linux/fs/netfs/buffered_write.c

// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem high-level buffered write support.
 *
 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells ([email protected])
 */

#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/pagevec.h>
#include "internal.h"

static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
{
	if (netfs_group)
		folio_attach_private(folio, netfs_get_group(netfs_group));
}

static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
{
	void *priv = folio_get_private(folio);

	if (unlikely(priv != netfs_group)) {
		if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE))
			folio_attach_private(folio, netfs_get_group(netfs_group));
		else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE)
			folio_detach_private(folio);
	}
}

/*
 * Grab a folio for writing and lock it.  Attempt to allocate as large a folio
 * as possible to hold as much of the remaining length as possible in one go.
 */
static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
						loff_t pos, size_t part)
{
	pgoff_t index = pos / PAGE_SIZE;
	fgf_t fgp_flags = FGP_WRITEBEGIN;

	if (mapping_large_folio_support(mapping))
		fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);

	return __filemap_get_folio(mapping, index, fgp_flags,
				   mapping_gfp_mask(mapping));
}

/*
 * Update i_size and estimate the update to i_blocks to reflect the additional
 * data written into the pagecache until we can find out from the server what
 * the values actually are.
 */
static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode,
				loff_t i_size, loff_t pos, size_t copied)
{
	blkcnt_t add;
	size_t gap;

	if (ctx->ops->update_i_size) {
		ctx->ops->update_i_size(inode, pos);
		return;
	}

	i_size_write(inode, pos);
#if IS_ENABLED(CONFIG_FSCACHE)
	fscache_update_cookie(ctx->cache, NULL, &pos);
#endif

	gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1));
	if (copied > gap) {
		add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE);

		inode->i_blocks = min_t(blkcnt_t,
					DIV_ROUND_UP(pos, SECTOR_SIZE),
					inode->i_blocks + add);
	}
}

/**
 * netfs_perform_write - Copy data into the pagecache.
 * @iocb: The operation parameters
 * @iter: The source buffer
 * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
 *
 * Copy data into pagecache pages attached to the inode specified by @iocb.
 * The caller must hold appropriate inode locks.
 *
 * Dirty pages are tagged with a netfs_folio struct if they're not up to date
 * to indicate the range modified.  Dirty pages may also be tagged with a
 * netfs-specific grouping such that data from an old group gets flushed before
 * a new one is started.
 */
ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
			    struct netfs_group *netfs_group)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file_inode(file);
	struct address_space *mapping = inode->i_mapping;
	struct netfs_inode *ctx = netfs_inode(inode);
	struct writeback_control wbc = {
		.sync_mode	= WB_SYNC_NONE,
		.for_sync	= true,
		.nr_to_write	= LONG_MAX,
		.range_start	= iocb->ki_pos,
		.range_end	= iocb->ki_pos + iter->count,
	};
	struct netfs_io_request *wreq = NULL;
	struct folio *folio = NULL, *writethrough = NULL;
	unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0;
	ssize_t written = 0, ret, ret2;
	loff_t i_size, pos = iocb->ki_pos;
	size_t max_chunk = mapping_max_folio_size(mapping);
	bool maybe_trouble = false;

	if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
		     iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
	    ) {
		wbc_attach_fdatawrite_inode(&wbc, mapping->host);

		ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
		if (ret < 0) {
			wbc_detach_inode(&wbc);
			goto out;
		}

		wreq = netfs_begin_writethrough(iocb, iter->count);
		if (IS_ERR(wreq)) {
			wbc_detach_inode(&wbc);
			ret = PTR_ERR(wreq);
			wreq = NULL;
			goto out;
		}
		if (!is_sync_kiocb(iocb))
			wreq->iocb = iocb;
		netfs_stat(&netfs_n_wh_writethrough);
	} else {
		netfs_stat(&netfs_n_wh_buffered_write);
	}

	do {
		struct netfs_folio *finfo;
		struct netfs_group *group;
		unsigned long long fpos;
		size_t flen;
		size_t offset;	/* Offset into pagecache folio */
		size_t part;	/* Bytes to write to folio */
		size_t copied;	/* Bytes copied from user */

		offset = pos & (max_chunk - 1);
		part = min(max_chunk - offset, iov_iter_count(iter));

		/* Bring in the user pages that we will copy from _first_ lest
		 * we hit a nasty deadlock on copying from the same page as
		 * we're writing to, without it being marked uptodate.
		 *
		 * Not only is this an optimisation, but it is also required to
		 * check that the address is actually valid, when atomic
		 * usercopies are used below.
		 *
		 * We rely on the page being held onto long enough by the LRU
		 * that we can grab it below if this causes it to be read.
		 */
		ret = -EFAULT;
		if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
			break;

		folio = netfs_grab_folio_for_write(mapping, pos, part);
		if (IS_ERR(folio)) {
			ret = PTR_ERR(folio);
			break;
		}

		flen = folio_size(folio);
		fpos = folio_pos(folio);
		offset = pos - fpos;
		part = min_t(size_t, flen - offset, part);

		/* Wait for writeback to complete.  The writeback engine owns
		 * the info in folio->private and may change it until it
		 * removes the WB mark.
		 */
		if (folio_get_private(folio) &&
		    folio_wait_writeback_killable(folio)) {
			ret = written ? -EINTR : -ERESTARTSYS;
			goto error_folio_unlock;
		}

		if (signal_pending(current)) {
			ret = written ? -EINTR : -ERESTARTSYS;
			goto error_folio_unlock;
		}

		/* Decide how we should modify a folio.  We might be attempting
		 * to do write-streaming, in which case we don't want to a
		 * local RMW cycle if we can avoid it.  If we're doing local
		 * caching or content crypto, we award that priority over
		 * avoiding RMW.  If the file is open readably, then we also
		 * assume that we may want to read what we wrote.
		 */
		finfo = netfs_folio_info(folio);
		group = netfs_folio_group(folio);

		if (unlikely(group != netfs_group) &&
		    group != NETFS_FOLIO_COPY_TO_CACHE)
			goto flush_content;

		if (folio_test_uptodate(folio)) {
			if (mapping_writably_mapped(mapping))
				flush_dcache_folio(folio);
			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
			if (unlikely(copied == 0))
				goto copy_failed;
			netfs_set_group(folio, netfs_group);
			trace_netfs_folio(folio, netfs_folio_is_uptodate);
			goto copied;
		}

		/* If the page is above the zero-point then we assume that the
		 * server would just return a block of zeros or a short read if
		 * we try to read it.
		 */
		if (fpos >= ctx->zero_point) {
			zero_user_segment(&folio->page, 0, offset);
			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
			if (unlikely(copied == 0))
				goto copy_failed;
			zero_user_segment(&folio->page, offset + copied, flen);
			__netfs_set_group(folio, netfs_group);
			folio_mark_uptodate(folio);
			trace_netfs_folio(folio, netfs_modify_and_clear);
			goto copied;
		}

		/* See if we can write a whole folio in one go. */
		if (!maybe_trouble && offset == 0 && part >= flen) {
			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
			if (unlikely(copied == 0))
				goto copy_failed;
			if (unlikely(copied < part)) {
				maybe_trouble = true;
				iov_iter_revert(iter, copied);
				copied = 0;
				folio_unlock(folio);
				goto retry;
			}
			__netfs_set_group(folio, netfs_group);
			folio_mark_uptodate(folio);
			trace_netfs_folio(folio, netfs_whole_folio_modify);
			goto copied;
		}

		/* We don't want to do a streaming write on a file that loses
		 * caching service temporarily because the backing store got
		 * culled and we don't really want to get a streaming write on
		 * a file that's open for reading as ->read_folio() then has to
		 * be able to flush it.
		 */
		if ((file->f_mode & FMODE_READ) ||
		    netfs_is_cache_enabled(ctx)) {
			if (finfo) {
				netfs_stat(&netfs_n_wh_wstream_conflict);
				goto flush_content;
			}
			ret = netfs_prefetch_for_write(file, folio, offset, part);
			if (ret < 0) {
				_debug("prefetch = %zd", ret);
				goto error_folio_unlock;
			}
			/* Note that copy-to-cache may have been set. */

			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
			if (unlikely(copied == 0))
				goto copy_failed;
			netfs_set_group(folio, netfs_group);
			trace_netfs_folio(folio, netfs_just_prefetch);
			goto copied;
		}

		if (!finfo) {
			ret = -EIO;
			if (WARN_ON(folio_get_private(folio)))
				goto error_folio_unlock;
			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
			if (unlikely(copied == 0))
				goto copy_failed;
			if (offset == 0 && copied == flen) {
				__netfs_set_group(folio, netfs_group);
				folio_mark_uptodate(folio);
				trace_netfs_folio(folio, netfs_streaming_filled_page);
				goto copied;
			}

			finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
			if (!finfo) {
				iov_iter_revert(iter, copied);
				ret = -ENOMEM;
				goto error_folio_unlock;
			}
			finfo->netfs_group = netfs_get_group(netfs_group);
			finfo->dirty_offset = offset;
			finfo->dirty_len = copied;
			folio_attach_private(folio, (void *)((unsigned long)finfo |
							     NETFS_FOLIO_INFO));
			trace_netfs_folio(folio, netfs_streaming_write);
			goto copied;
		}

		/* We can continue a streaming write only if it continues on
		 * from the previous.  If it overlaps, we must flush lest we
		 * suffer a partial copy and disjoint dirty regions.
		 */
		if (offset == finfo->dirty_offset + finfo->dirty_len) {
			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
			if (unlikely(copied == 0))
				goto copy_failed;
			finfo->dirty_len += copied;
			if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
				if (finfo->netfs_group)
					folio_change_private(folio, finfo->netfs_group);
				else
					folio_detach_private(folio);
				folio_mark_uptodate(folio);
				kfree(finfo);
				trace_netfs_folio(folio, netfs_streaming_cont_filled_page);
			} else {
				trace_netfs_folio(folio, netfs_streaming_write_cont);
			}
			goto copied;
		}

		/* Incompatible write; flush the folio and try again. */
	flush_content:
		trace_netfs_folio(folio, netfs_flush_content);
		folio_unlock(folio);
		folio_put(folio);
		ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1);
		if (ret < 0)
			goto error_folio_unlock;
		continue;

	copied:
		flush_dcache_folio(folio);

		/* Update the inode size if we moved the EOF marker */
		pos += copied;
		i_size = i_size_read(inode);
		if (pos > i_size)
			netfs_update_i_size(ctx, inode, i_size, pos, copied);
		written += copied;

		if (likely(!wreq)) {
			folio_mark_dirty(folio);
			folio_unlock(folio);
		} else {
			netfs_advance_writethrough(wreq, &wbc, folio, copied,
						   offset + copied == flen,
						   &writethrough);
			/* Folio unlocked */
		}
	retry:
		folio_put(folio);
		folio = NULL;

		ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
		if (unlikely(ret < 0))
			break;

		cond_resched();
	} while (iov_iter_count(iter));

out:
	if (likely(written)) {
		/* Set indication that ctime and mtime got updated in case
		 * close is deferred.
		 */
		set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags);
		if (unlikely(ctx->ops->post_modify))
			ctx->ops->post_modify(inode);
	}

	if (unlikely(wreq)) {
		ret2 = netfs_end_writethrough(wreq, &wbc, writethrough);
		wbc_detach_inode(&wbc);
		if (ret2 == -EIOCBQUEUED)
			return ret2;
		if (ret == 0)
			ret = ret2;
	}

	iocb->ki_pos += written;
	_leave(" = %zd [%zd]", written, ret);
	return written ? written : ret;

copy_failed:
	ret = -EFAULT;
error_folio_unlock:
	folio_unlock(folio);
	folio_put(folio);
	goto out;
}
EXPORT_SYMBOL(netfs_perform_write);

/**
 * netfs_buffered_write_iter_locked - write data to a file
 * @iocb:	IO state structure (file, offset, etc.)
 * @from:	iov_iter with data to write
 * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * The caller must hold appropriate locks around this function and have called
 * generic_write_checks() already.  The caller is also responsible for doing
 * any necessary syncing afterwards.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_rwsem.
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
 */
ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
					 struct netfs_group *netfs_group)
{
	struct file *file = iocb->ki_filp;
	ssize_t ret;

	trace_netfs_write_iter(iocb, from);

	ret = file_remove_privs(file);
	if (ret)
		return ret;

	ret = file_update_time(file);
	if (ret)
		return ret;

	return netfs_perform_write(iocb, from, netfs_group);
}
EXPORT_SYMBOL(netfs_buffered_write_iter_locked);

/**
 * netfs_file_write_iter - write data to a file
 * @iocb: IO state structure
 * @from: iov_iter with data to write
 *
 * Perform a write to a file, writing into the pagecache if possible and doing
 * an unbuffered write instead if not.
 *
 * Return:
 * * Negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * Number of bytes written, even for truncated writes
 */
ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	struct netfs_inode *ictx = netfs_inode(inode);
	ssize_t ret;

	_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));

	if (!iov_iter_count(from))
		return 0;

	if ((iocb->ki_flags & IOCB_DIRECT) ||
	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
		return netfs_unbuffered_write_iter(iocb, from);

	ret = netfs_start_io_write(inode);
	if (ret < 0)
		return ret;

	ret = generic_write_checks(iocb, from);
	if (ret > 0)
		ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
	netfs_end_io_write(inode);
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
	return ret;
}
EXPORT_SYMBOL(netfs_file_write_iter);

/*
 * Notification that a previously read-only page is about to become writable.
 * Note that the caller indicates a single page of a multipage folio.
 */
vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
{
	struct netfs_group *group;
	struct folio *folio = page_folio(vmf->page);
	struct file *file = vmf->vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = file_inode(file);
	struct netfs_inode *ictx = netfs_inode(inode);
	vm_fault_t ret = VM_FAULT_RETRY;
	int err;

	_enter("%lx", folio->index);

	sb_start_pagefault(inode->i_sb);

	if (folio_lock_killable(folio) < 0)
		goto out;
	if (folio->mapping != mapping) {
		folio_unlock(folio);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}

	if (folio_wait_writeback_killable(folio)) {
		ret = VM_FAULT_LOCKED;
		goto out;
	}

	/* Can we see a streaming write here? */
	if (WARN_ON(!folio_test_uptodate(folio))) {
		ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED;
		goto out;
	}

	group = netfs_folio_group(folio);
	if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) {
		folio_unlock(folio);
		err = filemap_fdatawrite_range(mapping,
					       folio_pos(folio),
					       folio_pos(folio) + folio_size(folio));
		switch (err) {
		case 0:
			ret = VM_FAULT_RETRY;
			goto out;
		case -ENOMEM:
			ret = VM_FAULT_OOM;
			goto out;
		default:
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
	}

	if (folio_test_dirty(folio))
		trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
	else
		trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
	netfs_set_group(folio, netfs_group);
	file_update_time(file);
	set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags);
	if (ictx->ops->post_modify)
		ictx->ops->post_modify(inode);
	ret = VM_FAULT_LOCKED;
out:
	sb_end_pagefault(inode->i_sb);
	return ret;
}
EXPORT_SYMBOL(netfs_page_mkwrite);