx9.4.3
*/
if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) &&
amdgpu_ras_in_recovery(adev)) {
spin_unlock(&kiq->ring_lock);
return 0;
}
if (kiq_ring->sched.ready && !adev->job_hang)
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
return r;
}
int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
int i, r = 0;
int j;
if (adev->enable_mes) {
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
j = i + xcc_id * adev->gfx.num_gfx_rings;
amdgpu_mes_unmap_legacy_queue(adev,
&adev->gfx.gfx_ring[j],
PREEMPT_QUEUES, 0, 0);
}
}
return 0;
}
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
spin_lock(&kiq->ring_lock);
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
adev->gfx.num_gfx_rings)) {
spin_unlock(&kiq->ring_lock);
return -ENOMEM;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
j = i + xcc_id * adev->gfx.num_gfx_rings;
kiq->pmf->kiq_unmap_queues(kiq_ring,
&adev->gfx.gfx_ring[j],
PREEMPT_QUEUES, 0, 0);
}
}
if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
return r;
}
int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
int queue_bit)
{
int mec, pipe, queue;
int set_resource_bit = 0;
amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
return set_resource_bit;
}
static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
uint64_t queue_mask = ~0ULL;
int r, i, j;
amdgpu_device_flush_hdp(adev, NULL);
if (!adev->enable_uni_mes) {
spin_lock(&kiq->ring_lock);
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
if (r) {
dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
spin_unlock(&kiq->ring_lock);
return r;
}
kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
if (r)
dev_err(adev->dev, "KIQ failed to set resources\n");
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
r = amdgpu_mes_map_legacy_queue(adev,
&adev->gfx.compute_ring[j]);
if (r) {
dev_err(adev->dev, "failed to map compute queue\n");
return r;
}
}
return 0;
}
int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
uint64_t queue_mask = 0;
int r, i, j;
if (adev->mes.enable_legacy_queue_map)
return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
return -EINVAL;
for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
continue;
/* This situation may be hit in the future if a new HW
* generation exposes more than 64 queues. If so, the
* definition of queue_mask needs updating */
if (WARN_ON(i > (sizeof(queue_mask)*8))) {
DRM_ERROR("Invalid KCQ enabled: %d\n", i);
break;
}
queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
}
amdgpu_device_flush_hdp(adev, NULL);
DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
kiq_ring->queue);
spin_lock(&kiq->ring_lock);
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
adev->gfx.num_compute_rings +
kiq->pmf->set_resources_size);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
spin_unlock(&kiq->ring_lock);
return r;
}
kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
kiq->pmf->kiq_map_queues(kiq_ring,
&adev->gfx.compute_ring[j]);
}
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
if (r)
DRM_ERROR("KCQ enable failed\n");
return r;
}
int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
int r, i, j;
if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
return -EINVAL;
amdgpu_device_flush_hdp(adev, NULL);
if (adev->mes.enable_legacy_queue_map) {
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
j = i + xcc_id * adev->gfx.num_gfx_rings;
r = amdgpu_mes_map_legacy_queue(adev,
&adev->gfx.gfx_ring[j]);
if (r) {
DRM_ERROR("failed to map gfx queue\n");
return r;
}
}
return 0;
}
spin_lock(&kiq->ring_lock);
/* No need to map kcq on the slave */
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
adev->gfx.num_gfx_rings);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
spin_unlock(&kiq->ring_lock);
return r;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
j = i + xcc_id * adev->gfx.num_gfx_rings;
kiq->pmf->kiq_map_queues(kiq_ring,
&adev->gfx.gfx_ring[j]);
}
}
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
if (r)
DRM_ERROR("KGQ enable failed\n");
return r;
}
/* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
*
* @adev: amdgpu_device pointer
* @bool enable true: enable gfx off feature, false: disable gfx off feature
*
* 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
* 2. other client can send request to disable gfx off feature, the request should be honored.
* 3. other client can cancel their request of disable gfx off feature
* 4. other client should not send request to enable gfx off feature before disable gfx off feature.
*/
void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
{
unsigned long delay = GFX_OFF_DELAY_ENABLE;
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return;
mutex_lock(&adev->gfx.gfx_off_mutex);
if (enable) {
/* If the count is already 0, it means there's an imbalance bug somewhere.
* Note that the bug may be in a different caller than the one which triggers the
* WARN_ON_ONCE.
*/
if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
goto unlock;
adev->gfx.gfx_off_req_count--;
if (adev->gfx.gfx_off_req_count == 0 &&
!adev->gfx.gfx_off_state) {
/* If going to s2idle, no need to wait */
if (adev->in_s0ix) {
if (!amdgpu_dpm_set_powergating_by_smu(adev,
AMD_IP_BLOCK_TYPE_GFX, true))
adev->gfx.gfx_off_state = true;
} else {
schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
delay);
}
}
} else {
if (adev->gfx.gfx_off_req_count == 0) {
cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
if (adev->gfx.gfx_off_state &&
!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
adev->gfx.gfx_off_state = false;
if (adev->gfx.funcs->init_spm_golden) {
dev_dbg(adev->dev,
"GFXOFF is disabled, re-init SPM golden settings\n");
amdgpu_gfx_init_spm_golden(adev);
}
}
}
adev->gfx.gfx_off_req_count++;
}
unlock:
mutex_unlock(&adev->gfx.gfx_off_mutex);
}
int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_set_residency_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_get_residency_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_get_status_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
int r;
if (amdgpu_ras_is_supported(adev, ras_block->block)) {
if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
if (r)
return r;
}
r = amdgpu_ras_block_late_init(adev, ras_block);
if (r)
return r;
if (adev->gfx.cp_ecc_error_irq.funcs) {
r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
if (r)
goto late_fini;
}
} else {
amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
}
return 0;
late_fini:
amdgpu_ras_block_late_fini(adev, ras_block);
return r;
}
int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
{
int err = 0;
struct amdgpu_gfx_ras *ras = NULL;
/* adev->gfx.ras is NULL, which means gfx does not
* support ras function, then do nothing here.
*/
if (!adev->gfx.ras)
return 0;
ras = adev->gfx.ras;
err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
if (err) {
dev_err(adev->dev, "Failed to register gfx ras block!\n");
return err;
}
strcpy(ras->ras_block.ras_comm.name, "gfx");
ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
adev->gfx.ras_if = &ras->ras_block.ras_comm;
/* If not define special ras_late_init function, use gfx default ras_late_init */
if (!ras->ras_block.ras_late_init)
ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
/* If not defined special ras_cb function, use default ras_cb */
if (!ras->ras_block.ras_cb)
ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
return 0;
}
int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
return adev->gfx.ras->poison_consumption_handler(adev, entry);
return 0;
}
int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
void *err_data,
struct amdgpu_iv_entry *entry)
{
/* TODO ue will trigger an interrupt.
*
* When “Full RAS” is enabled, the per-IP interrupt sources should
* be disabled and the driver should only look for the aggregated
* interrupt via sync flood
*/
if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
amdgpu_ras_reset_gpu(adev);
}
return AMDGPU_RAS_SUCCESS;
}
int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct ras_common_if *ras_if = adev->gfx.ras_if;
struct ras_dispatch_if ih_data = {
.entry = entry,
};
if (!ras_if)
return 0;
ih_data.head = *ras_if;
DRM_ERROR("CP ECC ERROR IRQ\n");
amdgpu_ras_interrupt_dispatch(adev, &ih_data);
return 0;
}
void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
void *ras_error_status,
void (*func)(struct amdgpu_device *adev, void *ras_error_status,
int xcc_id))
{
int i;
int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
if (err_data) {
err_data->ue_count = 0;
err_data->ce_count = 0;
}
for_each_inst(i, xcc_mask)
func(adev, ras_error_status, i);
}
uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
{
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq, reg_val_offs = 0, value = 0;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *ring = &kiq->ring;
if (amdgpu_device_skip_hw_access(adev))
return 0;
if (adev->mes.ring[0].sched.ready)
return amdgpu_mes_rreg(adev, reg);
BUG_ON(!ring->funcs->emit_rreg);
spin_lock_irqsave(&kiq->ring_lock, flags);
if (amdgpu_device_wb_get(adev, ®_val_offs)) {
pr_err("critical bug! too many kiq readers\n");
goto failed_unlock;
}
r = amdgpu_ring_alloc(ring, 32);
if (r)
goto failed_unlock;
amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
if (r)
goto failed_undo;
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for gpu reset case because this way may
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
* never return if we keep waiting in virt_kiq_rreg, which cause
* gpu_recover() hang there.
*
* also don't wait anymore for IRQ context
* */
if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
goto failed_kiq_read;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq_read;
mb();
value = adev->wb.wb[reg_val_offs];
amdgpu_device_wb_free(adev, reg_val_offs);
return value;
failed_undo:
amdgpu_ring_undo(ring);
failed_unlock:
spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq_read:
if (reg_val_offs)
amdgpu_device_wb_free(adev, reg_val_offs);
dev_err(adev->dev, "failed to read reg:%x\n", reg);
return ~0;
}
void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
{
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *ring = &kiq->ring;
BUG_ON(!ring->funcs->emit_wreg);
if (amdgpu_device_skip_hw_access(adev))
return;
if (adev->mes.ring[0].sched.ready) {
amdgpu_mes_wreg(adev, reg, v);
return;
}
spin_lock_irqsave(&kiq->ring_lock, flags);
r = amdgpu_ring_alloc(ring, 32);
if (r)
goto failed_unlock;
amdgpu_ring_emit_wreg(ring, reg, v);
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
if (r)
goto failed_undo;
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for gpu reset case because this way may
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
* never return if we keep waiting in virt_kiq_rreg, which cause
* gpu_recover() hang there.
*
* also don't wait anymore for IRQ context
* */
if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
goto failed_kiq_write;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq_write;
return;
failed_undo:
amdgpu_ring_undo(ring);
failed_unlock:
spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq_write:
dev_err(adev->dev, "failed to write reg:%x\n", reg);
}
int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
{
if (amdgpu_num_kcq == -1) {
return 8;
} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
return 8;
}
return amdgpu_num_kcq;
}
void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
uint32_t ucode_id)
{
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
struct amdgpu_firmware_info *info = NULL;
const struct firmware *ucode_fw;
unsigned int fw_size;
switch (ucode_id) {
case AMDGPU_UCODE_ID_CP_PFP:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.pfp_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.pfp_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_PFP:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version =
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
adev->gfx.pfp_feature_version =
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
ucode_fw = adev->gfx.pfp_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
ucode_fw = adev->gfx.pfp_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_ME:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
adev->gfx.me_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.me_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.me_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_ME:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
adev->gfx.me_fw_version =
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
adev->gfx.me_feature_version =
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
ucode_fw = adev->gfx.me_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
ucode_fw = adev->gfx.me_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_CE:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.ce_fw->data;
adev->gfx.ce_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.ce_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.ce_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_MEC1:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_MEC1_JT:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec_fw->data;
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_MEC2:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
adev->gfx.mec2_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec2_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.mec2_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_MEC2_JT:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
ucode_fw = adev->gfx.mec2_fw;
fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_RS64_MEC:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version =
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
adev->gfx.mec_feature_version =
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
break;
default:
dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
return;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
info = &adev->firmware.ucode[ucode_id];
info->ucode_id = ucode_id;
info->fw = ucode_fw;
adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
}
}
bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
{
return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
adev->gfx.num_xcc_per_xcp : 1));
}
static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
struct device_attribute *addr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int mode;
mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
AMDGPU_XCP_FL_NONE);
return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
}
static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
struct device_attribute *addr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amdgpu_gfx_partition mode;
int ret = 0, num_xcc;
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
if (num_xcc % 2 != 0)
return -EINVAL;
if (!strncasecmp("SPX", buf, strlen("SPX"))) {
mode = AMDGPU_SPX_PARTITION_MODE;
} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
/*
* DPX mode needs AIDs to be in multiple of 2.
* Each AID connects 2 XCCs.
*/
if (num_xcc%4)
return -EINVAL;
mode = AMDGPU_DPX_PARTITION_MODE;
} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
if (num_xcc != 6)
return -EINVAL;
mode = AMDGPU_TPX_PARTITION_MODE;
} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
if (num_xcc != 8)
return -EINVAL;
mode = AMDGPU_QPX_PARTITION_MODE;
} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
mode = AMDGPU_CPX_PARTITION_MODE;
} else {
return -EINVAL;
}
ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
if (ret)
return ret;
return count;
}
static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
struct device_attribute *addr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
char *supported_partition;
/* TBD */
switch (NUM_XCC(adev->gfx.xcc_mask)) {
case 8:
supported_partition = "SPX, DPX, QPX, CPX";
break;
case 6:
supported_partition = "SPX, TPX, CPX";
break;
case 4:
supported_partition = "SPX, DPX, CPX";
break;
/* this seems only existing in emulation phase */
case 2:
supported_partition = "SPX, CPX";
break;
default:
supported_partition = "Not supported";
break;
}
return sysfs_emit(buf, "%s\n", supported_partition);
}
static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct drm_gpu_scheduler *sched = &ring->sched;
struct drm_sched_entity entity;
struct dma_fence *f;
struct amdgpu_job *job;
struct amdgpu_ib *ib;
int i, r;
/* Initialize the scheduler entity */
r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
&sched, 1, NULL);
if (r) {
dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
goto err;
}
r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
64, 0,
&job);
if (r)
goto err;
job->enforce_isolation = true;
ib = &job->ibs[0];
for (i = 0; i <= ring->funcs->align_mask; ++i)
ib->ptr[i] = ring->funcs->nop;
ib->length_dw = ring->funcs->align_mask + 1;
f = amdgpu_job_submit(job);
r = dma_fence_wait(f, false);
if (r)
goto err;
dma_fence_put(f);
/* Clean up the scheduler entity */
drm_sched_entity_destroy(&entity);
return 0;
err:
return r;
}
static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
{
int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
struct amdgpu_ring *ring;
int num_xcc_to_clear;
int i, r, xcc_id;
if (adev->gfx.num_xcc_per_xcp)
num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
else
num_xcc_to_clear = 1;
for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
r = amdgpu_gfx_run_cleaner_shader_job(ring);
if (r)
return r;
num_xcc_to_clear--;
break;
}
}
}
if (num_xcc_to_clear)
return -ENOENT;
return 0;
}
static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
if (value < 0)
return -EINVAL;
if (adev->xcp_mgr) {
if (value >= adev->xcp_mgr->num_xcps)
return -EINVAL;
} else {
if (value > 1)
return -EINVAL;
}
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_gfx_run_cleaner_shader(adev, value);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return ret;
return count;
}
static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int i;
ssize_t size = 0;
if (adev->xcp_mgr) {
for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
if (i < (adev->xcp_mgr->num_xcps - 1))
size += sysfs_emit_at(buf, size, " ");
}
buf[size++] = '\n';
} else {
size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
}
return size;
}
static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
long partition_values[MAX_XCP] = {0};
int ret, i, num_partitions;
const char *input_buf = buf;
for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
ret = sscanf(input_buf, "%ld", &partition_values[i]);
if (ret <= 0)
break;
/* Move the pointer to the next value in the string */
input_buf = strchr(input_buf, ' ');
if (input_buf) {
input_buf++;
} else {
i++;
break;
}
}
num_partitions = i;
if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
return -EINVAL;
if (!adev->xcp_mgr && num_partitions != 1)
return -EINVAL;
for (i = 0; i < num_partitions; i++) {
if (partition_values[i] != 0 && partition_values[i] != 1)
return -EINVAL;
}
mutex_lock(&adev->enforce_isolation_mutex);
for (i = 0; i < num_partitions; i++) {
if (adev->enforce_isolation[i] && !partition_values[i]) {
/* Going from enabled to disabled */
amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
} else if (!adev->enforce_isolation[i] && partition_values[i]) {
/* Going from disabled to enabled */
amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
}
adev->enforce_isolation[i] = partition_values[i];
}
mutex_unlock(&adev->enforce_isolation_mutex);
return count;
}
static DEVICE_ATTR(run_cleaner_shader, 0200,
NULL, amdgpu_gfx_set_run_cleaner_shader);
static DEVICE_ATTR(enforce_isolation, 0644,
amdgpu_gfx_get_enforce_isolation,
amdgpu_gfx_set_enforce_isolation);
static DEVICE_ATTR(current_compute_partition, 0644,
amdgpu_gfx_get_current_compute_partition,
amdgpu_gfx_set_compute_partition);
static DEVICE_ATTR(available_compute_partition, 0444,
amdgpu_gfx_get_available_compute_partition, NULL);
int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
{
int r;
r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
if (r)
return r;
r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
return r;
}
void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
{
device_remove_file(adev->dev, &dev_attr_current_compute_partition);
device_remove_file(adev->dev, &dev_attr_available_compute_partition);
}
int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
{
int r;
if (!amdgpu_sriov_vf(adev)) {
r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
if (r)
return r;
}
r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
if (r)
return r;
return 0;
}
void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
{
if (!amdgpu_sriov_vf(adev))
device_remove_file(adev->dev, &dev_attr_enforce_isolation);
device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
}
int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
unsigned int cleaner_shader_size)
{
if (!adev->gfx.enable_cleaner_shader)
return -EOPNOTSUPP;
return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.cleaner_shader_obj,
&adev->gfx.cleaner_shader_gpu_addr,
(void **)&adev->gfx.cleaner_shader_cpu_ptr);
}
void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
{
if (!adev->gfx.enable_cleaner_shader)
return;
amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
&adev->gfx.cleaner_shader_gpu_addr,
(void **)&adev->gfx.cleaner_shader_cpu_ptr);
}
void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
unsigned int cleaner_shader_size,
const void *cleaner_shader_ptr)
{
if (!adev->gfx.enable_cleaner_shader)
return;
if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
cleaner_shader_size);
}
/**
* amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
* @adev: amdgpu_device pointer
* @idx: Index of the scheduler to control
* @enable: Whether to enable or disable the KFD scheduler
*
* This function is used to control the KFD (Kernel Fusion Driver) scheduler
* from the KGD. It is part of the cleaner shader feature. This function plays
* a key role in enforcing process isolation on the GPU.
*
* The function uses a reference count mechanism (kfd_sch_req_count) to keep
* track of the number of requests to enable the KFD scheduler. When a request
* to enable the KFD scheduler is made, the reference count is decremented.
* When the reference count reaches zero, a delayed work is scheduled to
* enforce isolation after a delay of GFX_SLICE_PERIOD.
*
* When a request to disable the KFD scheduler is made, the function first
* checks if the reference count is zero. If it is, it cancels the delayed work
* for enforcing isolation and checks if the KFD scheduler is active. If the
* KFD scheduler is active, it sends a request to stop the KFD scheduler and
* sets the KFD scheduler state to inactive. Then, it increments the reference
* count.
*
* The function is synchronized using the kfd_sch_mutex to ensure that the KFD
* scheduler state and reference count are updated atomically.
*
* Note: If the reference count is already zero when a request to enable the
* KFD scheduler is made, it means there's an imbalance bug somewhere. The
* function triggers a warning in this case.
*/
static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
bool enable)
{
mutex_lock(&adev->gfx.kfd_sch_mutex);
if (enable) {
/* If the count is already 0, it means there's an imbalance bug somewhere.
* Note that the bug may be in a different caller than the one which triggers the
* WARN_ON_ONCE.
*/
if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
goto unlock;
}
adev->gfx.kfd_sch_req_count[idx]--;
if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
adev->gfx.kfd_sch_inactive[idx]) {
schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
GFX_SLICE_PERIOD);
}
} else {
if (adev->gfx.kfd_sch_req_count[idx] == 0) {
cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
if (!adev->gfx.kfd_sch_inactive[idx]) {
amdgpu_amdkfd_stop_sched(adev, idx);
adev->gfx.kfd_sch_inactive[idx] = true;
}
}
adev->gfx.kfd_sch_req_count[idx]++;
}
unlock:
mutex_unlock(&adev->gfx.kfd_sch_mutex);
}
/**
* amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
*
* @work: work_struct.
*
* This function is the work handler for enforcing shader isolation on AMD GPUs.
* It counts the number of emitted fences for each GFX and compute ring. If there
* are any fences, it schedules the `enforce_isolation_work` to be run after a
* delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
* Driver (KFD) to resume the runqueue. The function is synchronized using the
* `enforce_isolation_mutex`.
*/
void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
{
struct amdgpu_isolation_work *isolation_work =
container_of(work, struct amdgpu_isolation_work, work.work);
struct amdgpu_device *adev = isolation_work->adev;
u32 i, idx, fences = 0;
if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
idx = 0;
else
idx = isolation_work->xcp_id;
if (idx >= MAX_XCP)
return;
mutex_lock(&adev->enforce_isolation_mutex);
for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
}
for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
}
if (fences) {
schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
GFX_SLICE_PERIOD);
} else {
/* Tell KFD to resume the runqueue */
if (adev->kfd.init_complete) {
WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
amdgpu_amdkfd_start_sched(adev, idx);
adev->gfx.kfd_sch_inactive[idx] = false;
}
}
mutex_unlock(&adev->enforce_isolation_mutex);
}
void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 idx;
if (!adev->gfx.enable_cleaner_shader)
return;
if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
idx = 0;
else
idx = ring->xcp_id;
if (idx >= MAX_XCP)
return;
mutex_lock(&adev->enforce_isolation_mutex);
if (adev->enforce_isolation[idx]) {
if (adev->kfd.init_complete)
amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
}
mutex_unlock(&adev->enforce_isolation_mutex);
}
void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 idx;
if (!adev->gfx.enable_cleaner_shader)
return;
if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
idx = 0;
else
idx = ring->xcp_id;
if (idx >= MAX_XCP)
return;
mutex_lock(&adev->enforce_isolation_mutex);
if (adev->enforce_isolation[idx]) {
if (adev->kfd.init_complete)
amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
}
mutex_unlock(&adev->enforce_isolation_mutex);
}