linux/drivers/gpu/drm/amd/amdgpu/gfx_v11_0.c

/*
 * Copyright 2021 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_psp.h"
#include "amdgpu_smu.h"
#include "amdgpu_atomfirmware.h"
#include "imu_v11_0.h"
#include "soc21.h"
#include "nvd.h"

#include "gc/gc_11_0_0_offset.h"
#include "gc/gc_11_0_0_sh_mask.h"
#include "smuio/smuio_13_0_6_offset.h"
#include "smuio/smuio_13_0_6_sh_mask.h"
#include "navi10_enum.h"
#include "ivsrcid/gfx/irqsrcs_gfx_11_0_0.h"

#include "soc15.h"
#include "soc15d.h"
#include "clearstate_gfx11.h"
#include "v11_structs.h"
#include "gfx_v11_0.h"
#include "gfx_v11_0_3.h"
#include "nbio_v4_3.h"
#include "mes_v11_0.h"

#define GFX11_NUM_GFX_RINGS		1
#define GFX11_MEC_HPD_SIZE	2048

#define RLCG_UCODE_LOADING_START_ADDRESS	0x00002000L
#define RLC_PG_DELAY_3_DEFAULT_GC_11_0_1	0x1388

#define regCGTT_WD_CLK_CTRL		0x5086
#define regCGTT_WD_CLK_CTRL_BASE_IDX	1
#define regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1	0x4e7e
#define regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1_BASE_IDX	1
#define regPC_CONFIG_CNTL_1		0x194d
#define regPC_CONFIG_CNTL_1_BASE_IDX	1

MODULE_FIRMWARE("amdgpu/gc_11_0_0_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_rlc_1.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_toc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_rlc.bin");

static const struct amdgpu_hwip_reg_entry gc_reg_list_11_0[] = {
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS2),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS3),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_STALLED_STAT1),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_STALLED_STAT2),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_STALLED_STAT3),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_STALLED_STAT1),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_STALLED_STAT1),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_BUSY_STAT),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_BUSY_STAT),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_BUSY_STAT),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_BUSY_STAT2),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_BUSY_STAT2),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_ERROR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HPD_STATUS0),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_BASE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_WPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB0_BASE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB0_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB0_WPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB1_BASE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB1_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB1_WPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_CMD_BUFSZ),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_CMD_BUFSZ),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_LO),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BUFSZ),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_BASE_LO),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_BASE_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_BUFSZ),
	SOC15_REG_ENTRY_STR(GC, 0, regCPF_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regCPC_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regCPG_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regGDS_PROTECTION_FAULT),
	SOC15_REG_ENTRY_STR(GC, 0, regGDS_VM_PROTECTION_FAULT),
	SOC15_REG_ENTRY_STR(GC, 0, regIA_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regIA_UTCL1_STATUS_2),
	SOC15_REG_ENTRY_STR(GC, 0, regPA_CL_CNTL_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regRLC_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regRMI_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regSQC_CACHES),
	SOC15_REG_ENTRY_STR(GC, 0, regSQG_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regWD_UTCL1_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regGCVM_L2_PROTECTION_FAULT_CNTL),
	SOC15_REG_ENTRY_STR(GC, 0, regGCVM_L2_PROTECTION_FAULT_STATUS),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_DEBUG),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MEC_CNTL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_CNTL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MEC1_INSTR_PNTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_DEBUG_INTERRUPT_INSTR_PNTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_INSTR_PNTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_ME_INSTR_PNTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_PFP_INSTR_PNTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_STATUS),
	/* cp header registers */
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MEC_ME1_HEADER_DUMP),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_PFP_HEADER_DUMP),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_ME_HEADER_DUMP),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_HEADER_DUMP),
	/* SE status registers */
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE0),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE1),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE2),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE3),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE4),
	SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE5)
};

static const struct amdgpu_hwip_reg_entry gc_cp_reg_list_11[] = {
	/* compute registers */
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_VMID),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PERSISTENT_STATE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PIPE_PRIORITY),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_QUEUE_PRIORITY),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_QUANTUM),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_BASE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_BASE_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_CONTROL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_BASE_ADDR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_BASE_ADDR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_CONTROL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_DEQUEUE_REQUEST),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_BASE_ADDR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_BASE_ADDR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_CONTROL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_WPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_EVENTS),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_BASE_ADDR_LO),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_BASE_ADDR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_CONTROL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CNTL_STACK_OFFSET),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CNTL_STACK_SIZE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_WG_STATE_OFFSET),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_SIZE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_GDS_RESOURCE_STATE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_ERROR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_WPTR_MEM),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_LO),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_SUSPEND_CNTL_STACK_OFFSET),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_SUSPEND_CNTL_STACK_DW_CNT),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_SUSPEND_WG_STATE_OFFSET),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_DEQUEUE_STATUS)
};

static const struct amdgpu_hwip_reg_entry gc_gfx_queue_reg_list_11[] = {
	/* gfx queue registers */
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_ACTIVE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_VMID),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_QUEUE_PRIORITY),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_QUANTUM),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_BASE),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_BASE_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_OFFSET),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_CNTL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_CSMD_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_WPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_WPTR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_DEQUEUE_REQUEST),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_MAPPED),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_QUE_MGR_CONTROL),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_HQ_CONTROL0),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_HQ_STATUS0),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_MQD_BASE_ADDR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_MQD_BASE_ADDR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_RPTR),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_LO),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_HI),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_CMD_BUFSZ),
	SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BUFSZ)
};

static const struct soc15_reg_golden golden_settings_gc_11_0[] = {
	SOC15_REG_GOLDEN_VALUE(GC, 0, regTCP_CNTL, 0x20000000, 0x20000000)
};

static const struct soc15_reg_golden golden_settings_gc_11_0_1[] =
{
	SOC15_REG_GOLDEN_VALUE(GC, 0, regCGTT_GS_NGG_CLK_CTRL, 0x9fff8fff, 0x00000010),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regCGTT_WD_CLK_CTRL, 0xffff8fff, 0x00000010),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regCPF_GCR_CNTL, 0x0007ffff, 0x0000c200),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regGL2C_CTRL3, 0xffff001b, 0x00f01988),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_CL_ENHANCE, 0xf0ffffff, 0x00880007),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_SC_ENHANCE_3, 0xfffffffd, 0x00000008),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_SC_VRS_SURFACE_CNTL_1, 0xfff891ff, 0x55480100),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regTA_CNTL_AUX, 0xf7f7ffff, 0x01030000),
	SOC15_REG_GOLDEN_VALUE(GC, 0, regTCP_CNTL2, 0xfcffffff, 0x0000000a)
};

#define DEFAULT_SH_MEM_CONFIG \
	((SH_MEM_ADDRESS_MODE_64 << SH_MEM_CONFIG__ADDRESS_MODE__SHIFT) | \
	 (SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT) | \
	 (3 << SH_MEM_CONFIG__INITIAL_INST_PREFETCH__SHIFT))

static void gfx_v11_0_disable_gpa_mode(struct amdgpu_device *adev);
static void gfx_v11_0_set_ring_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_irq_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_gds_init(struct amdgpu_device *adev);
static void gfx_v11_0_set_rlc_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_mqd_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_imu_funcs(struct amdgpu_device *adev);
static int gfx_v11_0_get_cu_info(struct amdgpu_device *adev,
                                 struct amdgpu_cu_info *cu_info);
static uint64_t gfx_v11_0_get_gpu_clock_counter(struct amdgpu_device *adev);
static void gfx_v11_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
				   u32 sh_num, u32 instance, int xcc_id);
static u32 gfx_v11_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev);

static void gfx_v11_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume);
static void gfx_v11_0_ring_emit_frame_cntl(struct amdgpu_ring *ring, bool start, bool secure);
static void gfx_v11_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg,
				     uint32_t val);
static int gfx_v11_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev);
static void gfx_v11_0_ring_invalidate_tlbs(struct amdgpu_ring *ring,
					   uint16_t pasid, uint32_t flush_type,
					   bool all_hub, uint8_t dst_sel);
static void gfx_v11_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id);
static void gfx_v11_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id);
static void gfx_v11_0_update_perf_clk(struct amdgpu_device *adev,
				      bool enable);

static void gfx11_kiq_set_resources(struct amdgpu_ring *kiq_ring, uint64_t queue_mask)
{
	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6));
	amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) |
			  PACKET3_SET_RESOURCES_UNMAP_LATENTY(0xa) | /* unmap_latency: 0xa (~ 1s) */
			  PACKET3_SET_RESOURCES_QUEUE_TYPE(0));	/* vmid_mask:0 queue_type:0 (KIQ) */
	amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask));	/* queue mask lo */
	amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask));	/* queue mask hi */
	amdgpu_ring_write(kiq_ring, 0);	/* gws mask lo */
	amdgpu_ring_write(kiq_ring, 0);	/* gws mask hi */
	amdgpu_ring_write(kiq_ring, 0);	/* oac mask */
	amdgpu_ring_write(kiq_ring, 0);	/* gds heap base:0, gds heap size:0 */
}

static void gfx11_kiq_map_queues(struct amdgpu_ring *kiq_ring,
				 struct amdgpu_ring *ring)
{
	uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj);
	uint64_t wptr_addr = ring->wptr_gpu_addr;
	uint32_t me = 0, eng_sel = 0;

	switch (ring->funcs->type) {
	case AMDGPU_RING_TYPE_COMPUTE:
		me = 1;
		eng_sel = 0;
		break;
	case AMDGPU_RING_TYPE_GFX:
		me = 0;
		eng_sel = 4;
		break;
	case AMDGPU_RING_TYPE_MES:
		me = 2;
		eng_sel = 5;
		break;
	default:
		WARN_ON(1);
	}

	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
	/* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/
	amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
			  PACKET3_MAP_QUEUES_VMID(0) | /* VMID */
			  PACKET3_MAP_QUEUES_QUEUE(ring->queue) |
			  PACKET3_MAP_QUEUES_PIPE(ring->pipe) |
			  PACKET3_MAP_QUEUES_ME((me)) |
			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
			  PACKET3_MAP_QUEUES_ENGINE_SEL(eng_sel) |
			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
	amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index));
	amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr));
	amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr));
	amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr));
	amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr));
}

static void gfx11_kiq_unmap_queues(struct amdgpu_ring *kiq_ring,
				   struct amdgpu_ring *ring,
				   enum amdgpu_unmap_queues_action action,
				   u64 gpu_addr, u64 seq)
{
	struct amdgpu_device *adev = kiq_ring->adev;
	uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;

	if (adev->enable_mes && !adev->gfx.kiq[0].ring.sched.ready) {
		amdgpu_mes_unmap_legacy_queue(adev, ring, action, gpu_addr, seq);
		return;
	}

	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4));
	amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
			  PACKET3_UNMAP_QUEUES_ACTION(action) |
			  PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) |
			  PACKET3_UNMAP_QUEUES_ENGINE_SEL(eng_sel) |
			  PACKET3_UNMAP_QUEUES_NUM_QUEUES(1));
	amdgpu_ring_write(kiq_ring,
		  PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index));

	if (action == PREEMPT_QUEUES_NO_UNMAP) {
		amdgpu_ring_write(kiq_ring, lower_32_bits(gpu_addr));
		amdgpu_ring_write(kiq_ring, upper_32_bits(gpu_addr));
		amdgpu_ring_write(kiq_ring, seq);
	} else {
		amdgpu_ring_write(kiq_ring, 0);
		amdgpu_ring_write(kiq_ring, 0);
		amdgpu_ring_write(kiq_ring, 0);
	}
}

static void gfx11_kiq_query_status(struct amdgpu_ring *kiq_ring,
				   struct amdgpu_ring *ring,
				   u64 addr,
				   u64 seq)
{
	uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;

	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_QUERY_STATUS, 5));
	amdgpu_ring_write(kiq_ring,
			  PACKET3_QUERY_STATUS_CONTEXT_ID(0) |
			  PACKET3_QUERY_STATUS_INTERRUPT_SEL(0) |
			  PACKET3_QUERY_STATUS_COMMAND(2));
	amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
			  PACKET3_QUERY_STATUS_DOORBELL_OFFSET(ring->doorbell_index) |
			  PACKET3_QUERY_STATUS_ENG_SEL(eng_sel));
	amdgpu_ring_write(kiq_ring, lower_32_bits(addr));
	amdgpu_ring_write(kiq_ring, upper_32_bits(addr));
	amdgpu_ring_write(kiq_ring, lower_32_bits(seq));
	amdgpu_ring_write(kiq_ring, upper_32_bits(seq));
}

static void gfx11_kiq_invalidate_tlbs(struct amdgpu_ring *kiq_ring,
				uint16_t pasid, uint32_t flush_type,
				bool all_hub)
{
	gfx_v11_0_ring_invalidate_tlbs(kiq_ring, pasid, flush_type, all_hub, 1);
}

static const struct kiq_pm4_funcs gfx_v11_0_kiq_pm4_funcs = {
	.kiq_set_resources = gfx11_kiq_set_resources,
	.kiq_map_queues = gfx11_kiq_map_queues,
	.kiq_unmap_queues = gfx11_kiq_unmap_queues,
	.kiq_query_status = gfx11_kiq_query_status,
	.kiq_invalidate_tlbs = gfx11_kiq_invalidate_tlbs,
	.set_resources_size = 8,
	.map_queues_size = 7,
	.unmap_queues_size = 6,
	.query_status_size = 7,
	.invalidate_tlbs_size = 2,
};

static void gfx_v11_0_set_kiq_pm4_funcs(struct amdgpu_device *adev)
{
	adev->gfx.kiq[0].pmf = &gfx_v11_0_kiq_pm4_funcs;
}

static void gfx_v11_0_init_golden_registers(struct amdgpu_device *adev)
{
	if (amdgpu_sriov_vf(adev))
		return;

	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
	case IP_VERSION(11, 0, 1):
	case IP_VERSION(11, 0, 4):
		soc15_program_register_sequence(adev,
						golden_settings_gc_11_0_1,
						(const u32)ARRAY_SIZE(golden_settings_gc_11_0_1));
		break;
	default:
		break;
	}
	soc15_program_register_sequence(adev,
					golden_settings_gc_11_0,
					(const u32)ARRAY_SIZE(golden_settings_gc_11_0));

}

static void gfx_v11_0_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel,
				       bool wc, uint32_t reg, uint32_t val)
{
	amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) |
			  WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0));
	amdgpu_ring_write(ring, reg);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, val);
}

static void gfx_v11_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel,
				  int mem_space, int opt, uint32_t addr0,
				  uint32_t addr1, uint32_t ref, uint32_t mask,
				  uint32_t inv)
{
	amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
	amdgpu_ring_write(ring,
			  /* memory (1) or register (0) */
			  (WAIT_REG_MEM_MEM_SPACE(mem_space) |
			   WAIT_REG_MEM_OPERATION(opt) | /* wait */
			   WAIT_REG_MEM_FUNCTION(3) |  /* equal */
			   WAIT_REG_MEM_ENGINE(eng_sel)));

	if (mem_space)
		BUG_ON(addr0 & 0x3); /* Dword align */
	amdgpu_ring_write(ring, addr0);
	amdgpu_ring_write(ring, addr1);
	amdgpu_ring_write(ring, ref);
	amdgpu_ring_write(ring, mask);
	amdgpu_ring_write(ring, inv); /* poll interval */
}

static void gfx_v11_ring_insert_nop(struct amdgpu_ring *ring, uint32_t num_nop)
{
	int i;

	/* Header itself is a NOP packet */
	if (num_nop == 1) {
		amdgpu_ring_write(ring, ring->funcs->nop);
		return;
	}

	/* Max HW optimization till 0x3ffe, followed by remaining one NOP at a time*/
	amdgpu_ring_write(ring, PACKET3(PACKET3_NOP, min(num_nop - 2, 0x3ffe)));

	/* Header is at index 0, followed by num_nops - 1 NOP packet's */
	for (i = 1; i < num_nop; i++)
		amdgpu_ring_write(ring, ring->funcs->nop);
}

static int gfx_v11_0_ring_test_ring(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	uint32_t scratch = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0);
	uint32_t tmp = 0;
	unsigned i;
	int r;

	WREG32(scratch, 0xCAFEDEAD);
	r = amdgpu_ring_alloc(ring, 5);
	if (r) {
		DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n",
			  ring->idx, r);
		return r;
	}

	if (ring->funcs->type == AMDGPU_RING_TYPE_KIQ) {
		gfx_v11_0_ring_emit_wreg(ring, scratch, 0xDEADBEEF);
	} else {
		amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
		amdgpu_ring_write(ring, scratch -
				  PACKET3_SET_UCONFIG_REG_START);
		amdgpu_ring_write(ring, 0xDEADBEEF);
	}
	amdgpu_ring_commit(ring);

	for (i = 0; i < adev->usec_timeout; i++) {
		tmp = RREG32(scratch);
		if (tmp == 0xDEADBEEF)
			break;
		if (amdgpu_emu_mode == 1)
			msleep(1);
		else
			udelay(1);
	}

	if (i >= adev->usec_timeout)
		r = -ETIMEDOUT;
	return r;
}

static int gfx_v11_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_ib ib;
	struct dma_fence *f = NULL;
	unsigned index;
	uint64_t gpu_addr;
	volatile uint32_t *cpu_ptr;
	long r;

	/* MES KIQ fw hasn't indirect buffer support for now */
	if (adev->enable_mes_kiq &&
	    ring->funcs->type == AMDGPU_RING_TYPE_KIQ)
		return 0;

	memset(&ib, 0, sizeof(ib));

	if (ring->is_mes_queue) {
		uint32_t padding, offset;

		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
		padding = amdgpu_mes_ctx_get_offs(ring,
						  AMDGPU_MES_CTX_PADDING_OFFS);

		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
		ib.ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);

		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, padding);
		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, padding);
		*cpu_ptr = cpu_to_le32(0xCAFEDEAD);
	} else {
		r = amdgpu_device_wb_get(adev, &index);
		if (r)
			return r;

		gpu_addr = adev->wb.gpu_addr + (index * 4);
		adev->wb.wb[index] = cpu_to_le32(0xCAFEDEAD);
		cpu_ptr = &adev->wb.wb[index];

		r = amdgpu_ib_get(adev, NULL, 20, AMDGPU_IB_POOL_DIRECT, &ib);
		if (r) {
			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
			goto err1;
		}
	}

	ib.ptr[0] = PACKET3(PACKET3_WRITE_DATA, 3);
	ib.ptr[1] = WRITE_DATA_DST_SEL(5) | WR_CONFIRM;
	ib.ptr[2] = lower_32_bits(gpu_addr);
	ib.ptr[3] = upper_32_bits(gpu_addr);
	ib.ptr[4] = 0xDEADBEEF;
	ib.length_dw = 5;

	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
	if (r)
		goto err2;

	r = dma_fence_wait_timeout(f, false, timeout);
	if (r == 0) {
		r = -ETIMEDOUT;
		goto err2;
	} else if (r < 0) {
		goto err2;
	}

	if (le32_to_cpu(*cpu_ptr) == 0xDEADBEEF)
		r = 0;
	else
		r = -EINVAL;
err2:
	if (!ring->is_mes_queue)
		amdgpu_ib_free(adev, &ib, NULL);
	dma_fence_put(f);
err1:
	if (!ring->is_mes_queue)
		amdgpu_device_wb_free(adev, index);
	return r;
}

static void gfx_v11_0_free_microcode(struct amdgpu_device *adev)
{
	amdgpu_ucode_release(&adev->gfx.pfp_fw);
	amdgpu_ucode_release(&adev->gfx.me_fw);
	amdgpu_ucode_release(&adev->gfx.rlc_fw);
	amdgpu_ucode_release(&adev->gfx.mec_fw);

	kfree(adev->gfx.rlc.register_list_format);
}

static int gfx_v11_0_init_toc_microcode(struct amdgpu_device *adev, const char *ucode_prefix)
{
	const struct psp_firmware_header_v1_0 *toc_hdr;
	int err = 0;

	err = amdgpu_ucode_request(adev, &adev->psp.toc_fw,
				   "amdgpu/%s_toc.bin", ucode_prefix);
	if (err)
		goto out;

	toc_hdr = (const struct psp_firmware_header_v1_0 *)adev->psp.toc_fw->data;
	adev->psp.toc.fw_version = le32_to_cpu(toc_hdr->header.ucode_version);
	adev->psp.toc.feature_version = le32_to_cpu(toc_hdr->sos.fw_version);
	adev->psp.toc.size_bytes = le32_to_cpu(toc_hdr->header.ucode_size_bytes);
	adev->psp.toc.start_addr = (uint8_t *)toc_hdr +
				le32_to_cpu(toc_hdr->header.ucode_array_offset_bytes);
	return 0;
out:
	amdgpu_ucode_release(&adev->psp.toc_fw);
	return err;
}

static void gfx_v11_0_check_fw_cp_gfx_shadow(struct amdgpu_device *adev)
{
	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
	case IP_VERSION(11, 0, 0):
	case IP_VERSION(11, 0, 2):
	case IP_VERSION(11, 0, 3):
		if ((adev->gfx.me_fw_version >= 1505) &&
		    (adev->gfx.pfp_fw_version >= 1600) &&
		    (adev->gfx.mec_fw_version >= 512)) {
			if (amdgpu_sriov_vf(adev))
				adev->gfx.cp_gfx_shadow = true;
			else
				adev->gfx.cp_gfx_shadow = false;
		}
		break;
	default:
		adev->gfx.cp_gfx_shadow = false;
		break;
	}
}

static int gfx_v11_0_init_microcode(struct amdgpu_device *adev)
{
	char ucode_prefix[25];
	int err;
	const struct rlc_firmware_header_v2_0 *rlc_hdr;
	uint16_t version_major;
	uint16_t version_minor;

	DRM_DEBUG("\n");

	amdgpu_ucode_ip_version_decode(adev, GC_HWIP, ucode_prefix, sizeof(ucode_prefix));
	err = amdgpu_ucode_request(adev, &adev->gfx.pfp_fw,
				   "amdgpu/%s_pfp.bin", ucode_prefix);
	if (err)
		goto out;
	/* check pfp fw hdr version to decide if enable rs64 for gfx11.*/
	adev->gfx.rs64_enable = amdgpu_ucode_hdr_version(
				(union amdgpu_firmware_header *)
				adev->gfx.pfp_fw->data, 2, 0);
	if (adev->gfx.rs64_enable) {
		dev_info(adev->dev, "CP RS64 enable\n");
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK);
	} else {
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_PFP);
	}

	err = amdgpu_ucode_request(adev, &adev->gfx.me_fw,
				   "amdgpu/%s_me.bin", ucode_prefix);
	if (err)
		goto out;
	if (adev->gfx.rs64_enable) {
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK);
	} else {
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_ME);
	}

	if (!amdgpu_sriov_vf(adev)) {
		if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 0, 0) &&
		    adev->pdev->revision == 0xCE)
			err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw,
						   "amdgpu/gc_11_0_0_rlc_1.bin");
		else
			err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw,
						   "amdgpu/%s_rlc.bin", ucode_prefix);
		if (err)
			goto out;
		rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
		version_major = le16_to_cpu(rlc_hdr->header.header_version_major);
		version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor);
		err = amdgpu_gfx_rlc_init_microcode(adev, version_major, version_minor);
		if (err)
			goto out;
	}

	err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw,
				   "amdgpu/%s_mec.bin", ucode_prefix);
	if (err)
		goto out;
	if (adev->gfx.rs64_enable) {
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK);
	} else {
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1);
		amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1_JT);
	}

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO)
		err = gfx_v11_0_init_toc_microcode(adev, ucode_prefix);

	/* only one MEC for gfx 11.0.0. */
	adev->gfx.mec2_fw = NULL;

	gfx_v11_0_check_fw_cp_gfx_shadow(adev);

	if (adev->gfx.imu.funcs && adev->gfx.imu.funcs->init_microcode) {
		err = adev->gfx.imu.funcs->init_microcode(adev);
		if (err)
			DRM_ERROR("Failed to init imu firmware!\n");
		return err;
	}

out:
	if (err) {
		amdgpu_ucode_release(&adev->gfx.pfp_fw);
		amdgpu_ucode_release(&adev->gfx.me_fw);
		amdgpu_ucode_release(&adev->gfx.rlc_fw);
		amdgpu_ucode_release(&adev->gfx.mec_fw);
	}

	return err;
}

static u32 gfx_v11_0_get_csb_size(struct amdgpu_device *adev)
{
	u32 count = 0;
	const struct cs_section_def *sect = NULL;
	const struct cs_extent_def *ext = NULL;

	/* begin clear state */
	count += 2;
	/* context control state */
	count += 3;

	for (sect = gfx11_cs_data; sect->section != NULL; ++sect) {
		for (ext = sect->section; ext->extent != NULL; ++ext) {
			if (sect->id == SECT_CONTEXT)
				count += 2 + ext->reg_count;
			else
				return 0;
		}
	}

	/* set PA_SC_TILE_STEERING_OVERRIDE */
	count += 3;
	/* end clear state */
	count += 2;
	/* clear state */
	count += 2;

	return count;
}

static void gfx_v11_0_get_csb_buffer(struct amdgpu_device *adev,
				    volatile u32 *buffer)
{
	u32 count = 0, i;
	const struct cs_section_def *sect = NULL;
	const struct cs_extent_def *ext = NULL;
	int ctx_reg_offset;

	if (adev->gfx.rlc.cs_data == NULL)
		return;
	if (buffer == NULL)
		return;

	buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);

	buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
	buffer[count++] = cpu_to_le32(0x80000000);
	buffer[count++] = cpu_to_le32(0x80000000);

	for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
		for (ext = sect->section; ext->extent != NULL; ++ext) {
			if (sect->id == SECT_CONTEXT) {
				buffer[count++] =
					cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
				buffer[count++] = cpu_to_le32(ext->reg_index -
						PACKET3_SET_CONTEXT_REG_START);
				for (i = 0; i < ext->reg_count; i++)
					buffer[count++] = cpu_to_le32(ext->extent[i]);
			} else {
				return;
			}
		}
	}

	ctx_reg_offset =
		SOC15_REG_OFFSET(GC, 0, regPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START;
	buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1));
	buffer[count++] = cpu_to_le32(ctx_reg_offset);
	buffer[count++] = cpu_to_le32(adev->gfx.config.pa_sc_tile_steering_override);

	buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);

	buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
	buffer[count++] = cpu_to_le32(0);
}

static void gfx_v11_0_rlc_fini(struct amdgpu_device *adev)
{
	/* clear state block */
	amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj,
			&adev->gfx.rlc.clear_state_gpu_addr,
			(void **)&adev->gfx.rlc.cs_ptr);

	/* jump table block */
	amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj,
			&adev->gfx.rlc.cp_table_gpu_addr,
			(void **)&adev->gfx.rlc.cp_table_ptr);
}

static void gfx_v11_0_init_rlcg_reg_access_ctrl(struct amdgpu_device *adev)
{
	struct amdgpu_rlcg_reg_access_ctrl *reg_access_ctrl;

	reg_access_ctrl = &adev->gfx.rlc.reg_access_ctrl[0];
	reg_access_ctrl->scratch_reg0 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0);
	reg_access_ctrl->scratch_reg1 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG1);
	reg_access_ctrl->scratch_reg2 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG2);
	reg_access_ctrl->scratch_reg3 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG3);
	reg_access_ctrl->grbm_cntl = SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_CNTL);
	reg_access_ctrl->grbm_idx = SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX);
	reg_access_ctrl->spare_int = SOC15_REG_OFFSET(GC, 0, regRLC_SPARE_INT_0);
	adev->gfx.rlc.rlcg_reg_access_supported = true;
}

static int gfx_v11_0_rlc_init(struct amdgpu_device *adev)
{
	const struct cs_section_def *cs_data;
	int r;

	adev->gfx.rlc.cs_data = gfx11_cs_data;

	cs_data = adev->gfx.rlc.cs_data;

	if (cs_data) {
		/* init clear state block */
		r = amdgpu_gfx_rlc_init_csb(adev);
		if (r)
			return r;
	}

	/* init spm vmid with 0xf */
	if (adev->gfx.rlc.funcs->update_spm_vmid)
		adev->gfx.rlc.funcs->update_spm_vmid(adev, NULL, 0xf);

	return 0;
}

static void gfx_v11_0_mec_fini(struct amdgpu_device *adev)
{
	amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL);
	amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_obj, NULL, NULL);
	amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_data_obj, NULL, NULL);
}

static void gfx_v11_0_me_init(struct amdgpu_device *adev)
{
	bitmap_zero(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);

	amdgpu_gfx_graphics_queue_acquire(adev);
}

static int gfx_v11_0_mec_init(struct amdgpu_device *adev)
{
	int r;
	u32 *hpd;
	size_t mec_hpd_size;

	bitmap_zero(adev->gfx.mec_bitmap[0].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES);

	/* take ownership of the relevant compute queues */
	amdgpu_gfx_compute_queue_acquire(adev);
	mec_hpd_size = adev->gfx.num_compute_rings * GFX11_MEC_HPD_SIZE;

	if (mec_hpd_size) {
		r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE,
					      AMDGPU_GEM_DOMAIN_GTT,
					      &adev->gfx.mec.hpd_eop_obj,
					      &adev->gfx.mec.hpd_eop_gpu_addr,
					      (void **)&hpd);
		if (r) {
			dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r);
			gfx_v11_0_mec_fini(adev);
			return r;
		}

		memset(hpd, 0, mec_hpd_size);

		amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj);
		amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj);
	}

	return 0;
}

static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t wave, uint32_t address)
{
	WREG32_SOC15(GC, 0, regSQ_IND_INDEX,
		(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
		(address << SQ_IND_INDEX__INDEX__SHIFT));
	return RREG32_SOC15(GC, 0, regSQ_IND_DATA);
}

static void wave_read_regs(struct amdgpu_device *adev, uint32_t wave,
			   uint32_t thread, uint32_t regno,
			   uint32_t num, uint32_t *out)
{
	WREG32_SOC15(GC, 0, regSQ_IND_INDEX,
		(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
		(regno << SQ_IND_INDEX__INDEX__SHIFT) |
		(thread << SQ_IND_INDEX__WORKITEM_ID__SHIFT) |
		(SQ_IND_INDEX__AUTO_INCR_MASK));
	while (num--)
		*(out++) = RREG32_SOC15(GC, 0, regSQ_IND_DATA);
}

static void gfx_v11_0_read_wave_data(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields)
{
	/* in gfx11 the SIMD_ID is specified as part of the INSTANCE
	 * field when performing a select_se_sh so it should be
	 * zero here */
	WARN_ON(simd != 0);

	/* type 3 wave data */
	dst[(*no_fields)++] = 3;
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_STATUS);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_LO);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_HI);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_LO);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_HI);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID1);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID2);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_GPR_ALLOC);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_LDS_ALLOC);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_TRAPSTS);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS2);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_DBG1);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_M0);
	dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_MODE);
}

static void gfx_v11_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd,
				     uint32_t wave, uint32_t start,
				     uint32_t size, uint32_t *dst)
{
	WARN_ON(simd != 0);

	wave_read_regs(
		adev, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size,
		dst);
}

static void gfx_v11_0_read_wave_vgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd,
				      uint32_t wave, uint32_t thread,
				      uint32_t start, uint32_t size,
				      uint32_t *dst)
{
	wave_read_regs(
		adev, wave, thread,
		start + SQIND_WAVE_VGPRS_OFFSET, size, dst);
}

static void gfx_v11_0_select_me_pipe_q(struct amdgpu_device *adev,
					u32 me, u32 pipe, u32 q, u32 vm, u32 xcc_id)
{
	soc21_grbm_select(adev, me, pipe, q, vm);
}

/* all sizes are in bytes */
#define MQD_SHADOW_BASE_SIZE      73728
#define MQD_SHADOW_BASE_ALIGNMENT 256
#define MQD_FWWORKAREA_SIZE       484
#define MQD_FWWORKAREA_ALIGNMENT  256

static int gfx_v11_0_get_gfx_shadow_info(struct amdgpu_device *adev,
					 struct amdgpu_gfx_shadow_info *shadow_info)
{
	if (adev->gfx.cp_gfx_shadow) {
		shadow_info->shadow_size = MQD_SHADOW_BASE_SIZE;
		shadow_info->shadow_alignment = MQD_SHADOW_BASE_ALIGNMENT;
		shadow_info->csa_size = MQD_FWWORKAREA_SIZE;
		shadow_info->csa_alignment = MQD_FWWORKAREA_ALIGNMENT;
		return 0;
	} else {
		memset(shadow_info, 0, sizeof(struct amdgpu_gfx_shadow_info));
		return -ENOTSUPP;
	}
}

static const struct amdgpu_gfx_funcs gfx_v11_0_gfx_funcs = {
	.get_gpu_clock_counter = &gfx_v11_0_get_gpu_clock_counter,
	.select_se_sh = &gfx_v11_0_select_se_sh,
	.read_wave_data = &gfx_v11_0_read_wave_data,
	.read_wave_sgprs = &gfx_v11_0_read_wave_sgprs,
	.read_wave_vgprs = &gfx_v11_0_read_wave_vgprs,
	.select_me_pipe_q = &gfx_v11_0_select_me_pipe_q,
	.update_perfmon_mgcg = &gfx_v11_0_update_perf_clk,
	.get_gfx_shadow_info = &gfx_v11_0_get_gfx_shadow_info,
};

static int gfx_v11_0_gpu_early_init(struct amdgpu_device *adev)
{
	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
	case IP_VERSION(11, 0, 0):
	case IP_VERSION(11, 0, 2):
		adev->gfx.config.max_hw_contexts = 8;
		adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
		adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
		adev->gfx.config.sc_hiz_tile_fifo_size = 0;
		adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0;
		break;
	case IP_VERSION(11, 0, 3):
		adev->gfx.ras = &gfx_v11_0_3_ras;
		adev->gfx.config.max_hw_contexts = 8;
		adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
		adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
		adev->gfx.config.sc_hiz_tile_fifo_size = 0;
		adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0;
		break;
	case IP_VERSION(11, 0, 1):
	case IP_VERSION(11, 0, 4):
	case IP_VERSION(11, 5, 0):
	case IP_VERSION(11, 5, 1):
	case IP_VERSION(11, 5, 2):
		adev->gfx.config.max_hw_contexts = 8;
		adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
		adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
		adev->gfx.config.sc_hiz_tile_fifo_size = 0x80;
		adev->gfx.config.sc_earlyz_tile_fifo_size = 0x300;
		break;
	default:
		BUG();
		break;
	}

	return 0;
}

static int gfx_v11_0_gfx_ring_init(struct amdgpu_device *adev, int ring_id,
				   int me, int pipe, int queue)
{
	struct amdgpu_ring *ring;
	unsigned int irq_type;
	unsigned int hw_prio;

	ring = &adev->gfx.gfx_ring[ring_id];

	ring->me = me;
	ring->pipe = pipe;
	ring->queue = queue;

	ring->ring_obj = NULL;
	ring->use_doorbell = true;

	if (!ring_id)
		ring->doorbell_index = adev->doorbell_index.gfx_ring0 << 1;
	else
		ring->doorbell_index = adev->doorbell_index.gfx_ring1 << 1;
	ring->vm_hub = AMDGPU_GFXHUB(0);
	sprintf(ring->name, "gfx_%d.%d.%d", ring->me, ring->pipe, ring->queue);

	irq_type = AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP + ring->pipe;
	hw_prio = amdgpu_gfx_is_high_priority_graphics_queue(adev, ring) ?
		AMDGPU_GFX_PIPE_PRIO_HIGH : AMDGPU_GFX_PIPE_PRIO_NORMAL;
	return amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type,
				hw_prio, NULL);
}

static int gfx_v11_0_compute_ring_init(struct amdgpu_device *adev, int ring_id,
				       int mec, int pipe, int queue)
{
	int r;
	unsigned irq_type;
	struct amdgpu_ring *ring;
	unsigned int hw_prio;

	ring = &adev->gfx.compute_ring[ring_id];

	/* mec0 is me1 */
	ring->me = mec + 1;
	ring->pipe = pipe;
	ring->queue = queue;

	ring->ring_obj = NULL;
	ring->use_doorbell = true;
	ring->doorbell_index = (adev->doorbell_index.mec_ring0 + ring_id) << 1;
	ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr
				+ (ring_id * GFX11_MEC_HPD_SIZE);
	ring->vm_hub = AMDGPU_GFXHUB(0);
	sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue);

	irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP
		+ ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec)
		+ ring->pipe;
	hw_prio = amdgpu_gfx_is_high_priority_compute_queue(adev, ring) ?
			AMDGPU_GFX_PIPE_PRIO_HIGH : AMDGPU_GFX_PIPE_PRIO_NORMAL;
	/* type-2 packets are deprecated on MEC, use type-3 instead */
	r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type,
			     hw_prio, NULL);
	if (r)
		return r;

	return 0;
}

static struct {
	SOC21_FIRMWARE_ID	id;
	unsigned int		offset;
	unsigned int		size;
} rlc_autoload_info[SOC21_FIRMWARE_ID_MAX];

static void gfx_v11_0_parse_rlc_toc(struct amdgpu_device *adev, void *rlc_toc)
{
	RLC_TABLE_OF_CONTENT *ucode = rlc_toc;

	while (ucode && (ucode->id > SOC21_FIRMWARE_ID_INVALID) &&
			(ucode->id < SOC21_FIRMWARE_ID_MAX)) {
		rlc_autoload_info[ucode->id].id = ucode->id;
		rlc_autoload_info[ucode->id].offset = ucode->offset * 4;
		rlc_autoload_info[ucode->id].size = ucode->size * 4;

		ucode++;
	}
}

static uint32_t gfx_v11_0_calc_toc_total_size(struct amdgpu_device *adev)
{
	uint32_t total_size = 0;
	SOC21_FIRMWARE_ID id;

	gfx_v11_0_parse_rlc_toc(adev, adev->psp.toc.start_addr);

	for (id = SOC21_FIRMWARE_ID_RLC_G_UCODE; id < SOC21_FIRMWARE_ID_MAX; id++)
		total_size += rlc_autoload_info[id].size;

	/* In case the offset in rlc toc ucode is aligned */
	if (total_size < rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].offset)
		total_size = rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].offset +
			rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].size;

	return total_size;
}

static int gfx_v11_0_rlc_autoload_buffer_init(struct amdgpu_device *adev)
{
	int r;
	uint32_t total_size;

	total_size = gfx_v11_0_calc_toc_total_size(adev);

	r = amdgpu_bo_create_reserved(adev, total_size, 64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.rlc.rlc_autoload_bo,
				      &adev->gfx.rlc.rlc_autoload_gpu_addr,
				      (void **)&adev->gfx.rlc.rlc_autoload_ptr);

	if (r) {
		dev_err(adev->dev, "(%d) failed to create fw autoload bo\n", r);
		return r;
	}

	return 0;
}

static void gfx_v11_0_rlc_backdoor_autoload_copy_ucode(struct amdgpu_device *adev,
					      SOC21_FIRMWARE_ID id,
			    		      const void *fw_data,
					      uint32_t fw_size,
					      uint32_t *fw_autoload_mask)
{
	uint32_t toc_offset;
	uint32_t toc_fw_size;
	char *ptr = adev->gfx.rlc.rlc_autoload_ptr;

	if (id <= SOC21_FIRMWARE_ID_INVALID || id >= SOC21_FIRMWARE_ID_MAX)
		return;

	toc_offset = rlc_autoload_info[id].offset;
	toc_fw_size = rlc_autoload_info[id].size;

	if (fw_size == 0)
		fw_size = toc_fw_size;

	if (fw_size > toc_fw_size)
		fw_size = toc_fw_size;

	memcpy(ptr + toc_offset, fw_data, fw_size);

	if (fw_size < toc_fw_size)
		memset(ptr + toc_offset + fw_size, 0, toc_fw_size - fw_size);

	if ((id != SOC21_FIRMWARE_ID_RS64_PFP) && (id != SOC21_FIRMWARE_ID_RS64_ME))
		*(uint64_t *)fw_autoload_mask |= 1ULL << id;
}

static void gfx_v11_0_rlc_backdoor_autoload_copy_toc_ucode(struct amdgpu_device *adev,
							uint32_t *fw_autoload_mask)
{
	void *data;
	uint32_t size;
	uint64_t *toc_ptr;

	*(uint64_t *)fw_autoload_mask |= 0x1;

	DRM_DEBUG("rlc autoload enabled fw: 0x%llx\n", *(uint64_t *)fw_autoload_mask);

	data = adev->psp.toc.start_addr;
	size = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_TOC].size;

	toc_ptr = (uint64_t *)data + size / 8 - 1;
	*toc_ptr = *(uint64_t *)fw_autoload_mask;

	gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLC_TOC,
					data, size, fw_autoload_mask);
}

static void gfx_v11_0_rlc_backdoor_autoload_copy_gfx_ucode(struct amdgpu_device *adev,
							uint32_t *fw_autoload_mask)
{
	const __le32 *fw_data;
	uint32_t fw_size;
	const struct gfx_firmware_header_v1_0 *cp_hdr;
	const struct gfx_firmware_header_v2_0 *cpv2_hdr;
	const struct rlc_firmware_header_v2_0 *rlc_hdr;
	const struct rlc_firmware_header_v2_2 *rlcv22_hdr;
	uint16_t version_major, version_minor;

	if (adev->gfx.rs64_enable) {
		/* pfp ucode */
		cpv2_hdr = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.pfp_fw->data;
		/* instruction */
		fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
			le32_to_cpu(cpv2_hdr->ucode_offset_bytes));
		fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP,
						fw_data, fw_size, fw_autoload_mask);
		/* data */
		fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
			le32_to_cpu(cpv2_hdr->data_offset_bytes));
		fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP_P0_STACK,
						fw_data, fw_size, fw_autoload_mask);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP_P1_STACK,
						fw_data, fw_size, fw_autoload_mask);
		/* me ucode */
		cpv2_hdr = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.me_fw->data;
		/* instruction */
		fw_data = (const __le32 *)(adev->gfx.me_fw->data +
			le32_to_cpu(cpv2_hdr->ucode_offset_bytes));
		fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME,
						fw_data, fw_size, fw_autoload_mask);
		/* data */
		fw_data = (const __le32 *)(adev->gfx.me_fw->data +
			le32_to_cpu(cpv2_hdr->data_offset_bytes));
		fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME_P0_STACK,
						fw_data, fw_size, fw_autoload_mask);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME_P1_STACK,
						fw_data, fw_size, fw_autoload_mask);
		/* mec ucode */
		cpv2_hdr = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.mec_fw->data;
		/* instruction */
		fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
			le32_to_cpu(cpv2_hdr->ucode_offset_bytes));
		fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC,
						fw_data, fw_size, fw_autoload_mask);
		/* data */
		fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
			le32_to_cpu(cpv2_hdr->data_offset_bytes));
		fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P0_STACK,
						fw_data, fw_size, fw_autoload_mask);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P1_STACK,
						fw_data, fw_size, fw_autoload_mask);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P2_STACK,
						fw_data, fw_size, fw_autoload_mask);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P3_STACK,
						fw_data, fw_size, fw_autoload_mask);
	} else {
		/* pfp ucode */
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.pfp_fw->data;
		fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
				le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_PFP,
						fw_data, fw_size, fw_autoload_mask);

		/* me ucode */
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.me_fw->data;
		fw_data = (const __le32 *)(adev->gfx.me_fw->data +
				le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_ME,
						fw_data, fw_size, fw_autoload_mask);

		/* mec ucode */
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.mec_fw->data;
		fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
				le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
			cp_hdr->jt_size * 4;
		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_MEC,
						fw_data, fw_size, fw_autoload_mask);
	}

	/* rlc ucode */
	rlc_hdr = (const struct rlc_firmware_header_v2_0 *)
		adev->gfx.rlc_fw->data;
	fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
			le32_to_cpu(rlc_hdr->header.ucode_array_offset_bytes));
	fw_size = le32_to_cpu(rlc_hdr->header.ucode_size_bytes);
	gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLC_G_UCODE,
					fw_data, fw_size, fw_autoload_mask);

	version_major = le16_to_cpu(rlc_hdr->header.header_version_major);
	version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor);
	if (version_major == 2) {
		if (version_minor >= 2) {
			rlcv22_hdr = (const struct rlc_firmware_header_v2_2 *)adev->gfx.rlc_fw->data;

			fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
					le32_to_cpu(rlcv22_hdr->rlc_iram_ucode_offset_bytes));
			fw_size = le32_to_cpu(rlcv22_hdr->rlc_iram_ucode_size_bytes);
			gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLX6_UCODE,
					fw_data, fw_size, fw_autoload_mask);

			fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
					le32_to_cpu(rlcv22_hdr->rlc_dram_ucode_offset_bytes));
			fw_size = le32_to_cpu(rlcv22_hdr->rlc_dram_ucode_size_bytes);
			gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLX6_DRAM_BOOT,
					fw_data, fw_size, fw_autoload_mask);
		}
	}
}

static void gfx_v11_0_rlc_backdoor_autoload_copy_sdma_ucode(struct amdgpu_device *adev,
							uint32_t *fw_autoload_mask)
{
	const __le32 *fw_data;
	uint32_t fw_size;
	const struct sdma_firmware_header_v2_0 *sdma_hdr;

	sdma_hdr = (const struct sdma_firmware_header_v2_0 *)
		adev->sdma.instance[0].fw->data;
	fw_data = (const __le32 *) (adev->sdma.instance[0].fw->data +
			le32_to_cpu(sdma_hdr->header.ucode_array_offset_bytes));
	fw_size = le32_to_cpu(sdma_hdr->ctx_ucode_size_bytes);

	gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
			SOC21_FIRMWARE_ID_SDMA_UCODE_TH0, fw_data, fw_size, fw_autoload_mask);

	fw_data = (const __le32 *) (adev->sdma.instance[0].fw->data +
			le32_to_cpu(sdma_hdr->ctl_ucode_offset));
	fw_size = le32_to_cpu(sdma_hdr->ctl_ucode_size_bytes);

	gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
			SOC21_FIRMWARE_ID_SDMA_UCODE_TH1, fw_data, fw_size, fw_autoload_mask);
}

static void gfx_v11_0_rlc_backdoor_autoload_copy_mes_ucode(struct amdgpu_device *adev,
							uint32_t *fw_autoload_mask)
{
	const __le32 *fw_data;
	unsigned fw_size;
	const struct mes_firmware_header_v1_0 *mes_hdr;
	int pipe, ucode_id, data_id;

	for (pipe = 0; pipe < 2; pipe++) {
		if (pipe==0) {
			ucode_id = SOC21_FIRMWARE_ID_RS64_MES_P0;
			data_id  = SOC21_FIRMWARE_ID_RS64_MES_P0_STACK;
		} else {
			ucode_id = SOC21_FIRMWARE_ID_RS64_MES_P1;
			data_id  = SOC21_FIRMWARE_ID_RS64_MES_P1_STACK;
		}

		mes_hdr = (const struct mes_firmware_header_v1_0 *)
			adev->mes.fw[pipe]->data;

		fw_data = (const __le32 *)(adev->mes.fw[pipe]->data +
				le32_to_cpu(mes_hdr->mes_ucode_offset_bytes));
		fw_size = le32_to_cpu(mes_hdr->mes_ucode_size_bytes);

		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
				ucode_id, fw_data, fw_size, fw_autoload_mask);

		fw_data = (const __le32 *)(adev->mes.fw[pipe]->data +
				le32_to_cpu(mes_hdr->mes_ucode_data_offset_bytes));
		fw_size = le32_to_cpu(mes_hdr->mes_ucode_data_size_bytes);

		gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
				data_id, fw_data, fw_size, fw_autoload_mask);
	}
}

static int gfx_v11_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev)
{
	uint32_t rlc_g_offset, rlc_g_size;
	uint64_t gpu_addr;
	uint32_t autoload_fw_id[2];

	memset(autoload_fw_id, 0, sizeof(uint32_t) * 2);

	/* RLC autoload sequence 2: copy ucode */
	gfx_v11_0_rlc_backdoor_autoload_copy_sdma_ucode(adev, autoload_fw_id);
	gfx_v11_0_rlc_backdoor_autoload_copy_gfx_ucode(adev, autoload_fw_id);
	gfx_v11_0_rlc_backdoor_autoload_copy_mes_ucode(adev, autoload_fw_id);
	gfx_v11_0_rlc_backdoor_autoload_copy_toc_ucode(adev, autoload_fw_id);

	rlc_g_offset = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_G_UCODE].offset;
	rlc_g_size = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_G_UCODE].size;
	gpu_addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_g_offset;

	WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_ADDR_HI, upper_32_bits(gpu_addr));
	WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_ADDR_LO, lower_32_bits(gpu_addr));

	WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_SIZE, rlc_g_size);

	/* RLC autoload sequence 3: load IMU fw */
	if (adev->gfx.imu.funcs->load_microcode)
		adev->gfx.imu.funcs->load_microcode(adev);
	/* RLC autoload sequence 4 init IMU fw */
	if (adev->gfx.imu.funcs->setup_imu)
		adev->gfx.imu.funcs->setup_imu(adev);
	if (adev->gfx.imu.funcs->start_imu)
		adev->gfx.imu.funcs->start_imu(adev);

	/* RLC autoload sequence 5 disable gpa mode */
	gfx_v11_0_disable_gpa_mode(adev);

	return 0;
}

static void gfx_v11_0_alloc_ip_dump(struct amdgpu_device *adev)
{
	uint32_t reg_count = ARRAY_SIZE(gc_reg_list_11_0);
	uint32_t *ptr;
	uint32_t inst;

	ptr = kcalloc(reg_count, sizeof(uint32_t), GFP_KERNEL);
	if (!ptr) {
		DRM_ERROR("Failed to allocate memory for GFX IP Dump\n");
		adev->gfx.ip_dump_core = NULL;
	} else {
		adev->gfx.ip_dump_core = ptr;
	}

	/* Allocate memory for compute queue registers for all the instances */
	reg_count = ARRAY_SIZE(gc_cp_reg_list_11);
	inst = adev->gfx.mec.num_mec * adev->gfx.mec.num_pipe_per_mec *
		adev->gfx.mec.num_queue_per_pipe;

	ptr = kcalloc(reg_count * inst, sizeof(uint32_t), GFP_KERNEL);
	if (!ptr) {
		DRM_ERROR("Failed to allocate memory for Compute Queues IP Dump\n");
		adev->gfx.ip_dump_compute_queues = NULL;
	} else {
		adev->gfx.ip_dump_compute_queues = ptr;
	}

	/* Allocate memory for gfx queue registers for all the instances */
	reg_count = ARRAY_SIZE(gc_gfx_queue_reg_list_11);
	inst = adev->gfx.me.num_me * adev->gfx.me.num_pipe_per_me *
		adev->gfx.me.num_queue_per_pipe;

	ptr = kcalloc(reg_count * inst, sizeof(uint32_t), GFP_KERNEL);
	if (!ptr) {
		DRM_ERROR("Failed to allocate memory for GFX Queues IP Dump\n");
		adev->gfx.ip_dump_gfx_queues = NULL;
	} else {
		adev->gfx.ip_dump_gfx_queues = ptr;
	}
}

static int gfx_v11_0_sw_init(void *handle)
{
	int i, j, k, r, ring_id = 0;
	int xcc_id = 0;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
	case IP_VERSION(11, 0, 0):
	case IP_VERSION(11, 0, 2):
	case IP_VERSION(11, 0, 3):
		adev->gfx.me.num_me = 1;
		adev->gfx.me.num_pipe_per_me = 1;
		adev->gfx.me.num_queue_per_pipe = 1;
		adev->gfx.mec.num_mec = 2;
		adev->gfx.mec.num_pipe_per_mec = 4;
		adev->gfx.mec.num_queue_per_pipe = 4;
		break;
	case IP_VERSION(11, 0, 1):
	case IP_VERSION(11, 0, 4):
	case IP_VERSION(11, 5, 0):
	case IP_VERSION(11, 5, 1):
	case IP_VERSION(11, 5, 2):
		adev->gfx.me.num_me = 1;
		adev->gfx.me.num_pipe_per_me = 1;
		adev->gfx.me.num_queue_per_pipe = 1;
		adev->gfx.mec.num_mec = 1;
		adev->gfx.mec.num_pipe_per_mec = 4;
		adev->gfx.mec.num_queue_per_pipe = 4;
		break;
	default:
		adev->gfx.me.num_me = 1;
		adev->gfx.me.num_pipe_per_me = 1;
		adev->gfx.me.num_queue_per_pipe = 1;
		adev->gfx.mec.num_mec = 1;
		adev->gfx.mec.num_pipe_per_mec = 4;
		adev->gfx.mec.num_queue_per_pipe = 8;
		break;
	}

	/* Enable CG flag in one VF mode for enabling RLC safe mode enter/exit */
	if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 0, 3) &&
	    amdgpu_sriov_is_pp_one_vf(adev))
		adev->cg_flags = AMD_CG_SUPPORT_GFX_CGCG;

	/* EOP Event */
	r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
			      GFX_11_0_0__SRCID__CP_EOP_INTERRUPT,
			      &adev->gfx.eop_irq);
	if (r)
		return r;

	/* Bad opcode Event */
	r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
			      GFX_11_0_0__SRCID__CP_BAD_OPCODE_ERROR,
			      &adev->gfx.bad_op_irq);
	if (r)
		return r;

	/* Privileged reg */
	r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
			      GFX_11_0_0__SRCID__CP_PRIV_REG_FAULT,
			      &adev->gfx.priv_reg_irq);
	if (r)
		return r;

	/* Privileged inst */
	r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
			      GFX_11_0_0__SRCID__CP_PRIV_INSTR_FAULT,
			      &adev->gfx.priv_inst_irq);
	if (r)
		return r;

	/* FED error */
	r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GFX,
				  GFX_11_0_0__SRCID__RLC_GC_FED_INTERRUPT,
				  &adev->gfx.rlc_gc_fed_irq);
	if (r)
		return r;

	adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;

	gfx_v11_0_me_init(adev);

	r = gfx_v11_0_rlc_init(adev);
	if (r) {
		DRM_ERROR("Failed to init rlc BOs!\n");
		return r;
	}

	r = gfx_v11_0_mec_init(adev);
	if (r) {
		DRM_ERROR("Failed to init MEC BOs!\n");
		return r;
	}

	/* set up the gfx ring */
	for (i = 0; i < adev->gfx.me.num_me; i++) {
		for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) {
			for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) {
				if (!amdgpu_gfx_is_me_queue_enabled(adev, i, k, j))
					continue;

				r = gfx_v11_0_gfx_ring_init(adev, ring_id,
							    i, k, j);
				if (r)
					return r;
				ring_id++;
			}
		}
	}

	ring_id = 0;
	/* set up the compute queues - allocate horizontally across pipes */
	for (i = 0; i < adev->gfx.mec.num_mec; ++i) {
		for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) {
			for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) {
				if (!amdgpu_gfx_is_mec_queue_enabled(adev, 0, i,
								     k, j))
					continue;

				r = gfx_v11_0_compute_ring_init(adev, ring_id,
								i, k, j);
				if (r)
					return r;

				ring_id++;
			}
		}
	}

	if (!adev->enable_mes_kiq) {
		r = amdgpu_gfx_kiq_init(adev, GFX11_MEC_HPD_SIZE, 0);
		if (r) {
			DRM_ERROR("Failed to init KIQ BOs!\n");
			return r;
		}

		r = amdgpu_gfx_kiq_init_ring(adev, xcc_id);
		if (r)
			return r;
	}

	r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct v11_compute_mqd), 0);
	if (r)
		return r;

	/* allocate visible FB for rlc auto-loading fw */
	if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
		r = gfx_v11_0_rlc_autoload_buffer_init(adev);
		if (r)
			return r;
	}

	r = gfx_v11_0_gpu_early_init(adev);
	if (r)
		return r;

	if (amdgpu_gfx_ras_sw_init(adev)) {
		dev_err(adev->dev, "Failed to initialize gfx ras block!\n");
		return -EINVAL;
	}

	gfx_v11_0_alloc_ip_dump(adev);

	return 0;
}

static void gfx_v11_0_pfp_fini(struct amdgpu_device *adev)
{
	amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_obj,
			      &adev->gfx.pfp.pfp_fw_gpu_addr,
			      (void **)&adev->gfx.pfp.pfp_fw_ptr);

	amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_data_obj,
			      &adev->gfx.pfp.pfp_fw_data_gpu_addr,
			      (void **)&adev->gfx.pfp.pfp_fw_data_ptr);
}

static void gfx_v11_0_me_fini(struct amdgpu_device *adev)
{
	amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_obj,
			      &adev->gfx.me.me_fw_gpu_addr,
			      (void **)&adev->gfx.me.me_fw_ptr);

	amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_data_obj,
			       &adev->gfx.me.me_fw_data_gpu_addr,
			       (void **)&adev->gfx.me.me_fw_data_ptr);
}

static void gfx_v11_0_rlc_autoload_buffer_fini(struct amdgpu_device *adev)
{
	amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_autoload_bo,
			&adev->gfx.rlc.rlc_autoload_gpu_addr,
			(void **)&adev->gfx.rlc.rlc_autoload_ptr);
}

static int gfx_v11_0_sw_fini(void *handle)
{
	int i;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	for (i = 0; i < adev->gfx.num_gfx_rings; i++)
		amdgpu_ring_fini(&adev->gfx.gfx_ring[i]);
	for (i = 0; i < adev->gfx.num_compute_rings; i++)
		amdgpu_ring_fini(&adev->gfx.compute_ring[i]);

	amdgpu_gfx_mqd_sw_fini(adev, 0);

	if (!adev->enable_mes_kiq) {
		amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq[0].ring);
		amdgpu_gfx_kiq_fini(adev, 0);
	}

	gfx_v11_0_pfp_fini(adev);
	gfx_v11_0_me_fini(adev);
	gfx_v11_0_rlc_fini(adev);
	gfx_v11_0_mec_fini(adev);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO)
		gfx_v11_0_rlc_autoload_buffer_fini(adev);

	gfx_v11_0_free_microcode(adev);

	kfree(adev->gfx.ip_dump_core);
	kfree(adev->gfx.ip_dump_compute_queues);
	kfree(adev->gfx.ip_dump_gfx_queues);

	return 0;
}

static void gfx_v11_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
				   u32 sh_num, u32 instance, int xcc_id)
{
	u32 data;

	if (instance == 0xffffffff)
		data = REG_SET_FIELD(0, GRBM_GFX_INDEX,
				     INSTANCE_BROADCAST_WRITES, 1);
	else
		data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX,
				     instance);

	if (se_num == 0xffffffff)
		data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES,
				     1);
	else
		data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num);

	if (sh_num == 0xffffffff)
		data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES,
				     1);
	else
		data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_INDEX, sh_num);

	WREG32_SOC15(GC, 0, regGRBM_GFX_INDEX, data);
}

static u32 gfx_v11_0_get_sa_active_bitmap(struct amdgpu_device *adev)
{
	u32 gc_disabled_sa_mask, gc_user_disabled_sa_mask, sa_mask;

	gc_disabled_sa_mask = RREG32_SOC15(GC, 0, regCC_GC_SA_UNIT_DISABLE);
	gc_disabled_sa_mask = REG_GET_FIELD(gc_disabled_sa_mask,
					   CC_GC_SA_UNIT_DISABLE,
					   SA_DISABLE);
	gc_user_disabled_sa_mask = RREG32_SOC15(GC, 0, regGC_USER_SA_UNIT_DISABLE);
	gc_user_disabled_sa_mask = REG_GET_FIELD(gc_user_disabled_sa_mask,
						 GC_USER_SA_UNIT_DISABLE,
						 SA_DISABLE);
	sa_mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_sh_per_se *
					    adev->gfx.config.max_shader_engines);

	return sa_mask & (~(gc_disabled_sa_mask | gc_user_disabled_sa_mask));
}

static u32 gfx_v11_0_get_rb_active_bitmap(struct amdgpu_device *adev)
{
	u32 gc_disabled_rb_mask, gc_user_disabled_rb_mask;
	u32 rb_mask;

	gc_disabled_rb_mask = RREG32_SOC15(GC, 0, regCC_RB_BACKEND_DISABLE);
	gc_disabled_rb_mask = REG_GET_FIELD(gc_disabled_rb_mask,
					    CC_RB_BACKEND_DISABLE,
					    BACKEND_DISABLE);
	gc_user_disabled_rb_mask = RREG32_SOC15(GC, 0, regGC_USER_RB_BACKEND_DISABLE);
	gc_user_disabled_rb_mask = REG_GET_FIELD(gc_user_disabled_rb_mask,
						 GC_USER_RB_BACKEND_DISABLE,
						 BACKEND_DISABLE);
	rb_mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se *
					    adev->gfx.config.max_shader_engines);

	return rb_mask & (~(gc_disabled_rb_mask | gc_user_disabled_rb_mask));
}

static void gfx_v11_0_setup_rb(struct amdgpu_device *adev)
{
	u32 rb_bitmap_width_per_sa;
	u32 max_sa;
	u32 active_sa_bitmap;
	u32 global_active_rb_bitmap;
	u32 active_rb_bitmap = 0;
	u32 i;

	/* query sa bitmap from SA_UNIT_DISABLE registers */
	active_sa_bitmap = gfx_v11_0_get_sa_active_bitmap(adev);
	/* query rb bitmap from RB_BACKEND_DISABLE registers */
	global_active_rb_bitmap = gfx_v11_0_get_rb_active_bitmap(adev);

	/* generate active rb bitmap according to active sa bitmap */
	max_sa = adev->gfx.config.max_shader_engines *
		 adev->gfx.config.max_sh_per_se;
	rb_bitmap_width_per_sa = adev->gfx.config.max_backends_per_se /
				 adev->gfx.config.max_sh_per_se;
	for (i = 0; i < max_sa; i++) {
		if (active_sa_bitmap & (1 << i))
			active_rb_bitmap |= (0x3 << (i * rb_bitmap_width_per_sa));
	}

	active_rb_bitmap &= global_active_rb_bitmap;
	adev->gfx.config.backend_enable_mask = active_rb_bitmap;
	adev->gfx.config.num_rbs = hweight32(active_rb_bitmap);
}

#define DEFAULT_SH_MEM_BASES	(0x6000)
#define LDS_APP_BASE           0x1
#define SCRATCH_APP_BASE       0x2

static void gfx_v11_0_init_compute_vmid(struct amdgpu_device *adev)
{
	int i;
	uint32_t sh_mem_bases;
	uint32_t data;

	/*
	 * Configure apertures:
	 * LDS:         0x60000000'00000000 - 0x60000001'00000000 (4GB)
	 * Scratch:     0x60000001'00000000 - 0x60000002'00000000 (4GB)
	 * GPUVM:       0x60010000'00000000 - 0x60020000'00000000 (1TB)
	 */
	sh_mem_bases = (LDS_APP_BASE << SH_MEM_BASES__SHARED_BASE__SHIFT) |
			SCRATCH_APP_BASE;

	mutex_lock(&adev->srbm_mutex);
	for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) {
		soc21_grbm_select(adev, 0, 0, 0, i);
		/* CP and shaders */
		WREG32_SOC15(GC, 0, regSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG);
		WREG32_SOC15(GC, 0, regSH_MEM_BASES, sh_mem_bases);

		/* Enable trap for each kfd vmid. */
		data = RREG32_SOC15(GC, 0, regSPI_GDBG_PER_VMID_CNTL);
		data = REG_SET_FIELD(data, SPI_GDBG_PER_VMID_CNTL, TRAP_EN, 1);
		WREG32_SOC15(GC, 0, regSPI_GDBG_PER_VMID_CNTL, data);
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);

	/* Initialize all compute VMIDs to have no GDS, GWS, or OA
	   acccess. These should be enabled by FW for target VMIDs. */
	for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) {
		WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_BASE, 2 * i, 0);
		WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_SIZE, 2 * i, 0);
		WREG32_SOC15_OFFSET(GC, 0, regGDS_GWS_VMID0, i, 0);
		WREG32_SOC15_OFFSET(GC, 0, regGDS_OA_VMID0, i, 0);
	}
}

static void gfx_v11_0_init_gds_vmid(struct amdgpu_device *adev)
{
	int vmid;

	/*
	 * Initialize all compute and user-gfx VMIDs to have no GDS, GWS, or OA
	 * access. Compute VMIDs should be enabled by FW for target VMIDs,
	 * the driver can enable them for graphics. VMID0 should maintain
	 * access so that HWS firmware can save/restore entries.
	 */
	for (vmid = 1; vmid < 16; vmid++) {
		WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_BASE, 2 * vmid, 0);
		WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_SIZE, 2 * vmid, 0);
		WREG32_SOC15_OFFSET(GC, 0, regGDS_GWS_VMID0, vmid, 0);
		WREG32_SOC15_OFFSET(GC, 0, regGDS_OA_VMID0, vmid, 0);
	}
}

static void gfx_v11_0_tcp_harvest(struct amdgpu_device *adev)
{
	/* TODO: harvest feature to be added later. */
}

static void gfx_v11_0_get_tcc_info(struct amdgpu_device *adev)
{
	/* TCCs are global (not instanced). */
	uint32_t tcc_disable = RREG32_SOC15(GC, 0, regCGTS_TCC_DISABLE) |
			       RREG32_SOC15(GC, 0, regCGTS_USER_TCC_DISABLE);

	adev->gfx.config.tcc_disabled_mask =
		REG_GET_FIELD(tcc_disable, CGTS_TCC_DISABLE, TCC_DISABLE) |
		(REG_GET_FIELD(tcc_disable, CGTS_TCC_DISABLE, HI_TCC_DISABLE) << 16);
}

static void gfx_v11_0_constants_init(struct amdgpu_device *adev)
{
	u32 tmp;
	int i;

	if (!amdgpu_sriov_vf(adev))
		WREG32_FIELD15_PREREG(GC, 0, GRBM_CNTL, READ_TIMEOUT, 0xff);

	gfx_v11_0_setup_rb(adev);
	gfx_v11_0_get_cu_info(adev, &adev->gfx.cu_info);
	gfx_v11_0_get_tcc_info(adev);
	adev->gfx.config.pa_sc_tile_steering_override = 0;

	/* Set whether texture coordinate truncation is conformant. */
	tmp = RREG32_SOC15(GC, 0, regTA_CNTL2);
	adev->gfx.config.ta_cntl2_truncate_coord_mode =
		REG_GET_FIELD(tmp, TA_CNTL2, TRUNCATE_COORD_MODE);

	/* XXX SH_MEM regs */
	/* where to put LDS, scratch, GPUVM in FSA64 space */
	mutex_lock(&adev->srbm_mutex);
	for (i = 0; i < adev->vm_manager.id_mgr[AMDGPU_GFXHUB(0)].num_ids; i++) {
		soc21_grbm_select(adev, 0, 0, 0, i);
		/* CP and shaders */
		WREG32_SOC15(GC, 0, regSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG);
		if (i != 0) {
			tmp = REG_SET_FIELD(0, SH_MEM_BASES, PRIVATE_BASE,
				(adev->gmc.private_aperture_start >> 48));
			tmp = REG_SET_FIELD(tmp, SH_MEM_BASES, SHARED_BASE,
				(adev->gmc.shared_aperture_start >> 48));
			WREG32_SOC15(GC, 0, regSH_MEM_BASES, tmp);
		}
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);

	mutex_unlock(&adev->srbm_mutex);

	gfx_v11_0_init_compute_vmid(adev);
	gfx_v11_0_init_gds_vmid(adev);
}

static u32 gfx_v11_0_get_cpg_int_cntl(struct amdgpu_device *adev,
				      int me, int pipe)
{
	if (me != 0)
		return 0;

	switch (pipe) {
	case 0:
		return SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING0);
	case 1:
		return SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING1);
	default:
		return 0;
	}
}

static u32 gfx_v11_0_get_cpc_int_cntl(struct amdgpu_device *adev,
				      int me, int pipe)
{
	/*
	 * amdgpu controls only the first MEC. That's why this function only
	 * handles the setting of interrupts for this specific MEC. All other
	 * pipes' interrupts are set by amdkfd.
	 */
	if (me != 1)
		return 0;

	switch (pipe) {
	case 0:
		return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL);
	case 1:
		return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE1_INT_CNTL);
	case 2:
		return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE2_INT_CNTL);
	case 3:
		return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE3_INT_CNTL);
	default:
		return 0;
	}
}

static void gfx_v11_0_enable_gui_idle_interrupt(struct amdgpu_device *adev,
					       bool enable)
{
	u32 tmp, cp_int_cntl_reg;
	int i, j;

	if (amdgpu_sriov_vf(adev))
		return;

	for (i = 0; i < adev->gfx.me.num_me; i++) {
		for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
			cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);

			if (cp_int_cntl_reg) {
				tmp = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
				tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE,
						    enable ? 1 : 0);
				tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE,
						    enable ? 1 : 0);
				tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE,
						    enable ? 1 : 0);
				tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE,
						    enable ? 1 : 0);
				WREG32_SOC15_IP(GC, cp_int_cntl_reg, tmp);
			}
		}
	}
}

static int gfx_v11_0_init_csb(struct amdgpu_device *adev)
{
	adev->gfx.rlc.funcs->get_csb_buffer(adev, adev->gfx.rlc.cs_ptr);

	WREG32_SOC15(GC, 0, regRLC_CSIB_ADDR_HI,
			adev->gfx.rlc.clear_state_gpu_addr >> 32);
	WREG32_SOC15(GC, 0, regRLC_CSIB_ADDR_LO,
			adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc);
	WREG32_SOC15(GC, 0, regRLC_CSIB_LENGTH, adev->gfx.rlc.clear_state_size);

	return 0;
}

static void gfx_v11_0_rlc_stop(struct amdgpu_device *adev)
{
	u32 tmp = RREG32_SOC15(GC, 0, regRLC_CNTL);

	tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0);
	WREG32_SOC15(GC, 0, regRLC_CNTL, tmp);
}

static void gfx_v11_0_rlc_reset(struct amdgpu_device *adev)
{
	WREG32_FIELD15_PREREG(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
	udelay(50);
	WREG32_FIELD15_PREREG(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0);
	udelay(50);
}

static void gfx_v11_0_rlc_smu_handshake_cntl(struct amdgpu_device *adev,
					     bool enable)
{
	uint32_t rlc_pg_cntl;

	rlc_pg_cntl = RREG32_SOC15(GC, 0, regRLC_PG_CNTL);

	if (!enable) {
		/* RLC_PG_CNTL[23] = 0 (default)
		 * RLC will wait for handshake acks with SMU
		 * GFXOFF will be enabled
		 * RLC_PG_CNTL[23] = 1
		 * RLC will not issue any message to SMU
		 * hence no handshake between SMU & RLC
		 * GFXOFF will be disabled
		 */
		rlc_pg_cntl |= RLC_PG_CNTL__SMU_HANDSHAKE_DISABLE_MASK;
	} else
		rlc_pg_cntl &= ~RLC_PG_CNTL__SMU_HANDSHAKE_DISABLE_MASK;
	WREG32_SOC15(GC, 0, regRLC_PG_CNTL, rlc_pg_cntl);
}

static void gfx_v11_0_rlc_start(struct amdgpu_device *adev)
{
	/* TODO: enable rlc & smu handshake until smu
	 * and gfxoff feature works as expected */
	if (!(amdgpu_pp_feature_mask & PP_GFXOFF_MASK))
		gfx_v11_0_rlc_smu_handshake_cntl(adev, false);

	WREG32_FIELD15_PREREG(GC, 0, RLC_CNTL, RLC_ENABLE_F32, 1);
	udelay(50);
}

static void gfx_v11_0_rlc_enable_srm(struct amdgpu_device *adev)
{
	uint32_t tmp;

	/* enable Save Restore Machine */
	tmp = RREG32(SOC15_REG_OFFSET(GC, 0, regRLC_SRM_CNTL));
	tmp |= RLC_SRM_CNTL__AUTO_INCR_ADDR_MASK;
	tmp |= RLC_SRM_CNTL__SRM_ENABLE_MASK;
	WREG32(SOC15_REG_OFFSET(GC, 0, regRLC_SRM_CNTL), tmp);
}

static void gfx_v11_0_load_rlcg_microcode(struct amdgpu_device *adev)
{
	const struct rlc_firmware_header_v2_0 *hdr;
	const __le32 *fw_data;
	unsigned i, fw_size;

	hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
	fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
			   le32_to_cpu(hdr->header.ucode_array_offset_bytes));
	fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;

	WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_ADDR,
		     RLCG_UCODE_LOADING_START_ADDRESS);

	for (i = 0; i < fw_size; i++)
		WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_DATA,
			     le32_to_cpup(fw_data++));

	WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version);
}

static void gfx_v11_0_load_rlc_iram_dram_microcode(struct amdgpu_device *adev)
{
	const struct rlc_firmware_header_v2_2 *hdr;
	const __le32 *fw_data;
	unsigned i, fw_size;
	u32 tmp;

	hdr = (const struct rlc_firmware_header_v2_2 *)adev->gfx.rlc_fw->data;

	fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
			le32_to_cpu(hdr->rlc_iram_ucode_offset_bytes));
	fw_size = le32_to_cpu(hdr->rlc_iram_ucode_size_bytes) / 4;

	WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, 0);

	for (i = 0; i < fw_size; i++) {
		if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
			msleep(1);
		WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_DATA,
				le32_to_cpup(fw_data++));
	}

	WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, adev->gfx.rlc_fw_version);

	fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
			le32_to_cpu(hdr->rlc_dram_ucode_offset_bytes));
	fw_size = le32_to_cpu(hdr->rlc_dram_ucode_size_bytes) / 4;

	WREG32_SOC15(GC, 0, regRLC_LX6_DRAM_ADDR, 0);
	for (i = 0; i < fw_size; i++) {
		if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
			msleep(1);
		WREG32_SOC15(GC, 0, regRLC_LX6_DRAM_DATA,
				le32_to_cpup(fw_data++));
	}

	WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, adev->gfx.rlc_fw_version);

	tmp = RREG32_SOC15(GC, 0, regRLC_LX6_CNTL);
	tmp = REG_SET_FIELD(tmp, RLC_LX6_CNTL, PDEBUG_ENABLE, 1);
	tmp = REG_SET_FIELD(tmp, RLC_LX6_CNTL, BRESET, 0);
	WREG32_SOC15(GC, 0, regRLC_LX6_CNTL, tmp);
}

static void gfx_v11_0_load_rlcp_rlcv_microcode(struct amdgpu_device *adev)
{
	const struct rlc_firmware_header_v2_3 *hdr;
	const __le32 *fw_data;
	unsigned i, fw_size;
	u32 tmp;

	hdr = (const struct rlc_firmware_header_v2_3 *)adev->gfx.rlc_fw->data;

	fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
			le32_to_cpu(hdr->rlcp_ucode_offset_bytes));
	fw_size = le32_to_cpu(hdr->rlcp_ucode_size_bytes) / 4;

	WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_ADDR, 0);

	for (i = 0; i < fw_size; i++) {
		if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
			msleep(1);
		WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_DATA,
				le32_to_cpup(fw_data++));
	}

	WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_ADDR, adev->gfx.rlc_fw_version);

	tmp = RREG32_SOC15(GC, 0, regRLC_GPM_THREAD_ENABLE);
	tmp = REG_SET_FIELD(tmp, RLC_GPM_THREAD_ENABLE, THREAD1_ENABLE, 1);
	WREG32_SOC15(GC, 0, regRLC_GPM_THREAD_ENABLE, tmp);

	fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
			le32_to_cpu(hdr->rlcv_ucode_offset_bytes));
	fw_size = le32_to_cpu(hdr->rlcv_ucode_size_bytes) / 4;

	WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_ADDR, 0);

	for (i = 0; i < fw_size; i++) {
		if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
			msleep(1);
		WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_DATA,
				le32_to_cpup(fw_data++));
	}

	WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_ADDR, adev->gfx.rlc_fw_version);

	tmp = RREG32_SOC15(GC, 0, regRLC_GPU_IOV_F32_CNTL);
	tmp = REG_SET_FIELD(tmp, RLC_GPU_IOV_F32_CNTL, ENABLE, 1);
	WREG32_SOC15(GC, 0, regRLC_GPU_IOV_F32_CNTL, tmp);
}

static int gfx_v11_0_rlc_load_microcode(struct amdgpu_device *adev)
{
	const struct rlc_firmware_header_v2_0 *hdr;
	uint16_t version_major;
	uint16_t version_minor;

	if (!adev->gfx.rlc_fw)
		return -EINVAL;

	hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
	amdgpu_ucode_print_rlc_hdr(&hdr->header);

	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);

	if (version_major == 2) {
		gfx_v11_0_load_rlcg_microcode(adev);
		if (amdgpu_dpm == 1) {
			if (version_minor >= 2)
				gfx_v11_0_load_rlc_iram_dram_microcode(adev);
			if (version_minor == 3)
				gfx_v11_0_load_rlcp_rlcv_microcode(adev);
		}
		
		return 0;
	}

	return -EINVAL;
}

static int gfx_v11_0_rlc_resume(struct amdgpu_device *adev)
{
	int r;

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		gfx_v11_0_init_csb(adev);

		if (!amdgpu_sriov_vf(adev)) /* enable RLC SRM */
			gfx_v11_0_rlc_enable_srm(adev);
	} else {
		if (amdgpu_sriov_vf(adev)) {
			gfx_v11_0_init_csb(adev);
			return 0;
		}

		adev->gfx.rlc.funcs->stop(adev);

		/* disable CG */
		WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, 0);

		/* disable PG */
		WREG32_SOC15(GC, 0, regRLC_PG_CNTL, 0);

		if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
			/* legacy rlc firmware loading */
			r = gfx_v11_0_rlc_load_microcode(adev);
			if (r)
				return r;
		}

		gfx_v11_0_init_csb(adev);

		adev->gfx.rlc.funcs->start(adev);
	}
	return 0;
}

static int gfx_v11_0_config_me_cache(struct amdgpu_device *adev, uint64_t addr)
{
	uint32_t usec_timeout = 50000;  /* wait for 50ms */
	uint32_t tmp;
	int i;

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1);
	WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
					INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	if (amdgpu_emu_mode == 1)
		adev->hdp.funcs->flush_hdp(adev, NULL);

	tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp);

	/* Program me ucode address into intruction cache address register */
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO,
			lower_32_bits(addr) & 0xFFFFF000);
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI,
			upper_32_bits(addr));

	return 0;
}

static int gfx_v11_0_config_pfp_cache(struct amdgpu_device *adev, uint64_t addr)
{
	uint32_t usec_timeout = 50000;  /* wait for 50ms */
	uint32_t tmp;
	int i;

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
					INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	if (amdgpu_emu_mode == 1)
		adev->hdp.funcs->flush_hdp(adev, NULL);

	tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp);

	/* Program pfp ucode address into intruction cache address register */
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO,
			lower_32_bits(addr) & 0xFFFFF000);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI,
			upper_32_bits(addr));

	return 0;
}

static int gfx_v11_0_config_mec_cache(struct amdgpu_device *adev, uint64_t addr)
{
	uint32_t usec_timeout = 50000;  /* wait for 50ms */
	uint32_t tmp;
	int i;

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);

	WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
					INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	if (amdgpu_emu_mode == 1)
		adev->hdp.funcs->flush_hdp(adev, NULL);

	tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
	WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp);

	/* Program mec1 ucode address into intruction cache address register */
	WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO,
			lower_32_bits(addr) & 0xFFFFF000);
	WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI,
			upper_32_bits(addr));

	return 0;
}

static int gfx_v11_0_config_pfp_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2)
{
	uint32_t usec_timeout = 50000;  /* wait for 50ms */
	uint32_t tmp;
	unsigned i, pipe_id;
	const struct gfx_firmware_header_v2_0 *pfp_hdr;

	pfp_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.pfp_fw->data;

	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO,
		lower_32_bits(addr));
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI,
		upper_32_bits(addr));

	tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp);

	/*
	 * Programming any of the CP_PFP_IC_BASE registers
	 * forces invalidation of the ME L1 I$. Wait for the
	 * invalidation complete
	 */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
			INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	/* Prime the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, PRIME_ICACHE, 1);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp);
	/* Waiting for cache primed*/
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
			ICACHE_PRIMED))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to prime instruction cache\n");
		return -EINVAL;
	}

	mutex_lock(&adev->srbm_mutex);
	for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
		soc21_grbm_select(adev, 0, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START,
			(pfp_hdr->ucode_start_addr_hi << 30) |
			(pfp_hdr->ucode_start_addr_lo >> 2));
		WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI,
			pfp_hdr->ucode_start_addr_hi >> 2);

		/*
		 * Program CP_ME_CNTL to reset given PIPE to take
		 * effect of CP_PFP_PRGRM_CNTR_START.
		 */
		tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE0_RESET, 1);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE1_RESET, 1);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		/* Clear pfp pipe0 reset bit. */
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE0_RESET, 0);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE1_RESET, 0);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_LO,
			lower_32_bits(addr2));
		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_HI,
			upper_32_bits(addr2));
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);

	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);

	/* Invalidate the data caches */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);

	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
			INVALIDATE_DCACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
		return -EINVAL;
	}

	return 0;
}

static int gfx_v11_0_config_me_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2)
{
	uint32_t usec_timeout = 50000;  /* wait for 50ms */
	uint32_t tmp;
	unsigned i, pipe_id;
	const struct gfx_firmware_header_v2_0 *me_hdr;

	me_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.me_fw->data;

	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO,
		lower_32_bits(addr));
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI,
		upper_32_bits(addr));

	tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp);

	/*
	 * Programming any of the CP_ME_IC_BASE registers
	 * forces invalidation of the ME L1 I$. Wait for the
	 * invalidation complete
	 */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
			INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	/* Prime the instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, PRIME_ICACHE, 1);
	WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp);

	/* Waiting for instruction cache primed*/
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
			ICACHE_PRIMED))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to prime instruction cache\n");
		return -EINVAL;
	}

	mutex_lock(&adev->srbm_mutex);
	for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
		soc21_grbm_select(adev, 0, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START,
			(me_hdr->ucode_start_addr_hi << 30) |
			(me_hdr->ucode_start_addr_lo >> 2) );
		WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI,
			me_hdr->ucode_start_addr_hi>>2);

		/*
		 * Program CP_ME_CNTL to reset given PIPE to take
		 * effect of CP_PFP_PRGRM_CNTR_START.
		 */
		tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE0_RESET, 1);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE1_RESET, 1);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		/* Clear pfp pipe0 reset bit. */
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE0_RESET, 0);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE1_RESET, 0);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_LO,
			lower_32_bits(addr2));
		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_HI,
			upper_32_bits(addr2));
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);

	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);

	/* Invalidate the data caches */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);

	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
			INVALIDATE_DCACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
		return -EINVAL;
	}

	return 0;
}

static int gfx_v11_0_config_mec_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2)
{
	uint32_t usec_timeout = 50000;  /* wait for 50ms */
	uint32_t tmp;
	unsigned i;
	const struct gfx_firmware_header_v2_0 *mec_hdr;

	mec_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.mec_fw->data;

	tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp);

	tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL, tmp);

	mutex_lock(&adev->srbm_mutex);
	for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) {
		soc21_grbm_select(adev, 1, i, 0, 0);

		WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_LO, addr2);
		WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_HI,
		     upper_32_bits(addr2));

		WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START,
					mec_hdr->ucode_start_addr_lo >> 2 |
					mec_hdr->ucode_start_addr_hi << 30);
		WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI,
					mec_hdr->ucode_start_addr_hi >> 2);

		WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, addr);
		WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI,
		     upper_32_bits(addr));
	}
	mutex_unlock(&adev->srbm_mutex);
	soc21_grbm_select(adev, 0, 0, 0, 0);

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
	WREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_MEC_DC_OP_CNTL,
				       INVALIDATE_DCACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
	WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
				       INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	return 0;
}

static void gfx_v11_0_config_gfx_rs64(struct amdgpu_device *adev)
{
	const struct gfx_firmware_header_v2_0 *pfp_hdr;
	const struct gfx_firmware_header_v2_0 *me_hdr;
	const struct gfx_firmware_header_v2_0 *mec_hdr;
	uint32_t pipe_id, tmp;

	mec_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.mec_fw->data;
	me_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.me_fw->data;
	pfp_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.pfp_fw->data;

	/* config pfp program start addr */
	for (pipe_id = 0; pipe_id < 2; pipe_id++) {
		soc21_grbm_select(adev, 0, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START,
			(pfp_hdr->ucode_start_addr_hi << 30) |
			(pfp_hdr->ucode_start_addr_lo >> 2));
		WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI,
			pfp_hdr->ucode_start_addr_hi >> 2);
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);

	/* reset pfp pipe */
	tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 1);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 1);
	WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

	/* clear pfp pipe reset */
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 0);
	WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

	/* config me program start addr */
	for (pipe_id = 0; pipe_id < 2; pipe_id++) {
		soc21_grbm_select(adev, 0, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START,
			(me_hdr->ucode_start_addr_hi << 30) |
			(me_hdr->ucode_start_addr_lo >> 2) );
		WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI,
			me_hdr->ucode_start_addr_hi>>2);
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);

	/* reset me pipe */
	tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 1);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 1);
	WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

	/* clear me pipe reset */
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 0);
	WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

	/* config mec program start addr */
	for (pipe_id = 0; pipe_id < 4; pipe_id++) {
		soc21_grbm_select(adev, 1, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START,
					mec_hdr->ucode_start_addr_lo >> 2 |
					mec_hdr->ucode_start_addr_hi << 30);
		WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI,
					mec_hdr->ucode_start_addr_hi >> 2);
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);

	/* reset mec pipe */
	tmp = RREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, 1);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, 1);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, 1);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, 1);
	WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, tmp);

	/* clear mec pipe reset */
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, 0);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, 0);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, 0);
	tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, 0);
	WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, tmp);
}

static int gfx_v11_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev)
{
	uint32_t cp_status;
	uint32_t bootload_status;
	int i, r;
	uint64_t addr, addr2;

	for (i = 0; i < adev->usec_timeout; i++) {
		cp_status = RREG32_SOC15(GC, 0, regCP_STAT);

		if (amdgpu_ip_version(adev, GC_HWIP, 0) ==
			    IP_VERSION(11, 0, 1) ||
		    amdgpu_ip_version(adev, GC_HWIP, 0) ==
			    IP_VERSION(11, 0, 4) ||
		    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 5, 0) ||
		    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 5, 1) ||
		    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 5, 2))
			bootload_status = RREG32_SOC15(GC, 0,
					regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1);
		else
			bootload_status = RREG32_SOC15(GC, 0, regRLC_RLCS_BOOTLOAD_STATUS);

		if ((cp_status == 0) &&
		    (REG_GET_FIELD(bootload_status,
			RLC_RLCS_BOOTLOAD_STATUS, BOOTLOAD_COMPLETE) == 1)) {
			break;
		}
		udelay(1);
	}

	if (i >= adev->usec_timeout) {
		dev_err(adev->dev, "rlc autoload: gc ucode autoload timeout\n");
		return -ETIMEDOUT;
	}

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
		if (adev->gfx.rs64_enable) {
			addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_ME].offset;
			addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_ME_P0_STACK].offset;
			r = gfx_v11_0_config_me_cache_rs64(adev, addr, addr2);
			if (r)
				return r;
			addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_PFP].offset;
			addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_PFP_P0_STACK].offset;
			r = gfx_v11_0_config_pfp_cache_rs64(adev, addr, addr2);
			if (r)
				return r;
			addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_MEC].offset;
			addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_MEC_P0_STACK].offset;
			r = gfx_v11_0_config_mec_cache_rs64(adev, addr, addr2);
			if (r)
				return r;
		} else {
			addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_CP_ME].offset;
			r = gfx_v11_0_config_me_cache(adev, addr);
			if (r)
				return r;
			addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_CP_PFP].offset;
			r = gfx_v11_0_config_pfp_cache(adev, addr);
			if (r)
				return r;
			addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
				rlc_autoload_info[SOC21_FIRMWARE_ID_CP_MEC].offset;
			r = gfx_v11_0_config_mec_cache(adev, addr);
			if (r)
				return r;
		}
	}

	return 0;
}

static int gfx_v11_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable)
{
	int i;
	u32 tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);

	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, enable ? 0 : 1);
	tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, enable ? 0 : 1);
	WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

	for (i = 0; i < adev->usec_timeout; i++) {
		if (RREG32_SOC15(GC, 0, regCP_STAT) == 0)
			break;
		udelay(1);
	}

	if (i >= adev->usec_timeout)
		DRM_ERROR("failed to %s cp gfx\n", enable ? "unhalt" : "halt");

	return 0;
}

static int gfx_v11_0_cp_gfx_load_pfp_microcode(struct amdgpu_device *adev)
{
	int r;
	const struct gfx_firmware_header_v1_0 *pfp_hdr;
	const __le32 *fw_data;
	unsigned i, fw_size;

	pfp_hdr = (const struct gfx_firmware_header_v1_0 *)
		adev->gfx.pfp_fw->data;

	amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);

	fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
		le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes));
	fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes);

	r = amdgpu_bo_create_reserved(adev, pfp_hdr->header.ucode_size_bytes,
				      PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.pfp.pfp_fw_obj,
				      &adev->gfx.pfp.pfp_fw_gpu_addr,
				      (void **)&adev->gfx.pfp.pfp_fw_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create pfp fw bo\n", r);
		gfx_v11_0_pfp_fini(adev);
		return r;
	}

	memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_data, fw_size);

	amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj);
	amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj);

	gfx_v11_0_config_pfp_cache(adev, adev->gfx.pfp.pfp_fw_gpu_addr);

	WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_ADDR, 0);

	for (i = 0; i < pfp_hdr->jt_size; i++)
		WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_DATA,
			     le32_to_cpup(fw_data + pfp_hdr->jt_offset + i));

	WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_ADDR, adev->gfx.pfp_fw_version);

	return 0;
}

static int gfx_v11_0_cp_gfx_load_pfp_microcode_rs64(struct amdgpu_device *adev)
{
	int r;
	const struct gfx_firmware_header_v2_0 *pfp_hdr;
	const __le32 *fw_ucode, *fw_data;
	unsigned i, pipe_id, fw_ucode_size, fw_data_size;
	uint32_t tmp;
	uint32_t usec_timeout = 50000;  /* wait for 50ms */

	pfp_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.pfp_fw->data;

	amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);

	/* instruction */
	fw_ucode = (const __le32 *)(adev->gfx.pfp_fw->data +
		le32_to_cpu(pfp_hdr->ucode_offset_bytes));
	fw_ucode_size = le32_to_cpu(pfp_hdr->ucode_size_bytes);
	/* data */
	fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
		le32_to_cpu(pfp_hdr->data_offset_bytes));
	fw_data_size = le32_to_cpu(pfp_hdr->data_size_bytes);

	/* 64kb align */
	r = amdgpu_bo_create_reserved(adev, fw_ucode_size,
				      64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.pfp.pfp_fw_obj,
				      &adev->gfx.pfp.pfp_fw_gpu_addr,
				      (void **)&adev->gfx.pfp.pfp_fw_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create pfp ucode fw bo\n", r);
		gfx_v11_0_pfp_fini(adev);
		return r;
	}

	r = amdgpu_bo_create_reserved(adev, fw_data_size,
				      64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.pfp.pfp_fw_data_obj,
				      &adev->gfx.pfp.pfp_fw_data_gpu_addr,
				      (void **)&adev->gfx.pfp.pfp_fw_data_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create pfp data fw bo\n", r);
		gfx_v11_0_pfp_fini(adev);
		return r;
	}

	memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_ucode, fw_ucode_size);
	memcpy(adev->gfx.pfp.pfp_fw_data_ptr, fw_data, fw_data_size);

	amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj);
	amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_data_obj);
	amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj);
	amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_data_obj);

	if (amdgpu_emu_mode == 1)
		adev->hdp.funcs->flush_hdp(adev, NULL);

	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO,
		lower_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr));
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI,
		upper_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr));

	tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp);

	/*
	 * Programming any of the CP_PFP_IC_BASE registers
	 * forces invalidation of the ME L1 I$. Wait for the
	 * invalidation complete
	 */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
			INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	/* Prime the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, PRIME_ICACHE, 1);
	WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp);
	/* Waiting for cache primed*/
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
			ICACHE_PRIMED))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to prime instruction cache\n");
		return -EINVAL;
	}

	mutex_lock(&adev->srbm_mutex);
	for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
		soc21_grbm_select(adev, 0, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START,
			(pfp_hdr->ucode_start_addr_hi << 30) |
			(pfp_hdr->ucode_start_addr_lo >> 2) );
		WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI,
			pfp_hdr->ucode_start_addr_hi>>2);

		/*
		 * Program CP_ME_CNTL to reset given PIPE to take
		 * effect of CP_PFP_PRGRM_CNTR_START.
		 */
		tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE0_RESET, 1);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE1_RESET, 1);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		/* Clear pfp pipe0 reset bit. */
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE0_RESET, 0);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					PFP_PIPE1_RESET, 0);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_LO,
			lower_32_bits(adev->gfx.pfp.pfp_fw_data_gpu_addr));
		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_HI,
			upper_32_bits(adev->gfx.pfp.pfp_fw_data_gpu_addr));
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);

	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);

	/* Invalidate the data caches */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);

	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
			INVALIDATE_DCACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
		return -EINVAL;
	}

	return 0;
}

static int gfx_v11_0_cp_gfx_load_me_microcode(struct amdgpu_device *adev)
{
	int r;
	const struct gfx_firmware_header_v1_0 *me_hdr;
	const __le32 *fw_data;
	unsigned i, fw_size;

	me_hdr = (const struct gfx_firmware_header_v1_0 *)
		adev->gfx.me_fw->data;

	amdgpu_ucode_print_gfx_hdr(&me_hdr->header);

	fw_data = (const __le32 *)(adev->gfx.me_fw->data +
		le32_to_cpu(me_hdr->header.ucode_array_offset_bytes));
	fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes);

	r = amdgpu_bo_create_reserved(adev, me_hdr->header.ucode_size_bytes,
				      PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.me.me_fw_obj,
				      &adev->gfx.me.me_fw_gpu_addr,
				      (void **)&adev->gfx.me.me_fw_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create me fw bo\n", r);
		gfx_v11_0_me_fini(adev);
		return r;
	}

	memcpy(adev->gfx.me.me_fw_ptr, fw_data, fw_size);

	amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj);
	amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj);

	gfx_v11_0_config_me_cache(adev, adev->gfx.me.me_fw_gpu_addr);

	WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_ADDR, 0);

	for (i = 0; i < me_hdr->jt_size; i++)
		WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_DATA,
			     le32_to_cpup(fw_data + me_hdr->jt_offset + i));

	WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_ADDR, adev->gfx.me_fw_version);

	return 0;
}

static int gfx_v11_0_cp_gfx_load_me_microcode_rs64(struct amdgpu_device *adev)
{
	int r;
	const struct gfx_firmware_header_v2_0 *me_hdr;
	const __le32 *fw_ucode, *fw_data;
	unsigned i, pipe_id, fw_ucode_size, fw_data_size;
	uint32_t tmp;
	uint32_t usec_timeout = 50000;  /* wait for 50ms */

	me_hdr = (const struct gfx_firmware_header_v2_0 *)
		adev->gfx.me_fw->data;

	amdgpu_ucode_print_gfx_hdr(&me_hdr->header);

	/* instruction */
	fw_ucode = (const __le32 *)(adev->gfx.me_fw->data +
		le32_to_cpu(me_hdr->ucode_offset_bytes));
	fw_ucode_size = le32_to_cpu(me_hdr->ucode_size_bytes);
	/* data */
	fw_data = (const __le32 *)(adev->gfx.me_fw->data +
		le32_to_cpu(me_hdr->data_offset_bytes));
	fw_data_size = le32_to_cpu(me_hdr->data_size_bytes);

	/* 64kb align*/
	r = amdgpu_bo_create_reserved(adev, fw_ucode_size,
				      64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.me.me_fw_obj,
				      &adev->gfx.me.me_fw_gpu_addr,
				      (void **)&adev->gfx.me.me_fw_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create me ucode bo\n", r);
		gfx_v11_0_me_fini(adev);
		return r;
	}

	r = amdgpu_bo_create_reserved(adev, fw_data_size,
				      64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.me.me_fw_data_obj,
				      &adev->gfx.me.me_fw_data_gpu_addr,
				      (void **)&adev->gfx.me.me_fw_data_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create me data bo\n", r);
		gfx_v11_0_pfp_fini(adev);
		return r;
	}

	memcpy(adev->gfx.me.me_fw_ptr, fw_ucode, fw_ucode_size);
	memcpy(adev->gfx.me.me_fw_data_ptr, fw_data, fw_data_size);

	amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj);
	amdgpu_bo_kunmap(adev->gfx.me.me_fw_data_obj);
	amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj);
	amdgpu_bo_unreserve(adev->gfx.me.me_fw_data_obj);

	if (amdgpu_emu_mode == 1)
		adev->hdp.funcs->flush_hdp(adev, NULL);

	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO,
		lower_32_bits(adev->gfx.me.me_fw_gpu_addr));
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI,
		upper_32_bits(adev->gfx.me.me_fw_gpu_addr));

	tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
	WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp);

	/*
	 * Programming any of the CP_ME_IC_BASE registers
	 * forces invalidation of the ME L1 I$. Wait for the
	 * invalidation complete
	 */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
			INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	/* Prime the instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, PRIME_ICACHE, 1);
	WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp);

	/* Waiting for instruction cache primed*/
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
			ICACHE_PRIMED))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to prime instruction cache\n");
		return -EINVAL;
	}

	mutex_lock(&adev->srbm_mutex);
	for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
		soc21_grbm_select(adev, 0, pipe_id, 0, 0);
		WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START,
			(me_hdr->ucode_start_addr_hi << 30) |
			(me_hdr->ucode_start_addr_lo >> 2) );
		WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI,
			me_hdr->ucode_start_addr_hi>>2);

		/*
		 * Program CP_ME_CNTL to reset given PIPE to take
		 * effect of CP_PFP_PRGRM_CNTR_START.
		 */
		tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE0_RESET, 1);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE1_RESET, 1);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		/* Clear pfp pipe0 reset bit. */
		if (pipe_id == 0)
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE0_RESET, 0);
		else
			tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
					ME_PIPE1_RESET, 0);
		WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);

		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_LO,
			lower_32_bits(adev->gfx.me.me_fw_data_gpu_addr));
		WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_HI,
			upper_32_bits(adev->gfx.me.me_fw_data_gpu_addr));
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);

	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);

	/* Invalidate the data caches */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
	WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);

	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
			INVALIDATE_DCACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
		return -EINVAL;
	}

	return 0;
}

static int gfx_v11_0_cp_gfx_load_microcode(struct amdgpu_device *adev)
{
	int r;

	if (!adev->gfx.me_fw || !adev->gfx.pfp_fw)
		return -EINVAL;

	gfx_v11_0_cp_gfx_enable(adev, false);

	if (adev->gfx.rs64_enable)
		r = gfx_v11_0_cp_gfx_load_pfp_microcode_rs64(adev);
	else
		r = gfx_v11_0_cp_gfx_load_pfp_microcode(adev);
	if (r) {
		dev_err(adev->dev, "(%d) failed to load pfp fw\n", r);
		return r;
	}

	if (adev->gfx.rs64_enable)
		r = gfx_v11_0_cp_gfx_load_me_microcode_rs64(adev);
	else
		r = gfx_v11_0_cp_gfx_load_me_microcode(adev);
	if (r) {
		dev_err(adev->dev, "(%d) failed to load me fw\n", r);
		return r;
	}

	return 0;
}

static int gfx_v11_0_cp_gfx_start(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	const struct cs_section_def *sect = NULL;
	const struct cs_extent_def *ext = NULL;
	int r, i;
	int ctx_reg_offset;

	/* init the CP */
	WREG32_SOC15(GC, 0, regCP_MAX_CONTEXT,
		     adev->gfx.config.max_hw_contexts - 1);
	WREG32_SOC15(GC, 0, regCP_DEVICE_ID, 1);

	if (!amdgpu_async_gfx_ring)
		gfx_v11_0_cp_gfx_enable(adev, true);

	ring = &adev->gfx.gfx_ring[0];
	r = amdgpu_ring_alloc(ring, gfx_v11_0_get_csb_size(adev));
	if (r) {
		DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
		return r;
	}

	amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);

	amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
	amdgpu_ring_write(ring, 0x80000000);
	amdgpu_ring_write(ring, 0x80000000);

	for (sect = gfx11_cs_data; sect->section != NULL; ++sect) {
		for (ext = sect->section; ext->extent != NULL; ++ext) {
			if (sect->id == SECT_CONTEXT) {
				amdgpu_ring_write(ring,
						  PACKET3(PACKET3_SET_CONTEXT_REG,
							  ext->reg_count));
				amdgpu_ring_write(ring, ext->reg_index -
						  PACKET3_SET_CONTEXT_REG_START);
				for (i = 0; i < ext->reg_count; i++)
					amdgpu_ring_write(ring, ext->extent[i]);
			}
		}
	}

	ctx_reg_offset =
		SOC15_REG_OFFSET(GC, 0, regPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START;
	amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 1));
	amdgpu_ring_write(ring, ctx_reg_offset);
	amdgpu_ring_write(ring, adev->gfx.config.pa_sc_tile_steering_override);

	amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);

	amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
	amdgpu_ring_write(ring, 0);

	amdgpu_ring_commit(ring);

	/* submit cs packet to copy state 0 to next available state */
	if (adev->gfx.num_gfx_rings > 1) {
		/* maximum supported gfx ring is 2 */
		ring = &adev->gfx.gfx_ring[1];
		r = amdgpu_ring_alloc(ring, 2);
		if (r) {
			DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
			return r;
		}

		amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
		amdgpu_ring_write(ring, 0);

		amdgpu_ring_commit(ring);
	}
	return 0;
}

static void gfx_v11_0_cp_gfx_switch_pipe(struct amdgpu_device *adev,
					 CP_PIPE_ID pipe)
{
	u32 tmp;

	tmp = RREG32_SOC15(GC, 0, regGRBM_GFX_CNTL);
	tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, pipe);

	WREG32_SOC15(GC, 0, regGRBM_GFX_CNTL, tmp);
}

static void gfx_v11_0_cp_gfx_set_doorbell(struct amdgpu_device *adev,
					  struct amdgpu_ring *ring)
{
	u32 tmp;

	tmp = RREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL);
	if (ring->use_doorbell) {
		tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
				    DOORBELL_OFFSET, ring->doorbell_index);
		tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
				    DOORBELL_EN, 1);
	} else {
		tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
				    DOORBELL_EN, 0);
	}
	WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL, tmp);

	tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER,
			    DOORBELL_RANGE_LOWER, ring->doorbell_index);
	WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_LOWER, tmp);

	WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_UPPER,
		     CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK);
}

static int gfx_v11_0_cp_gfx_resume(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	u32 tmp;
	u32 rb_bufsz;
	u64 rb_addr, rptr_addr, wptr_gpu_addr;

	/* Set the write pointer delay */
	WREG32_SOC15(GC, 0, regCP_RB_WPTR_DELAY, 0);

	/* set the RB to use vmid 0 */
	WREG32_SOC15(GC, 0, regCP_RB_VMID, 0);

	/* Init gfx ring 0 for pipe 0 */
	mutex_lock(&adev->srbm_mutex);
	gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID0);

	/* Set ring buffer size */
	ring = &adev->gfx.gfx_ring[0];
	rb_bufsz = order_base_2(ring->ring_size / 8);
	tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz);
	tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2);
	WREG32_SOC15(GC, 0, regCP_RB0_CNTL, tmp);

	/* Initialize the ring buffer's write pointers */
	ring->wptr = 0;
	WREG32_SOC15(GC, 0, regCP_RB0_WPTR, lower_32_bits(ring->wptr));
	WREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI, upper_32_bits(ring->wptr));

	/* set the wb address wether it's enabled or not */
	rptr_addr = ring->rptr_gpu_addr;
	WREG32_SOC15(GC, 0, regCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr));
	WREG32_SOC15(GC, 0, regCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) &
		     CP_RB_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK);

	wptr_gpu_addr = ring->wptr_gpu_addr;
	WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO,
		     lower_32_bits(wptr_gpu_addr));
	WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI,
		     upper_32_bits(wptr_gpu_addr));

	mdelay(1);
	WREG32_SOC15(GC, 0, regCP_RB0_CNTL, tmp);

	rb_addr = ring->gpu_addr >> 8;
	WREG32_SOC15(GC, 0, regCP_RB0_BASE, rb_addr);
	WREG32_SOC15(GC, 0, regCP_RB0_BASE_HI, upper_32_bits(rb_addr));

	WREG32_SOC15(GC, 0, regCP_RB_ACTIVE, 1);

	gfx_v11_0_cp_gfx_set_doorbell(adev, ring);
	mutex_unlock(&adev->srbm_mutex);

	/* Init gfx ring 1 for pipe 1 */
	if (adev->gfx.num_gfx_rings > 1) {
		mutex_lock(&adev->srbm_mutex);
		gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID1);
		/* maximum supported gfx ring is 2 */
		ring = &adev->gfx.gfx_ring[1];
		rb_bufsz = order_base_2(ring->ring_size / 8);
		tmp = REG_SET_FIELD(0, CP_RB1_CNTL, RB_BUFSZ, rb_bufsz);
		tmp = REG_SET_FIELD(tmp, CP_RB1_CNTL, RB_BLKSZ, rb_bufsz - 2);
		WREG32_SOC15(GC, 0, regCP_RB1_CNTL, tmp);
		/* Initialize the ring buffer's write pointers */
		ring->wptr = 0;
		WREG32_SOC15(GC, 0, regCP_RB1_WPTR, lower_32_bits(ring->wptr));
		WREG32_SOC15(GC, 0, regCP_RB1_WPTR_HI, upper_32_bits(ring->wptr));
		/* Set the wb address wether it's enabled or not */
		rptr_addr = ring->rptr_gpu_addr;
		WREG32_SOC15(GC, 0, regCP_RB1_RPTR_ADDR, lower_32_bits(rptr_addr));
		WREG32_SOC15(GC, 0, regCP_RB1_RPTR_ADDR_HI, upper_32_bits(rptr_addr) &
			     CP_RB1_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK);
		wptr_gpu_addr = ring->wptr_gpu_addr;
		WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO,
			     lower_32_bits(wptr_gpu_addr));
		WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI,
			     upper_32_bits(wptr_gpu_addr));

		mdelay(1);
		WREG32_SOC15(GC, 0, regCP_RB1_CNTL, tmp);

		rb_addr = ring->gpu_addr >> 8;
		WREG32_SOC15(GC, 0, regCP_RB1_BASE, rb_addr);
		WREG32_SOC15(GC, 0, regCP_RB1_BASE_HI, upper_32_bits(rb_addr));
		WREG32_SOC15(GC, 0, regCP_RB1_ACTIVE, 1);

		gfx_v11_0_cp_gfx_set_doorbell(adev, ring);
		mutex_unlock(&adev->srbm_mutex);
	}
	/* Switch to pipe 0 */
	mutex_lock(&adev->srbm_mutex);
	gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID0);
	mutex_unlock(&adev->srbm_mutex);

	/* start the ring */
	gfx_v11_0_cp_gfx_start(adev);

	return 0;
}

static void gfx_v11_0_cp_compute_enable(struct amdgpu_device *adev, bool enable)
{
	u32 data;

	if (adev->gfx.rs64_enable) {
		data = RREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_INVALIDATE_ICACHE,
							 enable ? 0 : 1);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET,
							 enable ? 0 : 1);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET,
							 enable ? 0 : 1);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET,
							 enable ? 0 : 1);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET,
							 enable ? 0 : 1);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE0_ACTIVE,
							 enable ? 1 : 0);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE1_ACTIVE,
				                         enable ? 1 : 0);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE2_ACTIVE,
							 enable ? 1 : 0);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE3_ACTIVE,
							 enable ? 1 : 0);
		data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_HALT,
							 enable ? 0 : 1);
		WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, data);
	} else {
		data = RREG32_SOC15(GC, 0, regCP_MEC_CNTL);

		if (enable) {
			data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME1_HALT, 0);
			if (!adev->enable_mes_kiq)
				data = REG_SET_FIELD(data, CP_MEC_CNTL,
						     MEC_ME2_HALT, 0);
		} else {
			data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME1_HALT, 1);
			data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME2_HALT, 1);
		}
		WREG32_SOC15(GC, 0, regCP_MEC_CNTL, data);
	}

	udelay(50);
}

static int gfx_v11_0_cp_compute_load_microcode(struct amdgpu_device *adev)
{
	const struct gfx_firmware_header_v1_0 *mec_hdr;
	const __le32 *fw_data;
	unsigned i, fw_size;
	u32 *fw = NULL;
	int r;

	if (!adev->gfx.mec_fw)
		return -EINVAL;

	gfx_v11_0_cp_compute_enable(adev, false);

	mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
	amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);

	fw_data = (const __le32 *)
		(adev->gfx.mec_fw->data +
		 le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes));
	fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes);

	r = amdgpu_bo_create_reserved(adev, mec_hdr->header.ucode_size_bytes,
					  PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
					  &adev->gfx.mec.mec_fw_obj,
					  &adev->gfx.mec.mec_fw_gpu_addr,
					  (void **)&fw);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create mec fw bo\n", r);
		gfx_v11_0_mec_fini(adev);
		return r;
	}

	memcpy(fw, fw_data, fw_size);
	
	amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj);
	amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj);

	gfx_v11_0_config_mec_cache(adev, adev->gfx.mec.mec_fw_gpu_addr);

	/* MEC1 */
	WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_ADDR, 0);

	for (i = 0; i < mec_hdr->jt_size; i++)
		WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_DATA,
			     le32_to_cpup(fw_data + mec_hdr->jt_offset + i));

	WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version);

	return 0;
}

static int gfx_v11_0_cp_compute_load_microcode_rs64(struct amdgpu_device *adev)
{
	const struct gfx_firmware_header_v2_0 *mec_hdr;
	const __le32 *fw_ucode, *fw_data;
	u32 tmp, fw_ucode_size, fw_data_size;
	u32 i, usec_timeout = 50000; /* Wait for 50 ms */
	u32 *fw_ucode_ptr, *fw_data_ptr;
	int r;

	if (!adev->gfx.mec_fw)
		return -EINVAL;

	gfx_v11_0_cp_compute_enable(adev, false);

	mec_hdr = (const struct gfx_firmware_header_v2_0 *)adev->gfx.mec_fw->data;
	amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);

	fw_ucode = (const __le32 *) (adev->gfx.mec_fw->data +
				le32_to_cpu(mec_hdr->ucode_offset_bytes));
	fw_ucode_size = le32_to_cpu(mec_hdr->ucode_size_bytes);

	fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
				le32_to_cpu(mec_hdr->data_offset_bytes));
	fw_data_size = le32_to_cpu(mec_hdr->data_size_bytes);

	r = amdgpu_bo_create_reserved(adev, fw_ucode_size,
				      64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.mec.mec_fw_obj,
				      &adev->gfx.mec.mec_fw_gpu_addr,
				      (void **)&fw_ucode_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create mec fw ucode bo\n", r);
		gfx_v11_0_mec_fini(adev);
		return r;
	}

	r = amdgpu_bo_create_reserved(adev, fw_data_size,
				      64 * 1024,
				      AMDGPU_GEM_DOMAIN_VRAM |
				      AMDGPU_GEM_DOMAIN_GTT,
				      &adev->gfx.mec.mec_fw_data_obj,
				      &adev->gfx.mec.mec_fw_data_gpu_addr,
				      (void **)&fw_data_ptr);
	if (r) {
		dev_err(adev->dev, "(%d) failed to create mec fw ucode bo\n", r);
		gfx_v11_0_mec_fini(adev);
		return r;
	}

	memcpy(fw_ucode_ptr, fw_ucode, fw_ucode_size);
	memcpy(fw_data_ptr, fw_data, fw_data_size);

	amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj);
	amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_data_obj);
	amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj);
	amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_data_obj);

	tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp);

	tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, CACHE_POLICY, 0);
	WREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL, tmp);

	mutex_lock(&adev->srbm_mutex);
	for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) {
		soc21_grbm_select(adev, 1, i, 0, 0);

		WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_LO, adev->gfx.mec.mec_fw_data_gpu_addr);
		WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_HI,
		     upper_32_bits(adev->gfx.mec.mec_fw_data_gpu_addr));

		WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START,
					mec_hdr->ucode_start_addr_lo >> 2 |
					mec_hdr->ucode_start_addr_hi << 30);
		WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI,
					mec_hdr->ucode_start_addr_hi >> 2);

		WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr);
		WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI,
		     upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr));
	}
	mutex_unlock(&adev->srbm_mutex);
	soc21_grbm_select(adev, 0, 0, 0, 0);

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
	WREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_MEC_DC_OP_CNTL,
				       INVALIDATE_DCACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	/* Trigger an invalidation of the L1 instruction caches */
	tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
	WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp);

	/* Wait for invalidation complete */
	for (i = 0; i < usec_timeout; i++) {
		tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
		if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
				       INVALIDATE_CACHE_COMPLETE))
			break;
		udelay(1);
	}

	if (i >= usec_timeout) {
		dev_err(adev->dev, "failed to invalidate instruction cache\n");
		return -EINVAL;
	}

	return 0;
}

static void gfx_v11_0_kiq_setting(struct amdgpu_ring *ring)
{
	uint32_t tmp;
	struct amdgpu_device *adev = ring->adev;

	/* tell RLC which is KIQ queue */
	tmp = RREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS);
	tmp &= 0xffffff00;
	tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue);
	WREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS, tmp);
	tmp |= 0x80;
	WREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS, tmp);
}

static void gfx_v11_0_cp_set_doorbell_range(struct amdgpu_device *adev)
{
	/* set graphics engine doorbell range */
	WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_LOWER,
		     (adev->doorbell_index.gfx_ring0 * 2) << 2);
	WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_UPPER,
		     (adev->doorbell_index.gfx_userqueue_end * 2) << 2);

	/* set compute engine doorbell range */
	WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_LOWER,
		     (adev->doorbell_index.kiq * 2) << 2);
	WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_UPPER,
		     (adev->doorbell_index.userqueue_end * 2) << 2);
}

static void gfx_v11_0_gfx_mqd_set_priority(struct amdgpu_device *adev,
					   struct v11_gfx_mqd *mqd,
					   struct amdgpu_mqd_prop *prop)
{
	bool priority = 0;
	u32 tmp;

	/* set up default queue priority level
	 * 0x0 = low priority, 0x1 = high priority
	 */
	if (prop->hqd_pipe_priority == AMDGPU_GFX_PIPE_PRIO_HIGH)
		priority = 1;

	tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_QUEUE_PRIORITY);
	tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUEUE_PRIORITY, PRIORITY_LEVEL, priority);
	mqd->cp_gfx_hqd_queue_priority = tmp;
}

static int gfx_v11_0_gfx_mqd_init(struct amdgpu_device *adev, void *m,
				  struct amdgpu_mqd_prop *prop)
{
	struct v11_gfx_mqd *mqd = m;
	uint64_t hqd_gpu_addr, wb_gpu_addr;
	uint32_t tmp;
	uint32_t rb_bufsz;

	/* set up gfx hqd wptr */
	mqd->cp_gfx_hqd_wptr = 0;
	mqd->cp_gfx_hqd_wptr_hi = 0;

	/* set the pointer to the MQD */
	mqd->cp_mqd_base_addr = prop->mqd_gpu_addr & 0xfffffffc;
	mqd->cp_mqd_base_addr_hi = upper_32_bits(prop->mqd_gpu_addr);

	/* set up mqd control */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_MQD_CONTROL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, VMID, 0);
	tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, PRIV_STATE, 1);
	tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, CACHE_POLICY, 0);
	mqd->cp_gfx_mqd_control = tmp;

	/* set up gfx_hqd_vimd with 0x0 to indicate the ring buffer's vmid */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_VMID);
	tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_VMID, VMID, 0);
	mqd->cp_gfx_hqd_vmid = 0;

	/* set up gfx queue priority */
	gfx_v11_0_gfx_mqd_set_priority(adev, mqd, prop);

	/* set up time quantum */
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_QUANTUM);
	tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUANTUM, QUANTUM_EN, 1);
	mqd->cp_gfx_hqd_quantum = tmp;

	/* set up gfx hqd base. this is similar as CP_RB_BASE */
	hqd_gpu_addr = prop->hqd_base_gpu_addr >> 8;
	mqd->cp_gfx_hqd_base = hqd_gpu_addr;
	mqd->cp_gfx_hqd_base_hi = upper_32_bits(hqd_gpu_addr);

	/* set up hqd_rptr_addr/_hi, similar as CP_RB_RPTR */
	wb_gpu_addr = prop->rptr_gpu_addr;
	mqd->cp_gfx_hqd_rptr_addr = wb_gpu_addr & 0xfffffffc;
	mqd->cp_gfx_hqd_rptr_addr_hi =
		upper_32_bits(wb_gpu_addr) & 0xffff;

	/* set up rb_wptr_poll addr */
	wb_gpu_addr = prop->wptr_gpu_addr;
	mqd->cp_rb_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
	mqd->cp_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;

	/* set up the gfx_hqd_control, similar as CP_RB0_CNTL */
	rb_bufsz = order_base_2(prop->queue_size / 4) - 1;
	tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BUFSZ, rb_bufsz);
	tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BLKSZ, rb_bufsz - 2);
#ifdef __BIG_ENDIAN
	tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, BUF_SWAP, 1);
#endif
	mqd->cp_gfx_hqd_cntl = tmp;

	/* set up cp_doorbell_control */
	tmp = RREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL);
	if (prop->use_doorbell) {
		tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
				    DOORBELL_OFFSET, prop->doorbell_index);
		tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
				    DOORBELL_EN, 1);
	} else
		tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
				    DOORBELL_EN, 0);
	mqd->cp_rb_doorbell_control = tmp;

	/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
	mqd->cp_gfx_hqd_rptr = RREG32_SOC15(GC, 0, regCP_GFX_HQD_RPTR);

	/* active the queue */
	mqd->cp_gfx_hqd_active = 1;

	return 0;
}

static int gfx_v11_0_kgq_init_queue(struct amdgpu_ring *ring, bool reset)
{
	struct amdgpu_device *adev = ring->adev;
	struct v11_gfx_mqd *mqd = ring->mqd_ptr;
	int mqd_idx = ring - &adev->gfx.gfx_ring[0];

	if (!reset && !amdgpu_in_reset(adev) && !adev->in_suspend) {
		memset((void *)mqd, 0, sizeof(*mqd));
		mutex_lock(&adev->srbm_mutex);
		soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
		amdgpu_ring_init_mqd(ring);
		soc21_grbm_select(adev, 0, 0, 0, 0);
		mutex_unlock(&adev->srbm_mutex);
		if (adev->gfx.me.mqd_backup[mqd_idx])
			memcpy_fromio(adev->gfx.me.mqd_backup[mqd_idx], mqd, sizeof(*mqd));
	} else {
		/* restore mqd with the backup copy */
		if (adev->gfx.me.mqd_backup[mqd_idx])
			memcpy_toio(mqd, adev->gfx.me.mqd_backup[mqd_idx], sizeof(*mqd));
		/* reset the ring */
		ring->wptr = 0;
		*ring->wptr_cpu_addr = 0;
		amdgpu_ring_clear_ring(ring);
	}

	return 0;
}

static int gfx_v11_0_cp_async_gfx_ring_resume(struct amdgpu_device *adev)
{
	int r, i;
	struct amdgpu_ring *ring;

	for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
		ring = &adev->gfx.gfx_ring[i];

		r = amdgpu_bo_reserve(ring->mqd_obj, false);
		if (unlikely(r != 0))
			return r;

		r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
		if (!r) {
			r = gfx_v11_0_kgq_init_queue(ring, false);
			amdgpu_bo_kunmap(ring->mqd_obj);
			ring->mqd_ptr = NULL;
		}
		amdgpu_bo_unreserve(ring->mqd_obj);
		if (r)
			return r;
	}

	r = amdgpu_gfx_enable_kgq(adev, 0);
	if (r)
		return r;

	return gfx_v11_0_cp_gfx_start(adev);
}

static int gfx_v11_0_compute_mqd_init(struct amdgpu_device *adev, void *m,
				      struct amdgpu_mqd_prop *prop)
{
	struct v11_compute_mqd *mqd = m;
	uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr;
	uint32_t tmp;

	mqd->header = 0xC0310800;
	mqd->compute_pipelinestat_enable = 0x00000001;
	mqd->compute_static_thread_mgmt_se0 = 0xffffffff;
	mqd->compute_static_thread_mgmt_se1 = 0xffffffff;
	mqd->compute_static_thread_mgmt_se2 = 0xffffffff;
	mqd->compute_static_thread_mgmt_se3 = 0xffffffff;
	mqd->compute_misc_reserved = 0x00000007;

	eop_base_addr = prop->eop_gpu_addr >> 8;
	mqd->cp_hqd_eop_base_addr_lo = eop_base_addr;
	mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr);

	/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
	tmp = RREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL);
	tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE,
			(order_base_2(GFX11_MEC_HPD_SIZE / 4) - 1));

	mqd->cp_hqd_eop_control = tmp;

	/* enable doorbell? */
	tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL);

	if (prop->use_doorbell) {
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_OFFSET, prop->doorbell_index);
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_EN, 1);
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_SOURCE, 0);
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_HIT, 0);
	} else {
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_EN, 0);
	}

	mqd->cp_hqd_pq_doorbell_control = tmp;

	/* disable the queue if it's active */
	mqd->cp_hqd_dequeue_request = 0;
	mqd->cp_hqd_pq_rptr = 0;
	mqd->cp_hqd_pq_wptr_lo = 0;
	mqd->cp_hqd_pq_wptr_hi = 0;

	/* set the pointer to the MQD */
	mqd->cp_mqd_base_addr_lo = prop->mqd_gpu_addr & 0xfffffffc;
	mqd->cp_mqd_base_addr_hi = upper_32_bits(prop->mqd_gpu_addr);

	/* set MQD vmid to 0 */
	tmp = RREG32_SOC15(GC, 0, regCP_MQD_CONTROL);
	tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0);
	mqd->cp_mqd_control = tmp;

	/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
	hqd_gpu_addr = prop->hqd_base_gpu_addr >> 8;
	mqd->cp_hqd_pq_base_lo = hqd_gpu_addr;
	mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr);

	/* set up the HQD, this is similar to CP_RB0_CNTL */
	tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL);
	tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE,
			    (order_base_2(prop->queue_size / 4) - 1));
	tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE,
			    (order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1));
	tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 1);
	tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, TUNNEL_DISPATCH,
			    prop->allow_tunneling);
	tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1);
	tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1);
	mqd->cp_hqd_pq_control = tmp;

	/* set the wb address whether it's enabled or not */
	wb_gpu_addr = prop->rptr_gpu_addr;
	mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc;
	mqd->cp_hqd_pq_rptr_report_addr_hi =
		upper_32_bits(wb_gpu_addr) & 0xffff;

	/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
	wb_gpu_addr = prop->wptr_gpu_addr;
	mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
	mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;

	tmp = 0;
	/* enable the doorbell if requested */
	if (prop->use_doorbell) {
		tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL);
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				DOORBELL_OFFSET, prop->doorbell_index);

		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_EN, 1);
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_SOURCE, 0);
		tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
				    DOORBELL_HIT, 0);
	}

	mqd->cp_hqd_pq_doorbell_control = tmp;

	/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
	mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR);

	/* set the vmid for the queue */
	mqd->cp_hqd_vmid = 0;

	tmp = RREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE);
	tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x55);
	mqd->cp_hqd_persistent_state = tmp;

	/* set MIN_IB_AVAIL_SIZE */
	tmp = RREG32_SOC15(GC, 0, regCP_HQD_IB_CONTROL);
	tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3);
	mqd->cp_hqd_ib_control = tmp;

	/* set static priority for a compute queue/ring */
	mqd->cp_hqd_pipe_priority = prop->hqd_pipe_priority;
	mqd->cp_hqd_queue_priority = prop->hqd_queue_priority;

	mqd->cp_hqd_active = prop->hqd_active;

	return 0;
}

static int gfx_v11_0_kiq_init_register(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	struct v11_compute_mqd *mqd = ring->mqd_ptr;
	int j;

	/* inactivate the queue */
	if (amdgpu_sriov_vf(adev))
		WREG32_SOC15(GC, 0, regCP_HQD_ACTIVE, 0);

	/* disable wptr polling */
	WREG32_FIELD15_PREREG(GC, 0, CP_PQ_WPTR_POLL_CNTL, EN, 0);

	/* write the EOP addr */
	WREG32_SOC15(GC, 0, regCP_HQD_EOP_BASE_ADDR,
	       mqd->cp_hqd_eop_base_addr_lo);
	WREG32_SOC15(GC, 0, regCP_HQD_EOP_BASE_ADDR_HI,
	       mqd->cp_hqd_eop_base_addr_hi);

	/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
	WREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL,
	       mqd->cp_hqd_eop_control);

	/* enable doorbell? */
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL,
	       mqd->cp_hqd_pq_doorbell_control);

	/* disable the queue if it's active */
	if (RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1) {
		WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 1);
		for (j = 0; j < adev->usec_timeout; j++) {
			if (!(RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1))
				break;
			udelay(1);
		}
		WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST,
		       mqd->cp_hqd_dequeue_request);
		WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR,
		       mqd->cp_hqd_pq_rptr);
		WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_LO,
		       mqd->cp_hqd_pq_wptr_lo);
		WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_HI,
		       mqd->cp_hqd_pq_wptr_hi);
	}

	/* set the pointer to the MQD */
	WREG32_SOC15(GC, 0, regCP_MQD_BASE_ADDR,
	       mqd->cp_mqd_base_addr_lo);
	WREG32_SOC15(GC, 0, regCP_MQD_BASE_ADDR_HI,
	       mqd->cp_mqd_base_addr_hi);

	/* set MQD vmid to 0 */
	WREG32_SOC15(GC, 0, regCP_MQD_CONTROL,
	       mqd->cp_mqd_control);

	/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_BASE,
	       mqd->cp_hqd_pq_base_lo);
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_BASE_HI,
	       mqd->cp_hqd_pq_base_hi);

	/* set up the HQD, this is similar to CP_RB0_CNTL */
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL,
	       mqd->cp_hqd_pq_control);

	/* set the wb address whether it's enabled or not */
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR_REPORT_ADDR,
		mqd->cp_hqd_pq_rptr_report_addr_lo);
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
		mqd->cp_hqd_pq_rptr_report_addr_hi);

	/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR,
	       mqd->cp_hqd_pq_wptr_poll_addr_lo);
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI,
	       mqd->cp_hqd_pq_wptr_poll_addr_hi);

	/* enable the doorbell if requested */
	if (ring->use_doorbell) {
		WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_LOWER,
			(adev->doorbell_index.kiq * 2) << 2);
		WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_UPPER,
			(adev->doorbell_index.userqueue_end * 2) << 2);
	}

	WREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL,
	       mqd->cp_hqd_pq_doorbell_control);

	/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_LO,
	       mqd->cp_hqd_pq_wptr_lo);
	WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_HI,
	       mqd->cp_hqd_pq_wptr_hi);

	/* set the vmid for the queue */
	WREG32_SOC15(GC, 0, regCP_HQD_VMID, mqd->cp_hqd_vmid);

	WREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE,
	       mqd->cp_hqd_persistent_state);

	/* activate the queue */
	WREG32_SOC15(GC, 0, regCP_HQD_ACTIVE,
	       mqd->cp_hqd_active);

	if (ring->use_doorbell)
		WREG32_FIELD15_PREREG(GC, 0, CP_PQ_STATUS, DOORBELL_ENABLE, 1);

	return 0;
}

static int gfx_v11_0_kiq_init_queue(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	struct v11_compute_mqd *mqd = ring->mqd_ptr;

	gfx_v11_0_kiq_setting(ring);

	if (amdgpu_in_reset(adev)) { /* for GPU_RESET case */
		/* reset MQD to a clean status */
		if (adev->gfx.kiq[0].mqd_backup)
			memcpy_toio(mqd, adev->gfx.kiq[0].mqd_backup, sizeof(*mqd));

		/* reset ring buffer */
		ring->wptr = 0;
		amdgpu_ring_clear_ring(ring);

		mutex_lock(&adev->srbm_mutex);
		soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
		gfx_v11_0_kiq_init_register(ring);
		soc21_grbm_select(adev, 0, 0, 0, 0);
		mutex_unlock(&adev->srbm_mutex);
	} else {
		memset((void *)mqd, 0, sizeof(*mqd));
		if (amdgpu_sriov_vf(adev) && adev->in_suspend)
			amdgpu_ring_clear_ring(ring);
		mutex_lock(&adev->srbm_mutex);
		soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
		amdgpu_ring_init_mqd(ring);
		gfx_v11_0_kiq_init_register(ring);
		soc21_grbm_select(adev, 0, 0, 0, 0);
		mutex_unlock(&adev->srbm_mutex);

		if (adev->gfx.kiq[0].mqd_backup)
			memcpy_fromio(adev->gfx.kiq[0].mqd_backup, mqd, sizeof(*mqd));
	}

	return 0;
}

static int gfx_v11_0_kcq_init_queue(struct amdgpu_ring *ring, bool reset)
{
	struct amdgpu_device *adev = ring->adev;
	struct v11_compute_mqd *mqd = ring->mqd_ptr;
	int mqd_idx = ring - &adev->gfx.compute_ring[0];

	if (!reset && !amdgpu_in_reset(adev) && !adev->in_suspend) {
		memset((void *)mqd, 0, sizeof(*mqd));
		mutex_lock(&adev->srbm_mutex);
		soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
		amdgpu_ring_init_mqd(ring);
		soc21_grbm_select(adev, 0, 0, 0, 0);
		mutex_unlock(&adev->srbm_mutex);

		if (adev->gfx.mec.mqd_backup[mqd_idx])
			memcpy_fromio(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd));
	} else {
		/* restore MQD to a clean status */
		if (adev->gfx.mec.mqd_backup[mqd_idx])
			memcpy_toio(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd));
		/* reset ring buffer */
		ring->wptr = 0;
		atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 0);
		amdgpu_ring_clear_ring(ring);
	}

	return 0;
}

static int gfx_v11_0_kiq_resume(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	int r;

	ring = &adev->gfx.kiq[0].ring;

	r = amdgpu_bo_reserve(ring->mqd_obj, false);
	if (unlikely(r != 0))
		return r;

	r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
	if (unlikely(r != 0)) {
		amdgpu_bo_unreserve(ring->mqd_obj);
		return r;
	}

	gfx_v11_0_kiq_init_queue(ring);
	amdgpu_bo_kunmap(ring->mqd_obj);
	ring->mqd_ptr = NULL;
	amdgpu_bo_unreserve(ring->mqd_obj);
	ring->sched.ready = true;
	return 0;
}

static int gfx_v11_0_kcq_resume(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring = NULL;
	int r = 0, i;

	if (!amdgpu_async_gfx_ring)
		gfx_v11_0_cp_compute_enable(adev, true);

	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		ring = &adev->gfx.compute_ring[i];

		r = amdgpu_bo_reserve(ring->mqd_obj, false);
		if (unlikely(r != 0))
			goto done;
		r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
		if (!r) {
			r = gfx_v11_0_kcq_init_queue(ring, false);
			amdgpu_bo_kunmap(ring->mqd_obj);
			ring->mqd_ptr = NULL;
		}
		amdgpu_bo_unreserve(ring->mqd_obj);
		if (r)
			goto done;
	}

	r = amdgpu_gfx_enable_kcq(adev, 0);
done:
	return r;
}

static int gfx_v11_0_cp_resume(struct amdgpu_device *adev)
{
	int r, i;
	struct amdgpu_ring *ring;

	if (!(adev->flags & AMD_IS_APU))
		gfx_v11_0_enable_gui_idle_interrupt(adev, false);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
		/* legacy firmware loading */
		r = gfx_v11_0_cp_gfx_load_microcode(adev);
		if (r)
			return r;

		if (adev->gfx.rs64_enable)
			r = gfx_v11_0_cp_compute_load_microcode_rs64(adev);
		else
			r = gfx_v11_0_cp_compute_load_microcode(adev);
		if (r)
			return r;
	}

	gfx_v11_0_cp_set_doorbell_range(adev);

	if (amdgpu_async_gfx_ring) {
		gfx_v11_0_cp_compute_enable(adev, true);
		gfx_v11_0_cp_gfx_enable(adev, true);
	}

	if (adev->enable_mes_kiq && adev->mes.kiq_hw_init)
		r = amdgpu_mes_kiq_hw_init(adev);
	else
		r = gfx_v11_0_kiq_resume(adev);
	if (r)
		return r;

	r = gfx_v11_0_kcq_resume(adev);
	if (r)
		return r;

	if (!amdgpu_async_gfx_ring) {
		r = gfx_v11_0_cp_gfx_resume(adev);
		if (r)
			return r;
	} else {
		r = gfx_v11_0_cp_async_gfx_ring_resume(adev);
		if (r)
			return r;
	}

	for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
		ring = &adev->gfx.gfx_ring[i];
		r = amdgpu_ring_test_helper(ring);
		if (r)
			return r;
	}

	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		ring = &adev->gfx.compute_ring[i];
		r = amdgpu_ring_test_helper(ring);
		if (r)
			return r;
	}

	return 0;
}

static void gfx_v11_0_cp_enable(struct amdgpu_device *adev, bool enable)
{
	gfx_v11_0_cp_gfx_enable(adev, enable);
	gfx_v11_0_cp_compute_enable(adev, enable);
}

static int gfx_v11_0_gfxhub_enable(struct amdgpu_device *adev)
{
	int r;
	bool value;

	r = adev->gfxhub.funcs->gart_enable(adev);
	if (r)
		return r;

	adev->hdp.funcs->flush_hdp(adev, NULL);

	value = (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) ?
		false : true;

	adev->gfxhub.funcs->set_fault_enable_default(adev, value);
	/* TODO investigate why this and the hdp flush above is needed,
	 * are we missing a flush somewhere else? */
	adev->gmc.gmc_funcs->flush_gpu_tlb(adev, 0, AMDGPU_GFXHUB(0), 0);

	return 0;
}

static void gfx_v11_0_select_cp_fw_arch(struct amdgpu_device *adev)
{
	u32 tmp;

	/* select RS64 */
	if (adev->gfx.rs64_enable) {
		tmp = RREG32_SOC15(GC, 0, regCP_GFX_CNTL);
		tmp = REG_SET_FIELD(tmp, CP_GFX_CNTL, ENGINE_SEL, 1);
		WREG32_SOC15(GC, 0, regCP_GFX_CNTL, tmp);

		tmp = RREG32_SOC15(GC, 0, regCP_MEC_ISA_CNTL);
		tmp = REG_SET_FIELD(tmp, CP_MEC_ISA_CNTL, ISA_MODE, 1);
		WREG32_SOC15(GC, 0, regCP_MEC_ISA_CNTL, tmp);
	}

	if (amdgpu_emu_mode == 1)
		msleep(100);
}

static int get_gb_addr_config(struct amdgpu_device * adev)
{
	u32 gb_addr_config;

	gb_addr_config = RREG32_SOC15(GC, 0, regGB_ADDR_CONFIG);
	if (gb_addr_config == 0)
		return -EINVAL;

	adev->gfx.config.gb_addr_config_fields.num_pkrs =
		1 << REG_GET_FIELD(gb_addr_config, GB_ADDR_CONFIG, NUM_PKRS);

	adev->gfx.config.gb_addr_config = gb_addr_config;

	adev->gfx.config.gb_addr_config_fields.num_pipes = 1 <<
			REG_GET_FIELD(adev->gfx.config.gb_addr_config,
				      GB_ADDR_CONFIG, NUM_PIPES);

	adev->gfx.config.max_tile_pipes =
		adev->gfx.config.gb_addr_config_fields.num_pipes;

	adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 <<
			REG_GET_FIELD(adev->gfx.config.gb_addr_config,
				      GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS);
	adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 <<
			REG_GET_FIELD(adev->gfx.config.gb_addr_config,
				      GB_ADDR_CONFIG, NUM_RB_PER_SE);
	adev->gfx.config.gb_addr_config_fields.num_se = 1 <<
			REG_GET_FIELD(adev->gfx.config.gb_addr_config,
				      GB_ADDR_CONFIG, NUM_SHADER_ENGINES);
	adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 +
			REG_GET_FIELD(adev->gfx.config.gb_addr_config,
				      GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE));

	return 0;
}

static void gfx_v11_0_disable_gpa_mode(struct amdgpu_device *adev)
{
	uint32_t data;

	data = RREG32_SOC15(GC, 0, regCPC_PSP_DEBUG);
	data |= CPC_PSP_DEBUG__GPA_OVERRIDE_MASK;
	WREG32_SOC15(GC, 0, regCPC_PSP_DEBUG, data);

	data = RREG32_SOC15(GC, 0, regCPG_PSP_DEBUG);
	data |= CPG_PSP_DEBUG__GPA_OVERRIDE_MASK;
	WREG32_SOC15(GC, 0, regCPG_PSP_DEBUG, data);
}

static int gfx_v11_0_hw_init(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
		if (adev->gfx.imu.funcs) {
			/* RLC autoload sequence 1: Program rlc ram */
			if (adev->gfx.imu.funcs->program_rlc_ram)
				adev->gfx.imu.funcs->program_rlc_ram(adev);
			/* rlc autoload firmware */
			r = gfx_v11_0_rlc_backdoor_autoload_enable(adev);
			if (r)
				return r;
		}
	} else {
		if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
			if (adev->gfx.imu.funcs && (amdgpu_dpm > 0)) {
				if (adev->gfx.imu.funcs->load_microcode)
					adev->gfx.imu.funcs->load_microcode(adev);
				if (adev->gfx.imu.funcs->setup_imu)
					adev->gfx.imu.funcs->setup_imu(adev);
				if (adev->gfx.imu.funcs->start_imu)
					adev->gfx.imu.funcs->start_imu(adev);
			}

			/* disable gpa mode in backdoor loading */
			gfx_v11_0_disable_gpa_mode(adev);
		}
	}

	if ((adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) ||
	    (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)) {
		r = gfx_v11_0_wait_for_rlc_autoload_complete(adev);
		if (r) {
			dev_err(adev->dev, "(%d) failed to wait rlc autoload complete\n", r);
			return r;
		}
	}

	adev->gfx.is_poweron = true;

	if(get_gb_addr_config(adev))
		DRM_WARN("Invalid gb_addr_config !\n");

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP &&
	    adev->gfx.rs64_enable)
		gfx_v11_0_config_gfx_rs64(adev);

	r = gfx_v11_0_gfxhub_enable(adev);
	if (r)
		return r;

	if (!amdgpu_emu_mode)
		gfx_v11_0_init_golden_registers(adev);

	if ((adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) ||
	    (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO && amdgpu_dpm == 1)) {
		/**
		 * For gfx 11, rlc firmware loading relies on smu firmware is
		 * loaded firstly, so in direct type, it has to load smc ucode
		 * here before rlc.
		 */
		r = amdgpu_pm_load_smu_firmware(adev, NULL);
		if (r)
			return r;
	}

	gfx_v11_0_constants_init(adev);

	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP)
		gfx_v11_0_select_cp_fw_arch(adev);

	if (adev->nbio.funcs->gc_doorbell_init)
		adev->nbio.funcs->gc_doorbell_init(adev);

	r = gfx_v11_0_rlc_resume(adev);
	if (r)
		return r;

	/*
	 * init golden registers and rlc resume may override some registers,
	 * reconfig them here
	 */
	gfx_v11_0_tcp_harvest(adev);

	r = gfx_v11_0_cp_resume(adev);
	if (r)
		return r;

	/* get IMU version from HW if it's not set */
	if (!adev->gfx.imu_fw_version)
		adev->gfx.imu_fw_version = RREG32_SOC15(GC, 0, regGFX_IMU_SCRATCH_0);

	return r;
}

static int gfx_v11_0_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0);
	amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0);
	amdgpu_irq_put(adev, &adev->gfx.bad_op_irq, 0);

	if (!adev->no_hw_access) {
		if (amdgpu_async_gfx_ring) {
			if (amdgpu_gfx_disable_kgq(adev, 0))
				DRM_ERROR("KGQ disable failed\n");
		}

		if (amdgpu_gfx_disable_kcq(adev, 0))
			DRM_ERROR("KCQ disable failed\n");

		amdgpu_mes_kiq_hw_fini(adev);
	}

	if (amdgpu_sriov_vf(adev))
		/* Remove the steps disabling CPG and clearing KIQ position,
		 * so that CP could perform IDLE-SAVE during switch. Those
		 * steps are necessary to avoid a DMAR error in gfx9 but it is
		 * not reproduced on gfx11.
		 */
		return 0;

	gfx_v11_0_cp_enable(adev, false);
	gfx_v11_0_enable_gui_idle_interrupt(adev, false);

	adev->gfxhub.funcs->gart_disable(adev);

	adev->gfx.is_poweron = false;

	return 0;
}

static int gfx_v11_0_suspend(void *handle)
{
	return gfx_v11_0_hw_fini(handle);
}

static int gfx_v11_0_resume(void *handle)
{
	return gfx_v11_0_hw_init(handle);
}

static bool gfx_v11_0_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (REG_GET_FIELD(RREG32_SOC15(GC, 0, regGRBM_STATUS),
				GRBM_STATUS, GUI_ACTIVE))
		return false;
	else
		return true;
}

static int gfx_v11_0_wait_for_idle(void *handle)
{
	unsigned i;
	u32 tmp;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	for (i = 0; i < adev->usec_timeout; i++) {
		/* read MC_STATUS */
		tmp = RREG32_SOC15(GC, 0, regGRBM_STATUS) &
			GRBM_STATUS__GUI_ACTIVE_MASK;

		if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE))
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
}

int gfx_v11_0_request_gfx_index_mutex(struct amdgpu_device *adev,
				      bool req)
{
	u32 i, tmp, val;

	for (i = 0; i < adev->usec_timeout; i++) {
		/* Request with MeId=2, PipeId=0 */
		tmp = REG_SET_FIELD(0, CP_GFX_INDEX_MUTEX, REQUEST, req);
		tmp = REG_SET_FIELD(tmp, CP_GFX_INDEX_MUTEX, CLIENTID, 4);
		WREG32_SOC15(GC, 0, regCP_GFX_INDEX_MUTEX, tmp);

		val = RREG32_SOC15(GC, 0, regCP_GFX_INDEX_MUTEX);
		if (req) {
			if (val == tmp)
				break;
		} else {
			tmp = REG_SET_FIELD(tmp, CP_GFX_INDEX_MUTEX,
					    REQUEST, 1);

			/* unlocked or locked by firmware */
			if (val != tmp)
				break;
		}
		udelay(1);
	}

	if (i >= adev->usec_timeout)
		return -EINVAL;

	return 0;
}

static int gfx_v11_0_soft_reset(void *handle)
{
	u32 grbm_soft_reset = 0;
	u32 tmp;
	int r, i, j, k;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	amdgpu_gfx_rlc_enter_safe_mode(adev, 0);

	tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 0);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 0);
	WREG32_SOC15(GC, 0, regCP_INT_CNTL, tmp);

	mutex_lock(&adev->srbm_mutex);
	for (i = 0; i < adev->gfx.mec.num_mec; ++i) {
		for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) {
			for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) {
				soc21_grbm_select(adev, i, k, j, 0);

				WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 0x2);
				WREG32_SOC15(GC, 0, regSPI_COMPUTE_QUEUE_RESET, 0x1);
			}
		}
	}
	for (i = 0; i < adev->gfx.me.num_me; ++i) {
		for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) {
			for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) {
				soc21_grbm_select(adev, i, k, j, 0);

				WREG32_SOC15(GC, 0, regCP_GFX_HQD_DEQUEUE_REQUEST, 0x1);
			}
		}
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);

	/* Try to acquire the gfx mutex before access to CP_VMID_RESET */
	mutex_lock(&adev->gfx.reset_sem_mutex);
	r = gfx_v11_0_request_gfx_index_mutex(adev, true);
	if (r) {
		mutex_unlock(&adev->gfx.reset_sem_mutex);
		DRM_ERROR("Failed to acquire the gfx mutex during soft reset\n");
		return r;
	}

	WREG32_SOC15(GC, 0, regCP_VMID_RESET, 0xfffffffe);

	// Read CP_VMID_RESET register three times.
	// to get sufficient time for GFX_HQD_ACTIVE reach 0
	RREG32_SOC15(GC, 0, regCP_VMID_RESET);
	RREG32_SOC15(GC, 0, regCP_VMID_RESET);
	RREG32_SOC15(GC, 0, regCP_VMID_RESET);

	/* release the gfx mutex */
	r = gfx_v11_0_request_gfx_index_mutex(adev, false);
	mutex_unlock(&adev->gfx.reset_sem_mutex);
	if (r) {
		DRM_ERROR("Failed to release the gfx mutex during soft reset\n");
		return r;
	}

	for (i = 0; i < adev->usec_timeout; i++) {
		if (!RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) &&
		    !RREG32_SOC15(GC, 0, regCP_GFX_HQD_ACTIVE))
			break;
		udelay(1);
	}
	if (i >= adev->usec_timeout) {
		printk("Failed to wait all pipes clean\n");
		return -EINVAL;
	}

	/**********  trigger soft reset  ***********/
	grbm_soft_reset = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CP, 1);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_GFX, 1);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CPF, 1);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CPC, 1);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CPG, 1);
	WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, grbm_soft_reset);
	/**********  exit soft reset  ***********/
	grbm_soft_reset = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CP, 0);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_GFX, 0);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CPF, 0);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CPC, 0);
	grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
					SOFT_RESET_CPG, 0);
	WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, grbm_soft_reset);

	tmp = RREG32_SOC15(GC, 0, regCP_SOFT_RESET_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_SOFT_RESET_CNTL, CMP_HQD_REG_RESET, 0x1);
	WREG32_SOC15(GC, 0, regCP_SOFT_RESET_CNTL, tmp);

	WREG32_SOC15(GC, 0, regCP_ME_CNTL, 0x0);
	WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, 0x0);

	for (i = 0; i < adev->usec_timeout; i++) {
		if (!RREG32_SOC15(GC, 0, regCP_VMID_RESET))
			break;
		udelay(1);
	}
	if (i >= adev->usec_timeout) {
		printk("Failed to wait CP_VMID_RESET to 0\n");
		return -EINVAL;
	}

	tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 1);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 1);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 1);
	tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 1);
	WREG32_SOC15(GC, 0, regCP_INT_CNTL, tmp);

	amdgpu_gfx_rlc_exit_safe_mode(adev, 0);

	return gfx_v11_0_cp_resume(adev);
}

static bool gfx_v11_0_check_soft_reset(void *handle)
{
	int i, r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct amdgpu_ring *ring;
	long tmo = msecs_to_jiffies(1000);

	for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
		ring = &adev->gfx.gfx_ring[i];
		r = amdgpu_ring_test_ib(ring, tmo);
		if (r)
			return true;
	}

	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		ring = &adev->gfx.compute_ring[i];
		r = amdgpu_ring_test_ib(ring, tmo);
		if (r)
			return true;
	}

	return false;
}

static int gfx_v11_0_post_soft_reset(void *handle)
{
	/**
	 * GFX soft reset will impact MES, need resume MES when do GFX soft reset
	 */
	return amdgpu_mes_resume((struct amdgpu_device *)handle);
}

static uint64_t gfx_v11_0_get_gpu_clock_counter(struct amdgpu_device *adev)
{
	uint64_t clock;
	uint64_t clock_counter_lo, clock_counter_hi_pre, clock_counter_hi_after;

	if (amdgpu_sriov_vf(adev)) {
		amdgpu_gfx_off_ctrl(adev, false);
		mutex_lock(&adev->gfx.gpu_clock_mutex);
		clock_counter_hi_pre = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_HI);
		clock_counter_lo = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_LO);
		clock_counter_hi_after = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_HI);
		if (clock_counter_hi_pre != clock_counter_hi_after)
			clock_counter_lo = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_LO);
		mutex_unlock(&adev->gfx.gpu_clock_mutex);
		amdgpu_gfx_off_ctrl(adev, true);
	} else {
		preempt_disable();
		clock_counter_hi_pre = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_UPPER);
		clock_counter_lo = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_LOWER);
		clock_counter_hi_after = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_UPPER);
		if (clock_counter_hi_pre != clock_counter_hi_after)
			clock_counter_lo = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_LOWER);
		preempt_enable();
	}
	clock = clock_counter_lo | (clock_counter_hi_after << 32ULL);

	return clock;
}

static void gfx_v11_0_ring_emit_gds_switch(struct amdgpu_ring *ring,
					   uint32_t vmid,
					   uint32_t gds_base, uint32_t gds_size,
					   uint32_t gws_base, uint32_t gws_size,
					   uint32_t oa_base, uint32_t oa_size)
{
	struct amdgpu_device *adev = ring->adev;

	/* GDS Base */
	gfx_v11_0_write_data_to_reg(ring, 0, false,
				    SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_BASE) + 2 * vmid,
				    gds_base);

	/* GDS Size */
	gfx_v11_0_write_data_to_reg(ring, 0, false,
				    SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_SIZE) + 2 * vmid,
				    gds_size);

	/* GWS */
	gfx_v11_0_write_data_to_reg(ring, 0, false,
				    SOC15_REG_OFFSET(GC, 0, regGDS_GWS_VMID0) + vmid,
				    gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base);

	/* OA */
	gfx_v11_0_write_data_to_reg(ring, 0, false,
				    SOC15_REG_OFFSET(GC, 0, regGDS_OA_VMID0) + vmid,
				    (1 << (oa_size + oa_base)) - (1 << oa_base));
}

static int gfx_v11_0_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	adev->gfx.funcs = &gfx_v11_0_gfx_funcs;

	adev->gfx.num_gfx_rings = GFX11_NUM_GFX_RINGS;
	adev->gfx.num_compute_rings = min(amdgpu_gfx_get_num_kcq(adev),
					  AMDGPU_MAX_COMPUTE_RINGS);

	gfx_v11_0_set_kiq_pm4_funcs(adev);
	gfx_v11_0_set_ring_funcs(adev);
	gfx_v11_0_set_irq_funcs(adev);
	gfx_v11_0_set_gds_init(adev);
	gfx_v11_0_set_rlc_funcs(adev);
	gfx_v11_0_set_mqd_funcs(adev);
	gfx_v11_0_set_imu_funcs(adev);

	gfx_v11_0_init_rlcg_reg_access_ctrl(adev);

	return gfx_v11_0_init_microcode(adev);
}

static int gfx_v11_0_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int r;

	r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0);
	if (r)
		return r;

	r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0);
	if (r)
		return r;

	r = amdgpu_irq_get(adev, &adev->gfx.bad_op_irq, 0);
	if (r)
		return r;
	return 0;
}

static bool gfx_v11_0_is_rlc_enabled(struct amdgpu_device *adev)
{
	uint32_t rlc_cntl;

	/* if RLC is not enabled, do nothing */
	rlc_cntl = RREG32_SOC15(GC, 0, regRLC_CNTL);
	return (REG_GET_FIELD(rlc_cntl, RLC_CNTL, RLC_ENABLE_F32)) ? true : false;
}

static void gfx_v11_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id)
{
	uint32_t data;
	unsigned i;

	data = RLC_SAFE_MODE__CMD_MASK;
	data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT);

	WREG32_SOC15(GC, 0, regRLC_SAFE_MODE, data);

	/* wait for RLC_SAFE_MODE */
	for (i = 0; i < adev->usec_timeout; i++) {
		if (!REG_GET_FIELD(RREG32_SOC15(GC, 0, regRLC_SAFE_MODE),
				   RLC_SAFE_MODE, CMD))
			break;
		udelay(1);
	}
}

static void gfx_v11_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id)
{
	WREG32_SOC15(GC, 0, regRLC_SAFE_MODE, RLC_SAFE_MODE__CMD_MASK);
}

static void gfx_v11_0_update_perf_clk(struct amdgpu_device *adev,
				      bool enable)
{
	uint32_t def, data;

	if (!(adev->cg_flags & AMD_CG_SUPPORT_GFX_PERF_CLK))
		return;

	def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);

	if (enable)
		data &= ~RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK;
	else
		data |= RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK;

	if (def != data)
		WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}

static void gfx_v11_0_update_sram_fgcg(struct amdgpu_device *adev,
				       bool enable)
{
	uint32_t def, data;

	if (!(adev->cg_flags & AMD_CG_SUPPORT_GFX_FGCG))
		return;

	def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);

	if (enable)
		data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK;
	else
		data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK;

	if (def != data)
		WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}

static void gfx_v11_0_update_repeater_fgcg(struct amdgpu_device *adev,
					   bool enable)
{
	uint32_t def, data;

	if (!(adev->cg_flags & AMD_CG_SUPPORT_REPEATER_FGCG))
		return;

	def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);

	if (enable)
		data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK;
	else
		data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK;

	if (def != data)
		WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}

static void gfx_v11_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
						       bool enable)
{
	uint32_t data, def;

	if (!(adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS)))
		return;

	/* It is disabled by HW by default */
	if (enable) {
		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) {
			/* 1 - RLC_CGTT_MGCG_OVERRIDE */
			def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);

			data &= ~(RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK |
				  RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK |
				  RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK);

			if (def != data)
				WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
		}
	} else {
		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) {
			def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);

			data |= (RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK |
				 RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK |
				 RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK);

			if (def != data)
				WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
		}
	}
}

static void gfx_v11_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev,
						       bool enable)
{
	uint32_t def, data;

	if (!(adev->cg_flags &
	      (AMD_CG_SUPPORT_GFX_CGCG |
	      AMD_CG_SUPPORT_GFX_CGLS |
	      AMD_CG_SUPPORT_GFX_3D_CGCG |
	      AMD_CG_SUPPORT_GFX_3D_CGLS)))
		return;

	if (enable) {
		def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);

		/* unset CGCG override */
		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)
			data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK;
		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS)
			data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK;
		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG ||
		    adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS)
			data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_GFX3D_CG_OVERRIDE_MASK;

		/* update CGCG override bits */
		if (def != data)
			WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);

		/* enable cgcg FSM(0x0000363F) */
		def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL);

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) {
			data &= ~RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD_MASK;
			data |= (0x36 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) |
				 RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;
		}

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) {
			data &= ~RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY_MASK;
			data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) |
				 RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
		}

		if (def != data)
			WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, data);

		/* Program RLC_CGCG_CGLS_CTRL_3D */
		def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D);

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG) {
			data &= ~RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD_MASK;
			data |= (0x36 << RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD__SHIFT) |
				 RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK;
		}

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) {
			data &= ~RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY_MASK;
			data |= (0xf << RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY__SHIFT) |
				 RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK;
		}

		if (def != data)
			WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D, data);

		/* set IDLE_POLL_COUNT(0x00900100) */
		def = data = RREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_CNTL);

		data &= ~(CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY_MASK | CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT_MASK);
		data |= (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) |
			(0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT);

		if (def != data)
			WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_CNTL, data);

		data = RREG32_SOC15(GC, 0, regCP_INT_CNTL);
		data = REG_SET_FIELD(data, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 1);
		data = REG_SET_FIELD(data, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 1);
		data = REG_SET_FIELD(data, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 1);
		data = REG_SET_FIELD(data, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 1);
		WREG32_SOC15(GC, 0, regCP_INT_CNTL, data);

		data = RREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL);
		data = REG_SET_FIELD(data, SDMA0_RLC_CGCG_CTRL, CGCG_INT_ENABLE, 1);
		WREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL, data);

		/* Some ASICs only have one SDMA instance, not need to configure SDMA1 */
		if (adev->sdma.num_instances > 1) {
			data = RREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL);
			data = REG_SET_FIELD(data, SDMA1_RLC_CGCG_CTRL, CGCG_INT_ENABLE, 1);
			WREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL, data);
		}
	} else {
		/* Program RLC_CGCG_CGLS_CTRL */
		def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL);

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)
			data &= ~RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS)
			data &= ~RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;

		if (def != data)
			WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, data);

		/* Program RLC_CGCG_CGLS_CTRL_3D */
		def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D);

		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG)
			data &= ~RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK;
		if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS)
			data &= ~RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK;

		if (def != data)
			WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D, data);

		data = RREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL);
		data &= ~SDMA0_RLC_CGCG_CTRL__CGCG_INT_ENABLE_MASK;
		WREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL, data);

		/* Some ASICs only have one SDMA instance, not need to configure SDMA1 */
		if (adev->sdma.num_instances > 1) {
			data = RREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL);
			data &= ~SDMA1_RLC_CGCG_CTRL__CGCG_INT_ENABLE_MASK;
			WREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL, data);
		}
	}
}

static int gfx_v11_0_update_gfx_clock_gating(struct amdgpu_device *adev,
					    bool enable)
{
	amdgpu_gfx_rlc_enter_safe_mode(adev, 0);

	gfx_v11_0_update_coarse_grain_clock_gating(adev, enable);

	gfx_v11_0_update_medium_grain_clock_gating(adev, enable);

	gfx_v11_0_update_repeater_fgcg(adev, enable);

	gfx_v11_0_update_sram_fgcg(adev, enable);

	gfx_v11_0_update_perf_clk(adev, enable);

	if (adev->cg_flags &
	    (AMD_CG_SUPPORT_GFX_MGCG |
	     AMD_CG_SUPPORT_GFX_CGLS |
	     AMD_CG_SUPPORT_GFX_CGCG |
	     AMD_CG_SUPPORT_GFX_3D_CGCG |
	     AMD_CG_SUPPORT_GFX_3D_CGLS))
	        gfx_v11_0_enable_gui_idle_interrupt(adev, enable);

	amdgpu_gfx_rlc_exit_safe_mode(adev, 0);

	return 0;
}

static void gfx_v11_0_update_spm_vmid(struct amdgpu_device *adev, struct amdgpu_ring *ring, unsigned vmid)
{
	u32 reg, pre_data, data;

	amdgpu_gfx_off_ctrl(adev, false);
	reg = SOC15_REG_OFFSET(GC, 0, regRLC_SPM_MC_CNTL);
	if (amdgpu_sriov_is_pp_one_vf(adev) && !amdgpu_sriov_runtime(adev))
		pre_data = RREG32_NO_KIQ(reg);
	else
		pre_data = RREG32(reg);

	data = pre_data & (~RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK);
	data |= (vmid & RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK) << RLC_SPM_MC_CNTL__RLC_SPM_VMID__SHIFT;

	if (pre_data != data) {
		if (amdgpu_sriov_is_pp_one_vf(adev) && !amdgpu_sriov_runtime(adev)) {
			WREG32_SOC15_NO_KIQ(GC, 0, regRLC_SPM_MC_CNTL, data);
		} else
			WREG32_SOC15(GC, 0, regRLC_SPM_MC_CNTL, data);
	}
	amdgpu_gfx_off_ctrl(adev, true);

	if (ring
		&& amdgpu_sriov_is_pp_one_vf(adev)
		&& (pre_data != data)
		&& ((ring->funcs->type == AMDGPU_RING_TYPE_GFX)
			|| (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE))) {
		amdgpu_ring_emit_wreg(ring, reg, data);
	}
}

static const struct amdgpu_rlc_funcs gfx_v11_0_rlc_funcs = {
	.is_rlc_enabled = gfx_v11_0_is_rlc_enabled,
	.set_safe_mode = gfx_v11_0_set_safe_mode,
	.unset_safe_mode = gfx_v11_0_unset_safe_mode,
	.init = gfx_v11_0_rlc_init,
	.get_csb_size = gfx_v11_0_get_csb_size,
	.get_csb_buffer = gfx_v11_0_get_csb_buffer,
	.resume = gfx_v11_0_rlc_resume,
	.stop = gfx_v11_0_rlc_stop,
	.reset = gfx_v11_0_rlc_reset,
	.start = gfx_v11_0_rlc_start,
	.update_spm_vmid = gfx_v11_0_update_spm_vmid,
};

static void gfx_v11_cntl_power_gating(struct amdgpu_device *adev, bool enable)
{
	u32 data = RREG32_SOC15(GC, 0, regRLC_PG_CNTL);

	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG))
		data |= RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK;
	else
		data &= ~RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK;

	WREG32_SOC15(GC, 0, regRLC_PG_CNTL, data);

	// Program RLC_PG_DELAY3 for CGPG hysteresis
	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) {
		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
		case IP_VERSION(11, 0, 1):
		case IP_VERSION(11, 0, 4):
		case IP_VERSION(11, 5, 0):
		case IP_VERSION(11, 5, 1):
		case IP_VERSION(11, 5, 2):
			WREG32_SOC15(GC, 0, regRLC_PG_DELAY_3, RLC_PG_DELAY_3_DEFAULT_GC_11_0_1);
			break;
		default:
			break;
		}
	}
}

static void gfx_v11_cntl_pg(struct amdgpu_device *adev, bool enable)
{
	amdgpu_gfx_rlc_enter_safe_mode(adev, 0);

	gfx_v11_cntl_power_gating(adev, enable);

	amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
}

static int gfx_v11_0_set_powergating_state(void *handle,
					   enum amd_powergating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	bool enable = (state == AMD_PG_STATE_GATE);

	if (amdgpu_sriov_vf(adev))
		return 0;

	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
	case IP_VERSION(11, 0, 0):
	case IP_VERSION(11, 0, 2):
	case IP_VERSION(11, 0, 3):
		amdgpu_gfx_off_ctrl(adev, enable);
		break;
	case IP_VERSION(11, 0, 1):
	case IP_VERSION(11, 0, 4):
	case IP_VERSION(11, 5, 0):
	case IP_VERSION(11, 5, 1):
	case IP_VERSION(11, 5, 2):
		if (!enable)
			amdgpu_gfx_off_ctrl(adev, false);

		gfx_v11_cntl_pg(adev, enable);

		if (enable)
			amdgpu_gfx_off_ctrl(adev, true);

		break;
	default:
		break;
	}

	return 0;
}

static int gfx_v11_0_set_clockgating_state(void *handle,
					  enum amd_clockgating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (amdgpu_sriov_vf(adev))
	        return 0;

	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
	case IP_VERSION(11, 0, 0):
	case IP_VERSION(11, 0, 1):
	case IP_VERSION(11, 0, 2):
	case IP_VERSION(11, 0, 3):
	case IP_VERSION(11, 0, 4):
	case IP_VERSION(11, 5, 0):
	case IP_VERSION(11, 5, 1):
	case IP_VERSION(11, 5, 2):
	        gfx_v11_0_update_gfx_clock_gating(adev,
	                        state ==  AMD_CG_STATE_GATE);
	        break;
	default:
	        break;
	}

	return 0;
}

static void gfx_v11_0_get_clockgating_state(void *handle, u64 *flags)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int data;

	/* AMD_CG_SUPPORT_GFX_MGCG */
	data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
	if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK))
		*flags |= AMD_CG_SUPPORT_GFX_MGCG;

	/* AMD_CG_SUPPORT_REPEATER_FGCG */
	if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK))
		*flags |= AMD_CG_SUPPORT_REPEATER_FGCG;

	/* AMD_CG_SUPPORT_GFX_FGCG */
	if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK))
		*flags |= AMD_CG_SUPPORT_GFX_FGCG;

	/* AMD_CG_SUPPORT_GFX_PERF_CLK */
	if (!(data & RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK))
		*flags |= AMD_CG_SUPPORT_GFX_PERF_CLK;

	/* AMD_CG_SUPPORT_GFX_CGCG */
	data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL);
	if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK)
		*flags |= AMD_CG_SUPPORT_GFX_CGCG;

	/* AMD_CG_SUPPORT_GFX_CGLS */
	if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK)
		*flags |= AMD_CG_SUPPORT_GFX_CGLS;

	/* AMD_CG_SUPPORT_GFX_3D_CGCG */
	data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D);
	if (data & RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK)
		*flags |= AMD_CG_SUPPORT_GFX_3D_CGCG;

	/* AMD_CG_SUPPORT_GFX_3D_CGLS */
	if (data & RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK)
		*flags |= AMD_CG_SUPPORT_GFX_3D_CGLS;
}

static u64 gfx_v11_0_ring_get_rptr_gfx(struct amdgpu_ring *ring)
{
	/* gfx11 is 32bit rptr*/
	return *(uint32_t *)ring->rptr_cpu_addr;
}

static u64 gfx_v11_0_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	u64 wptr;

	/* XXX check if swapping is necessary on BE */
	if (ring->use_doorbell) {
		wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
	} else {
		wptr = RREG32_SOC15(GC, 0, regCP_RB0_WPTR);
		wptr += (u64)RREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI) << 32;
	}

	return wptr;
}

static void gfx_v11_0_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	if (ring->use_doorbell) {
		/* XXX check if swapping is necessary on BE */
		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
			     ring->wptr);
		WDOORBELL64(ring->doorbell_index, ring->wptr);
	} else {
		WREG32_SOC15(GC, 0, regCP_RB0_WPTR,
			     lower_32_bits(ring->wptr));
		WREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI,
			     upper_32_bits(ring->wptr));
	}
}

static u64 gfx_v11_0_ring_get_rptr_compute(struct amdgpu_ring *ring)
{
	/* gfx11 hardware is 32bit rptr */
	return *(uint32_t *)ring->rptr_cpu_addr;
}

static u64 gfx_v11_0_ring_get_wptr_compute(struct amdgpu_ring *ring)
{
	u64 wptr;

	/* XXX check if swapping is necessary on BE */
	if (ring->use_doorbell)
		wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
	else
		BUG();
	return wptr;
}

static void gfx_v11_0_ring_set_wptr_compute(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	/* XXX check if swapping is necessary on BE */
	if (ring->use_doorbell) {
		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
			     ring->wptr);
		WDOORBELL64(ring->doorbell_index, ring->wptr);
	} else {
		BUG(); /* only DOORBELL method supported on gfx11 now */
	}
}

static void gfx_v11_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	u32 ref_and_mask, reg_mem_engine;
	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;

	if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) {
		switch (ring->me) {
		case 1:
			ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe;
			break;
		case 2:
			ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe;
			break;
		default:
			return;
		}
		reg_mem_engine = 0;
	} else {
		ref_and_mask = nbio_hf_reg->ref_and_mask_cp0 << ring->pipe;
		reg_mem_engine = 1; /* pfp */
	}

	gfx_v11_0_wait_reg_mem(ring, reg_mem_engine, 0, 1,
			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
			       ref_and_mask, ref_and_mask, 0x20);
}

static void gfx_v11_0_ring_emit_ib_gfx(struct amdgpu_ring *ring,
				       struct amdgpu_job *job,
				       struct amdgpu_ib *ib,
				       uint32_t flags)
{
	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
	u32 header, control = 0;

	BUG_ON(ib->flags & AMDGPU_IB_FLAG_CE);

	header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);

	control |= ib->length_dw | (vmid << 24);

	if (ring->adev->gfx.mcbp && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) {
		control |= INDIRECT_BUFFER_PRE_ENB(1);

		if (flags & AMDGPU_IB_PREEMPTED)
			control |= INDIRECT_BUFFER_PRE_RESUME(1);

		if (vmid)
			gfx_v11_0_ring_emit_de_meta(ring,
				    (!amdgpu_sriov_vf(ring->adev) && flags & AMDGPU_IB_PREEMPTED) ? true : false);
	}

	if (ring->is_mes_queue)
		/* inherit vmid from mqd */
		control |= 0x400000;

	amdgpu_ring_write(ring, header);
	BUG_ON(ib->gpu_addr & 0x3); /* Dword align */
	amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
		(2 << 0) |
#endif
		lower_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, control);
}

static void gfx_v11_0_ring_emit_ib_compute(struct amdgpu_ring *ring,
					   struct amdgpu_job *job,
					   struct amdgpu_ib *ib,
					   uint32_t flags)
{
	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
	u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24);

	if (ring->is_mes_queue)
		/* inherit vmid from mqd */
		control |= 0x40000000;

	/* Currently, there is a high possibility to get wave ID mismatch
	 * between ME and GDS, leading to a hw deadlock, because ME generates
	 * different wave IDs than the GDS expects. This situation happens
	 * randomly when at least 5 compute pipes use GDS ordered append.
	 * The wave IDs generated by ME are also wrong after suspend/resume.
	 * Those are probably bugs somewhere else in the kernel driver.
	 *
	 * Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and
	 * GDS to 0 for this ring (me/pipe).
	 */
	if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) {
		amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
		amdgpu_ring_write(ring, regGDS_COMPUTE_MAX_WAVE_ID);
		amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id);
	}

	amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
	BUG_ON(ib->gpu_addr & 0x3); /* Dword align */
	amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
				(2 << 0) |
#endif
				lower_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, control);
}

static void gfx_v11_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr,
				     u64 seq, unsigned flags)
{
	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
	bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;

	/* RELEASE_MEM - flush caches, send int */
	amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6));
	amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_GCR_SEQ |
				 PACKET3_RELEASE_MEM_GCR_GL2_WB |
				 PACKET3_RELEASE_MEM_GCR_GLM_INV | /* must be set with GLM_WB */
				 PACKET3_RELEASE_MEM_GCR_GLM_WB |
				 PACKET3_RELEASE_MEM_CACHE_POLICY(3) |
				 PACKET3_RELEASE_MEM_EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
				 PACKET3_RELEASE_MEM_EVENT_INDEX(5)));
	amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_DATA_SEL(write64bit ? 2 : 1) |
				 PACKET3_RELEASE_MEM_INT_SEL(int_sel ? 2 : 0)));

	/*
	 * the address should be Qword aligned if 64bit write, Dword
	 * aligned if only send 32bit data low (discard data high)
	 */
	if (write64bit)
		BUG_ON(addr & 0x7);
	else
		BUG_ON(addr & 0x3);
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	amdgpu_ring_write(ring, lower_32_bits(seq));
	amdgpu_ring_write(ring, upper_32_bits(seq));
	amdgpu_ring_write(ring, ring->is_mes_queue ?
			 (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0);
}

static void gfx_v11_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
	int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);
	uint32_t seq = ring->fence_drv.sync_seq;
	uint64_t addr = ring->fence_drv.gpu_addr;

	gfx_v11_0_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr),
			       upper_32_bits(addr), seq, 0xffffffff, 4);
}

static void gfx_v11_0_ring_invalidate_tlbs(struct amdgpu_ring *ring,
				   uint16_t pasid, uint32_t flush_type,
				   bool all_hub, uint8_t dst_sel)
{
	amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0));
	amdgpu_ring_write(ring,
			  PACKET3_INVALIDATE_TLBS_DST_SEL(dst_sel) |
			  PACKET3_INVALIDATE_TLBS_ALL_HUB(all_hub) |
			  PACKET3_INVALIDATE_TLBS_PASID(pasid) |
			  PACKET3_INVALIDATE_TLBS_FLUSH_TYPE(flush_type));
}

static void gfx_v11_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
					 unsigned vmid, uint64_t pd_addr)
{
	if (ring->is_mes_queue)
		gfx_v11_0_ring_invalidate_tlbs(ring, 0, 0, false, 0);
	else
		amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);

	/* compute doesn't have PFP */
	if (ring->funcs->type == AMDGPU_RING_TYPE_GFX) {
		/* sync PFP to ME, otherwise we might get invalid PFP reads */
		amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
		amdgpu_ring_write(ring, 0x0);
	}

	/* Make sure that we can't skip the SET_Q_MODE packets when the VM
	 * changed in any way.
	 */
	ring->set_q_mode_offs = 0;
	ring->set_q_mode_ptr = NULL;
}

static void gfx_v11_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr,
					  u64 seq, unsigned int flags)
{
	struct amdgpu_device *adev = ring->adev;

	/* we only allocate 32bit for each seq wb address */
	BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT);

	/* write fence seq to the "addr" */
	amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(5) | WR_CONFIRM));
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	amdgpu_ring_write(ring, lower_32_bits(seq));

	if (flags & AMDGPU_FENCE_FLAG_INT) {
		/* set register to trigger INT */
		amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
		amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
					 WRITE_DATA_DST_SEL(0) | WR_CONFIRM));
		amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, regCPC_INT_STATUS));
		amdgpu_ring_write(ring, 0);
		amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */
	}
}

static void gfx_v11_0_ring_emit_cntxcntl(struct amdgpu_ring *ring,
					 uint32_t flags)
{
	uint32_t dw2 = 0;

	dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */
	if (flags & AMDGPU_HAVE_CTX_SWITCH) {
		/* set load_global_config & load_global_uconfig */
		dw2 |= 0x8001;
		/* set load_cs_sh_regs */
		dw2 |= 0x01000000;
		/* set load_per_context_state & load_gfx_sh_regs for GFX */
		dw2 |= 0x10002;
	}

	amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
	amdgpu_ring_write(ring, dw2);
	amdgpu_ring_write(ring, 0);
}

static unsigned gfx_v11_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring,
						   uint64_t addr)
{
	unsigned ret;

	amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3));
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	/* discard following DWs if *cond_exec_gpu_addr==0 */
	amdgpu_ring_write(ring, 0);
	ret = ring->wptr & ring->buf_mask;
	/* patch dummy value later */
	amdgpu_ring_write(ring, 0);

	return ret;
}

static void gfx_v11_0_ring_emit_gfx_shadow(struct amdgpu_ring *ring,
					   u64 shadow_va, u64 csa_va,
					   u64 gds_va, bool init_shadow,
					   int vmid)
{
	struct amdgpu_device *adev = ring->adev;
	unsigned int offs, end;

	if (!adev->gfx.cp_gfx_shadow || !ring->ring_obj)
		return;

	/*
	 * The logic here isn't easy to understand because we need to keep state
	 * accross multiple executions of the function as well as between the
	 * CPU and GPU. The general idea is that the newly written GPU command
	 * has a condition on the previous one and only executed if really
	 * necessary.
	 */

	/*
	 * The dw in the NOP controls if the next SET_Q_MODE packet should be
	 * executed or not. Reserve 64bits just to be on the save side.
	 */
	amdgpu_ring_write(ring, PACKET3(PACKET3_NOP, 1));
	offs = ring->wptr & ring->buf_mask;

	/*
	 * We start with skipping the prefix SET_Q_MODE and always executing
	 * the postfix SET_Q_MODE packet. This is changed below with a
	 * WRITE_DATA command when the postfix executed.
	 */
	amdgpu_ring_write(ring, shadow_va ? 1 : 0);
	amdgpu_ring_write(ring, 0);

	if (ring->set_q_mode_offs) {
		uint64_t addr;

		addr = amdgpu_bo_gpu_offset(ring->ring_obj);
		addr += ring->set_q_mode_offs << 2;
		end = gfx_v11_0_ring_emit_init_cond_exec(ring, addr);
	}

	/*
	 * When the postfix SET_Q_MODE packet executes we need to make sure that the
	 * next prefix SET_Q_MODE packet executes as well.
	 */
	if (!shadow_va) {
		uint64_t addr;

		addr = amdgpu_bo_gpu_offset(ring->ring_obj);
		addr += offs << 2;
		amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
		amdgpu_ring_write(ring, WRITE_DATA_DST_SEL(5) | WR_CONFIRM);
		amdgpu_ring_write(ring, lower_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(addr));
		amdgpu_ring_write(ring, 0x1);
	}

	amdgpu_ring_write(ring, PACKET3(PACKET3_SET_Q_PREEMPTION_MODE, 7));
	amdgpu_ring_write(ring, lower_32_bits(shadow_va));
	amdgpu_ring_write(ring, upper_32_bits(shadow_va));
	amdgpu_ring_write(ring, lower_32_bits(gds_va));
	amdgpu_ring_write(ring, upper_32_bits(gds_va));
	amdgpu_ring_write(ring, lower_32_bits(csa_va));
	amdgpu_ring_write(ring, upper_32_bits(csa_va));
	amdgpu_ring_write(ring, shadow_va ?
			  PACKET3_SET_Q_PREEMPTION_MODE_IB_VMID(vmid) : 0);
	amdgpu_ring_write(ring, init_shadow ?
			  PACKET3_SET_Q_PREEMPTION_MODE_INIT_SHADOW_MEM : 0);

	if (ring->set_q_mode_offs)
		amdgpu_ring_patch_cond_exec(ring, end);

	if (shadow_va) {
		uint64_t token = shadow_va ^ csa_va ^ gds_va ^ vmid;

		/*
		 * If the tokens match try to skip the last postfix SET_Q_MODE
		 * packet to avoid saving/restoring the state all the time.
		 */
		if (ring->set_q_mode_ptr && ring->set_q_mode_token == token)
			*ring->set_q_mode_ptr = 0;

		ring->set_q_mode_token = token;
	} else {
		ring->set_q_mode_ptr = &ring->ring[ring->set_q_mode_offs];
	}

	ring->set_q_mode_offs = offs;
}

static int gfx_v11_0_ring_preempt_ib(struct amdgpu_ring *ring)
{
	int i, r = 0;
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
	struct amdgpu_ring *kiq_ring = &kiq->ring;
	unsigned long flags;

	if (adev->enable_mes)
		return -EINVAL;

	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
		return -EINVAL;

	spin_lock_irqsave(&kiq->ring_lock, flags);

	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size)) {
		spin_unlock_irqrestore(&kiq->ring_lock, flags);
		return -ENOMEM;
	}

	/* assert preemption condition */
	amdgpu_ring_set_preempt_cond_exec(ring, false);

	/* assert IB preemption, emit the trailing fence */
	kiq->pmf->kiq_unmap_queues(kiq_ring, ring, PREEMPT_QUEUES_NO_UNMAP,
				   ring->trail_fence_gpu_addr,
				   ++ring->trail_seq);
	amdgpu_ring_commit(kiq_ring);

	spin_unlock_irqrestore(&kiq->ring_lock, flags);

	/* poll the trailing fence */
	for (i = 0; i < adev->usec_timeout; i++) {
		if (ring->trail_seq ==
		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
			break;
		udelay(1);
	}

	if (i >= adev->usec_timeout) {
		r = -EINVAL;
		DRM_ERROR("ring %d failed to preempt ib\n", ring->idx);
	}

	/* deassert preemption condition */
	amdgpu_ring_set_preempt_cond_exec(ring, true);
	return r;
}

static void gfx_v11_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume)
{
	struct amdgpu_device *adev = ring->adev;
	struct v10_de_ib_state de_payload = {0};
	uint64_t offset, gds_addr, de_payload_gpu_addr;
	void *de_payload_cpu_addr;
	int cnt;

	if (ring->is_mes_queue) {
		offset = offsetof(struct amdgpu_mes_ctx_meta_data,
				  gfx[0].gfx_meta_data) +
			offsetof(struct v10_gfx_meta_data, de_payload);
		de_payload_gpu_addr =
			amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
		de_payload_cpu_addr =
			amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);

		offset = offsetof(struct amdgpu_mes_ctx_meta_data,
				  gfx[0].gds_backup) +
			offsetof(struct v10_gfx_meta_data, de_payload);
		gds_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
	} else {
		offset = offsetof(struct v10_gfx_meta_data, de_payload);
		de_payload_gpu_addr = amdgpu_csa_vaddr(ring->adev) + offset;
		de_payload_cpu_addr = adev->virt.csa_cpu_addr + offset;

		gds_addr = ALIGN(amdgpu_csa_vaddr(ring->adev) +
				 AMDGPU_CSA_SIZE - adev->gds.gds_size,
				 PAGE_SIZE);
	}

	de_payload.gds_backup_addrlo = lower_32_bits(gds_addr);
	de_payload.gds_backup_addrhi = upper_32_bits(gds_addr);

	cnt = (sizeof(de_payload) >> 2) + 4 - 2;
	amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt));
	amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
				 WRITE_DATA_DST_SEL(8) |
				 WR_CONFIRM) |
				 WRITE_DATA_CACHE_POLICY(0));
	amdgpu_ring_write(ring, lower_32_bits(de_payload_gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(de_payload_gpu_addr));

	if (resume)
		amdgpu_ring_write_multiple(ring, de_payload_cpu_addr,
					   sizeof(de_payload) >> 2);
	else
		amdgpu_ring_write_multiple(ring, (void *)&de_payload,
					   sizeof(de_payload) >> 2);
}

static void gfx_v11_0_ring_emit_frame_cntl(struct amdgpu_ring *ring, bool start,
				    bool secure)
{
	uint32_t v = secure ? FRAME_TMZ : 0;

	amdgpu_ring_write(ring, PACKET3(PACKET3_FRAME_CONTROL, 0));
	amdgpu_ring_write(ring, v | FRAME_CMD(start ? 0 : 1));
}

static void gfx_v11_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg,
				     uint32_t reg_val_offs)
{
	struct amdgpu_device *adev = ring->adev;

	amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4));
	amdgpu_ring_write(ring, 0 |	/* src: register*/
				(5 << 8) |	/* dst: memory */
				(1 << 20));	/* write confirm */
	amdgpu_ring_write(ring, reg);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr +
				reg_val_offs * 4));
	amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr +
				reg_val_offs * 4));
}

static void gfx_v11_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg,
				   uint32_t val)
{
	uint32_t cmd = 0;

	switch (ring->funcs->type) {
	case AMDGPU_RING_TYPE_GFX:
		cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM;
		break;
	case AMDGPU_RING_TYPE_KIQ:
		cmd = (1 << 16); /* no inc addr */
		break;
	default:
		cmd = WR_CONFIRM;
		break;
	}
	amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	amdgpu_ring_write(ring, cmd);
	amdgpu_ring_write(ring, reg);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, val);
}

static void gfx_v11_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
					uint32_t val, uint32_t mask)
{
	gfx_v11_0_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20);
}

static void gfx_v11_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
						   uint32_t reg0, uint32_t reg1,
						   uint32_t ref, uint32_t mask)
{
	int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);

	gfx_v11_0_wait_reg_mem(ring, usepfp, 0, 1, reg0, reg1,
			       ref, mask, 0x20);
}

static void gfx_v11_0_ring_soft_recovery(struct amdgpu_ring *ring,
					 unsigned vmid)
{
	struct amdgpu_device *adev = ring->adev;
	uint32_t value = 0;

	value = REG_SET_FIELD(value, SQ_CMD, CMD, 0x03);
	value = REG_SET_FIELD(value, SQ_CMD, MODE, 0x01);
	value = REG_SET_FIELD(value, SQ_CMD, CHECK_VMID, 1);
	value = REG_SET_FIELD(value, SQ_CMD, VM_ID, vmid);
	amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
	WREG32_SOC15(GC, 0, regSQ_CMD, value);
	amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
}

static void
gfx_v11_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev,
				      uint32_t me, uint32_t pipe,
				      enum amdgpu_interrupt_state state)
{
	uint32_t cp_int_cntl, cp_int_cntl_reg;

	if (!me) {
		switch (pipe) {
		case 0:
			cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING0);
			break;
		case 1:
			cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING1);
			break;
		default:
			DRM_DEBUG("invalid pipe %d\n", pipe);
			return;
		}
	} else {
		DRM_DEBUG("invalid me %d\n", me);
		return;
	}

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
		cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
					    TIME_STAMP_INT_ENABLE, 0);
		cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
					    GENERIC0_INT_ENABLE, 0);
		WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
		cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
					    TIME_STAMP_INT_ENABLE, 1);
		cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
					    GENERIC0_INT_ENABLE, 1);
		WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
		break;
	default:
		break;
	}
}

static void gfx_v11_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev,
						     int me, int pipe,
						     enum amdgpu_interrupt_state state)
{
	u32 mec_int_cntl, mec_int_cntl_reg;

	/*
	 * amdgpu controls only the first MEC. That's why this function only
	 * handles the setting of interrupts for this specific MEC. All other
	 * pipes' interrupts are set by amdkfd.
	 */

	if (me == 1) {
		switch (pipe) {
		case 0:
			mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL);
			break;
		case 1:
			mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE1_INT_CNTL);
			break;
		case 2:
			mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE2_INT_CNTL);
			break;
		case 3:
			mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE3_INT_CNTL);
			break;
		default:
			DRM_DEBUG("invalid pipe %d\n", pipe);
			return;
		}
	} else {
		DRM_DEBUG("invalid me %d\n", me);
		return;
	}

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		mec_int_cntl = RREG32_SOC15_IP(GC, mec_int_cntl_reg);
		mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
					     TIME_STAMP_INT_ENABLE, 0);
		mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
					     GENERIC0_INT_ENABLE, 0);
		WREG32_SOC15_IP(GC, mec_int_cntl_reg, mec_int_cntl);
		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		mec_int_cntl = RREG32_SOC15_IP(GC, mec_int_cntl_reg);
		mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
					     TIME_STAMP_INT_ENABLE, 1);
		mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
					     GENERIC0_INT_ENABLE, 1);
		WREG32_SOC15_IP(GC, mec_int_cntl_reg, mec_int_cntl);
		break;
	default:
		break;
	}
}

static int gfx_v11_0_set_eop_interrupt_state(struct amdgpu_device *adev,
					    struct amdgpu_irq_src *src,
					    unsigned type,
					    enum amdgpu_interrupt_state state)
{
	switch (type) {
	case AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP:
		gfx_v11_0_set_gfx_eop_interrupt_state(adev, 0, 0, state);
		break;
	case AMDGPU_CP_IRQ_GFX_ME0_PIPE1_EOP:
		gfx_v11_0_set_gfx_eop_interrupt_state(adev, 0, 1, state);
		break;
	case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP:
		gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 0, state);
		break;
	case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP:
		gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 1, state);
		break;
	case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP:
		gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 2, state);
		break;
	case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP:
		gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 3, state);
		break;
	default:
		break;
	}
	return 0;
}

static int gfx_v11_0_eop_irq(struct amdgpu_device *adev,
			     struct amdgpu_irq_src *source,
			     struct amdgpu_iv_entry *entry)
{
	int i;
	u8 me_id, pipe_id, queue_id;
	struct amdgpu_ring *ring;
	uint32_t mes_queue_id = entry->src_data[0];

	DRM_DEBUG("IH: CP EOP\n");

	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
		struct amdgpu_mes_queue *queue;

		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;

		spin_lock(&adev->mes.queue_id_lock);
		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
		if (queue) {
			DRM_DEBUG("process mes queue id = %d\n", mes_queue_id);
			amdgpu_fence_process(queue->ring);
		}
		spin_unlock(&adev->mes.queue_id_lock);
	} else {
		me_id = (entry->ring_id & 0x0c) >> 2;
		pipe_id = (entry->ring_id & 0x03) >> 0;
		queue_id = (entry->ring_id & 0x70) >> 4;

		switch (me_id) {
		case 0:
			if (pipe_id == 0)
				amdgpu_fence_process(&adev->gfx.gfx_ring[0]);
			else
				amdgpu_fence_process(&adev->gfx.gfx_ring[1]);
			break;
		case 1:
		case 2:
			for (i = 0; i < adev->gfx.num_compute_rings; i++) {
				ring = &adev->gfx.compute_ring[i];
				/* Per-queue interrupt is supported for MEC starting from VI.
				 * The interrupt can only be enabled/disabled per pipe instead
				 * of per queue.
				 */
				if ((ring->me == me_id) &&
				    (ring->pipe == pipe_id) &&
				    (ring->queue == queue_id))
					amdgpu_fence_process(ring);
			}
			break;
		}
	}

	return 0;
}

static int gfx_v11_0_set_priv_reg_fault_state(struct amdgpu_device *adev,
					      struct amdgpu_irq_src *source,
					      unsigned int type,
					      enum amdgpu_interrupt_state state)
{
	u32 cp_int_cntl_reg, cp_int_cntl;
	int i, j;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
	case AMDGPU_IRQ_STATE_ENABLE:
		for (i = 0; i < adev->gfx.me.num_me; i++) {
			for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
				cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);

				if (cp_int_cntl_reg) {
					cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
					cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
								    PRIV_REG_INT_ENABLE,
								    state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
					WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
				}
			}
		}
		for (i = 0; i < adev->gfx.mec.num_mec; i++) {
			for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
				/* MECs start at 1 */
				cp_int_cntl_reg = gfx_v11_0_get_cpc_int_cntl(adev, i + 1, j);

				if (cp_int_cntl_reg) {
					cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
					cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_ME1_PIPE0_INT_CNTL,
								    PRIV_REG_INT_ENABLE,
								    state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
					WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
				}
			}
		}
		break;
	default:
		break;
	}

	return 0;
}

static int gfx_v11_0_set_bad_op_fault_state(struct amdgpu_device *adev,
					    struct amdgpu_irq_src *source,
					    unsigned type,
					    enum amdgpu_interrupt_state state)
{
	u32 cp_int_cntl_reg, cp_int_cntl;
	int i, j;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
	case AMDGPU_IRQ_STATE_ENABLE:
		for (i = 0; i < adev->gfx.me.num_me; i++) {
			for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
				cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);

				if (cp_int_cntl_reg) {
					cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
					cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
								    OPCODE_ERROR_INT_ENABLE,
								    state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
					WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
				}
			}
		}
		for (i = 0; i < adev->gfx.mec.num_mec; i++) {
			for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
				/* MECs start at 1 */
				cp_int_cntl_reg = gfx_v11_0_get_cpc_int_cntl(adev, i + 1, j);

				if (cp_int_cntl_reg) {
					cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
					cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_ME1_PIPE0_INT_CNTL,
								    OPCODE_ERROR_INT_ENABLE,
								    state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
					WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
				}
			}
		}
		break;
	default:
		break;
	}
	return 0;
}

static int gfx_v11_0_set_priv_inst_fault_state(struct amdgpu_device *adev,
					       struct amdgpu_irq_src *source,
					       unsigned int type,
					       enum amdgpu_interrupt_state state)
{
	u32 cp_int_cntl_reg, cp_int_cntl;
	int i, j;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
	case AMDGPU_IRQ_STATE_ENABLE:
		for (i = 0; i < adev->gfx.me.num_me; i++) {
			for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
				cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);

				if (cp_int_cntl_reg) {
					cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
					cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
								    PRIV_INSTR_INT_ENABLE,
								    state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
					WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
				}
			}
		}
		break;
	default:
		break;
	}

	return 0;
}

static void gfx_v11_0_handle_priv_fault(struct amdgpu_device *adev,
					struct amdgpu_iv_entry *entry)
{
	u8 me_id, pipe_id, queue_id;
	struct amdgpu_ring *ring;
	int i;

	me_id = (entry->ring_id & 0x0c) >> 2;
	pipe_id = (entry->ring_id & 0x03) >> 0;
	queue_id = (entry->ring_id & 0x70) >> 4;

	switch (me_id) {
	case 0:
		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
			ring = &adev->gfx.gfx_ring[i];
			if (ring->me == me_id && ring->pipe == pipe_id &&
			    ring->queue == queue_id)
				drm_sched_fault(&ring->sched);
		}
		break;
	case 1:
	case 2:
		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
			ring = &adev->gfx.compute_ring[i];
			if (ring->me == me_id && ring->pipe == pipe_id &&
			    ring->queue == queue_id)
				drm_sched_fault(&ring->sched);
		}
		break;
	default:
		BUG();
		break;
	}
}

static int gfx_v11_0_priv_reg_irq(struct amdgpu_device *adev,
				  struct amdgpu_irq_src *source,
				  struct amdgpu_iv_entry *entry)
{
	DRM_ERROR("Illegal register access in command stream\n");
	gfx_v11_0_handle_priv_fault(adev, entry);
	return 0;
}

static int gfx_v11_0_bad_op_irq(struct amdgpu_device *adev,
				struct amdgpu_irq_src *source,
				struct amdgpu_iv_entry *entry)
{
	DRM_ERROR("Illegal opcode in command stream \n");
	gfx_v11_0_handle_priv_fault(adev, entry);
	return 0;
}

static int gfx_v11_0_priv_inst_irq(struct amdgpu_device *adev,
				   struct amdgpu_irq_src *source,
				   struct amdgpu_iv_entry *entry)
{
	DRM_ERROR("Illegal instruction in command stream\n");
	gfx_v11_0_handle_priv_fault(adev, entry);
	return 0;
}

static int gfx_v11_0_rlc_gc_fed_irq(struct amdgpu_device *adev,
				  struct amdgpu_irq_src *source,
				  struct amdgpu_iv_entry *entry)
{
	if (adev->gfx.ras && adev->gfx.ras->rlc_gc_fed_irq)
		return adev->gfx.ras->rlc_gc_fed_irq(adev, source, entry);

	return 0;
}

#if 0
static int gfx_v11_0_kiq_set_interrupt_state(struct amdgpu_device *adev,
					     struct amdgpu_irq_src *src,
					     unsigned int type,
					     enum amdgpu_interrupt_state state)
{
	uint32_t tmp, target;
	struct amdgpu_ring *ring = &(adev->gfx.kiq[0].ring);

	target = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL);
	target += ring->pipe;

	switch (type) {
	case AMDGPU_CP_KIQ_IRQ_DRIVER0:
		if (state == AMDGPU_IRQ_STATE_DISABLE) {
			tmp = RREG32_SOC15(GC, 0, regCPC_INT_CNTL);
			tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL,
					    GENERIC2_INT_ENABLE, 0);
			WREG32_SOC15(GC, 0, regCPC_INT_CNTL, tmp);

			tmp = RREG32_SOC15_IP(GC, target);
			tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE0_INT_CNTL,
					    GENERIC2_INT_ENABLE, 0);
			WREG32_SOC15_IP(GC, target, tmp);
		} else {
			tmp = RREG32_SOC15(GC, 0, regCPC_INT_CNTL);
			tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL,
					    GENERIC2_INT_ENABLE, 1);
			WREG32_SOC15(GC, 0, regCPC_INT_CNTL, tmp);

			tmp = RREG32_SOC15_IP(GC, target);
			tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE0_INT_CNTL,
					    GENERIC2_INT_ENABLE, 1);
			WREG32_SOC15_IP(GC, target, tmp);
		}
		break;
	default:
		BUG(); /* kiq only support GENERIC2_INT now */
		break;
	}
	return 0;
}
#endif

static void gfx_v11_0_emit_mem_sync(struct amdgpu_ring *ring)
{
	const unsigned int gcr_cntl =
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GL2_INV(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GL2_WB(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GLM_INV(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GLM_WB(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GL1_INV(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GLV_INV(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GLK_INV(1) |
			PACKET3_ACQUIRE_MEM_GCR_CNTL_GLI_INV(1);

	/* ACQUIRE_MEM - make one or more surfaces valid for use by the subsequent operations */
	amdgpu_ring_write(ring, PACKET3(PACKET3_ACQUIRE_MEM, 6));
	amdgpu_ring_write(ring, 0); /* CP_COHER_CNTL */
	amdgpu_ring_write(ring, 0xffffffff);  /* CP_COHER_SIZE */
	amdgpu_ring_write(ring, 0xffffff);  /* CP_COHER_SIZE_HI */
	amdgpu_ring_write(ring, 0); /* CP_COHER_BASE */
	amdgpu_ring_write(ring, 0);  /* CP_COHER_BASE_HI */
	amdgpu_ring_write(ring, 0x0000000A); /* POLL_INTERVAL */
	amdgpu_ring_write(ring, gcr_cntl); /* GCR_CNTL */
}

static int gfx_v11_0_reset_kgq(struct amdgpu_ring *ring, unsigned int vmid)
{
	struct amdgpu_device *adev = ring->adev;
	int r;

	if (amdgpu_sriov_vf(adev))
		return -EINVAL;

	r = amdgpu_mes_reset_legacy_queue(ring->adev, ring, vmid, false);
	if (r)
		return r;

	r = amdgpu_bo_reserve(ring->mqd_obj, false);
	if (unlikely(r != 0)) {
		dev_err(adev->dev, "fail to resv mqd_obj\n");
		return r;
	}
	r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
	if (!r) {
		r = gfx_v11_0_kgq_init_queue(ring, true);
		amdgpu_bo_kunmap(ring->mqd_obj);
		ring->mqd_ptr = NULL;
	}
	amdgpu_bo_unreserve(ring->mqd_obj);
	if (r) {
		dev_err(adev->dev, "fail to unresv mqd_obj\n");
		return r;
	}

	r = amdgpu_mes_map_legacy_queue(adev, ring);
	if (r) {
		dev_err(adev->dev, "failed to remap kgq\n");
		return r;
	}

	return amdgpu_ring_test_ring(ring);
}

static int gfx_v11_0_reset_kcq(struct amdgpu_ring *ring, unsigned int vmid)
{
	struct amdgpu_device *adev = ring->adev;
	int i, r = 0;

	if (amdgpu_sriov_vf(adev))
		return -EINVAL;

	amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
	mutex_lock(&adev->srbm_mutex);
	soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
	WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 0x2);
	WREG32_SOC15(GC, 0, regSPI_COMPUTE_QUEUE_RESET, 0x1);

	/* make sure dequeue is complete*/
	for (i = 0; i < adev->usec_timeout; i++) {
		if (!(RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1))
			break;
		udelay(1);
	}
	if (i >= adev->usec_timeout)
		r = -ETIMEDOUT;
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);
	amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
	if (r) {
		dev_err(adev->dev, "fail to wait on hqd deactivate\n");
		return r;
	}

	r = amdgpu_bo_reserve(ring->mqd_obj, false);
	if (unlikely(r != 0)) {
		dev_err(adev->dev, "fail to resv mqd_obj\n");
		return r;
	}
	r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
	if (!r) {
		r = gfx_v11_0_kcq_init_queue(ring, true);
		amdgpu_bo_kunmap(ring->mqd_obj);
		ring->mqd_ptr = NULL;
	}
	amdgpu_bo_unreserve(ring->mqd_obj);
	if (r) {
		dev_err(adev->dev, "fail to unresv mqd_obj\n");
		return r;
	}
	r = amdgpu_mes_map_legacy_queue(adev, ring);
	if (r) {
		dev_err(adev->dev, "failed to remap kcq\n");
		return r;
	}

	return amdgpu_ring_test_ring(ring);
}

static void gfx_v11_ip_print(void *handle, struct drm_printer *p)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	uint32_t i, j, k, reg, index = 0;
	uint32_t reg_count = ARRAY_SIZE(gc_reg_list_11_0);

	if (!adev->gfx.ip_dump_core)
		return;

	for (i = 0; i < reg_count; i++)
		drm_printf(p, "%-50s \t 0x%08x\n",
			   gc_reg_list_11_0[i].reg_name,
			   adev->gfx.ip_dump_core[i]);

	/* print compute queue registers for all instances */
	if (!adev->gfx.ip_dump_compute_queues)
		return;

	reg_count = ARRAY_SIZE(gc_cp_reg_list_11);
	drm_printf(p, "\nnum_mec: %d num_pipe: %d num_queue: %d\n",
		   adev->gfx.mec.num_mec,
		   adev->gfx.mec.num_pipe_per_mec,
		   adev->gfx.mec.num_queue_per_pipe);

	for (i = 0; i < adev->gfx.mec.num_mec; i++) {
		for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
			for (k = 0; k < adev->gfx.mec.num_queue_per_pipe; k++) {
				drm_printf(p, "\nmec %d, pipe %d, queue %d\n", i, j, k);
				for (reg = 0; reg < reg_count; reg++) {
					drm_printf(p, "%-50s \t 0x%08x\n",
						   gc_cp_reg_list_11[reg].reg_name,
						   adev->gfx.ip_dump_compute_queues[index + reg]);
				}
				index += reg_count;
			}
		}
	}

	/* print gfx queue registers for all instances */
	if (!adev->gfx.ip_dump_gfx_queues)
		return;

	index = 0;
	reg_count = ARRAY_SIZE(gc_gfx_queue_reg_list_11);
	drm_printf(p, "\nnum_me: %d num_pipe: %d num_queue: %d\n",
		   adev->gfx.me.num_me,
		   adev->gfx.me.num_pipe_per_me,
		   adev->gfx.me.num_queue_per_pipe);

	for (i = 0; i < adev->gfx.me.num_me; i++) {
		for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
			for (k = 0; k < adev->gfx.me.num_queue_per_pipe; k++) {
				drm_printf(p, "\nme %d, pipe %d, queue %d\n", i, j, k);
				for (reg = 0; reg < reg_count; reg++) {
					drm_printf(p, "%-50s \t 0x%08x\n",
						   gc_gfx_queue_reg_list_11[reg].reg_name,
						   adev->gfx.ip_dump_gfx_queues[index + reg]);
				}
				index += reg_count;
			}
		}
	}
}

static void gfx_v11_ip_dump(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	uint32_t i, j, k, reg, index = 0;
	uint32_t reg_count = ARRAY_SIZE(gc_reg_list_11_0);

	if (!adev->gfx.ip_dump_core)
		return;

	amdgpu_gfx_off_ctrl(adev, false);
	for (i = 0; i < reg_count; i++)
		adev->gfx.ip_dump_core[i] = RREG32(SOC15_REG_ENTRY_OFFSET(gc_reg_list_11_0[i]));
	amdgpu_gfx_off_ctrl(adev, true);

	/* dump compute queue registers for all instances */
	if (!adev->gfx.ip_dump_compute_queues)
		return;

	reg_count = ARRAY_SIZE(gc_cp_reg_list_11);
	amdgpu_gfx_off_ctrl(adev, false);
	mutex_lock(&adev->srbm_mutex);
	for (i = 0; i < adev->gfx.mec.num_mec; i++) {
		for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
			for (k = 0; k < adev->gfx.mec.num_queue_per_pipe; k++) {
				/* ME0 is for GFX so start from 1 for CP */
				soc21_grbm_select(adev, adev->gfx.me.num_me + i, j, k, 0);
				for (reg = 0; reg < reg_count; reg++) {
					adev->gfx.ip_dump_compute_queues[index + reg] =
						RREG32(SOC15_REG_ENTRY_OFFSET(
							gc_cp_reg_list_11[reg]));
				}
				index += reg_count;
			}
		}
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);
	amdgpu_gfx_off_ctrl(adev, true);

	/* dump gfx queue registers for all instances */
	if (!adev->gfx.ip_dump_gfx_queues)
		return;

	index = 0;
	reg_count = ARRAY_SIZE(gc_gfx_queue_reg_list_11);
	amdgpu_gfx_off_ctrl(adev, false);
	mutex_lock(&adev->srbm_mutex);
	for (i = 0; i < adev->gfx.me.num_me; i++) {
		for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
			for (k = 0; k < adev->gfx.me.num_queue_per_pipe; k++) {
				soc21_grbm_select(adev, i, j, k, 0);

				for (reg = 0; reg < reg_count; reg++) {
					adev->gfx.ip_dump_gfx_queues[index + reg] =
						RREG32(SOC15_REG_ENTRY_OFFSET(
							gc_gfx_queue_reg_list_11[reg]));
				}
				index += reg_count;
			}
		}
	}
	soc21_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);
	amdgpu_gfx_off_ctrl(adev, true);
}

static const struct amd_ip_funcs gfx_v11_0_ip_funcs = {
	.name = "gfx_v11_0",
	.early_init = gfx_v11_0_early_init,
	.late_init = gfx_v11_0_late_init,
	.sw_init = gfx_v11_0_sw_init,
	.sw_fini = gfx_v11_0_sw_fini,
	.hw_init = gfx_v11_0_hw_init,
	.hw_fini = gfx_v11_0_hw_fini,
	.suspend = gfx_v11_0_suspend,
	.resume = gfx_v11_0_resume,
	.is_idle = gfx_v11_0_is_idle,
	.wait_for_idle = gfx_v11_0_wait_for_idle,
	.soft_reset = gfx_v11_0_soft_reset,
	.check_soft_reset = gfx_v11_0_check_soft_reset,
	.post_soft_reset = gfx_v11_0_post_soft_reset,
	.set_clockgating_state = gfx_v11_0_set_clockgating_state,
	.set_powergating_state = gfx_v11_0_set_powergating_state,
	.get_clockgating_state = gfx_v11_0_get_clockgating_state,
	.dump_ip_state = gfx_v11_ip_dump,
	.print_ip_state = gfx_v11_ip_print,
};

static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_gfx = {
	.type = AMDGPU_RING_TYPE_GFX,
	.align_mask = 0xff,
	.nop = PACKET3(PACKET3_NOP, 0x3FFF),
	.support_64bit_ptrs = true,
	.secure_submission_supported = true,
	.get_rptr = gfx_v11_0_ring_get_rptr_gfx,
	.get_wptr = gfx_v11_0_ring_get_wptr_gfx,
	.set_wptr = gfx_v11_0_ring_set_wptr_gfx,
	.emit_frame_size = /* totally 247 maximum if 16 IBs */
		5 + /* update_spm_vmid */
		5 + /* COND_EXEC */
		22 + /* SET_Q_PREEMPTION_MODE */
		7 + /* PIPELINE_SYNC */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
		4 + /* VM_FLUSH */
		8 + /* FENCE for VM_FLUSH */
		20 + /* GDS switch */
		5 + /* COND_EXEC */
		7 + /* HDP_flush */
		4 + /* VGT_flush */
		31 + /*	DE_META */
		3 + /* CNTX_CTRL */
		5 + /* HDP_INVL */
		22 + /* SET_Q_PREEMPTION_MODE */
		8 + 8 + /* FENCE x2 */
		8, /* gfx_v11_0_emit_mem_sync */
	.emit_ib_size =	4, /* gfx_v11_0_ring_emit_ib_gfx */
	.emit_ib = gfx_v11_0_ring_emit_ib_gfx,
	.emit_fence = gfx_v11_0_ring_emit_fence,
	.emit_pipeline_sync = gfx_v11_0_ring_emit_pipeline_sync,
	.emit_vm_flush = gfx_v11_0_ring_emit_vm_flush,
	.emit_gds_switch = gfx_v11_0_ring_emit_gds_switch,
	.emit_hdp_flush = gfx_v11_0_ring_emit_hdp_flush,
	.test_ring = gfx_v11_0_ring_test_ring,
	.test_ib = gfx_v11_0_ring_test_ib,
	.insert_nop = gfx_v11_ring_insert_nop,
	.pad_ib = amdgpu_ring_generic_pad_ib,
	.emit_cntxcntl = gfx_v11_0_ring_emit_cntxcntl,
	.emit_gfx_shadow = gfx_v11_0_ring_emit_gfx_shadow,
	.init_cond_exec = gfx_v11_0_ring_emit_init_cond_exec,
	.preempt_ib = gfx_v11_0_ring_preempt_ib,
	.emit_frame_cntl = gfx_v11_0_ring_emit_frame_cntl,
	.emit_wreg = gfx_v11_0_ring_emit_wreg,
	.emit_reg_wait = gfx_v11_0_ring_emit_reg_wait,
	.emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait,
	.soft_recovery = gfx_v11_0_ring_soft_recovery,
	.emit_mem_sync = gfx_v11_0_emit_mem_sync,
	.reset = gfx_v11_0_reset_kgq,
};

static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_compute = {
	.type = AMDGPU_RING_TYPE_COMPUTE,
	.align_mask = 0xff,
	.nop = PACKET3(PACKET3_NOP, 0x3FFF),
	.support_64bit_ptrs = true,
	.get_rptr = gfx_v11_0_ring_get_rptr_compute,
	.get_wptr = gfx_v11_0_ring_get_wptr_compute,
	.set_wptr = gfx_v11_0_ring_set_wptr_compute,
	.emit_frame_size =
		5 + /* update_spm_vmid */
		20 + /* gfx_v11_0_ring_emit_gds_switch */
		7 + /* gfx_v11_0_ring_emit_hdp_flush */
		5 + /* hdp invalidate */
		7 + /* gfx_v11_0_ring_emit_pipeline_sync */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
		2 + /* gfx_v11_0_ring_emit_vm_flush */
		8 + 8 + 8 + /* gfx_v11_0_ring_emit_fence x3 for user fence, vm fence */
		8, /* gfx_v11_0_emit_mem_sync */
	.emit_ib_size =	7, /* gfx_v11_0_ring_emit_ib_compute */
	.emit_ib = gfx_v11_0_ring_emit_ib_compute,
	.emit_fence = gfx_v11_0_ring_emit_fence,
	.emit_pipeline_sync = gfx_v11_0_ring_emit_pipeline_sync,
	.emit_vm_flush = gfx_v11_0_ring_emit_vm_flush,
	.emit_gds_switch = gfx_v11_0_ring_emit_gds_switch,
	.emit_hdp_flush = gfx_v11_0_ring_emit_hdp_flush,
	.test_ring = gfx_v11_0_ring_test_ring,
	.test_ib = gfx_v11_0_ring_test_ib,
	.insert_nop = gfx_v11_ring_insert_nop,
	.pad_ib = amdgpu_ring_generic_pad_ib,
	.emit_wreg = gfx_v11_0_ring_emit_wreg,
	.emit_reg_wait = gfx_v11_0_ring_emit_reg_wait,
	.emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait,
	.soft_recovery = gfx_v11_0_ring_soft_recovery,
	.emit_mem_sync = gfx_v11_0_emit_mem_sync,
	.reset = gfx_v11_0_reset_kcq,
};

static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_kiq = {
	.type = AMDGPU_RING_TYPE_KIQ,
	.align_mask = 0xff,
	.nop = PACKET3(PACKET3_NOP, 0x3FFF),
	.support_64bit_ptrs = true,
	.get_rptr = gfx_v11_0_ring_get_rptr_compute,
	.get_wptr = gfx_v11_0_ring_get_wptr_compute,
	.set_wptr = gfx_v11_0_ring_set_wptr_compute,
	.emit_frame_size =
		20 + /* gfx_v11_0_ring_emit_gds_switch */
		7 + /* gfx_v11_0_ring_emit_hdp_flush */
		5 + /*hdp invalidate */
		7 + /* gfx_v11_0_ring_emit_pipeline_sync */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
		8 + 8 + 8, /* gfx_v11_0_ring_emit_fence_kiq x3 for user fence, vm fence */
	.emit_ib_size =	7, /* gfx_v11_0_ring_emit_ib_compute */
	.emit_ib = gfx_v11_0_ring_emit_ib_compute,
	.emit_fence = gfx_v11_0_ring_emit_fence_kiq,
	.test_ring = gfx_v11_0_ring_test_ring,
	.test_ib = gfx_v11_0_ring_test_ib,
	.insert_nop = amdgpu_ring_insert_nop,
	.pad_ib = amdgpu_ring_generic_pad_ib,
	.emit_rreg = gfx_v11_0_ring_emit_rreg,
	.emit_wreg = gfx_v11_0_ring_emit_wreg,
	.emit_reg_wait = gfx_v11_0_ring_emit_reg_wait,
	.emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait,
};

static void gfx_v11_0_set_ring_funcs(struct amdgpu_device *adev)
{
	int i;

	adev->gfx.kiq[0].ring.funcs = &gfx_v11_0_ring_funcs_kiq;

	for (i = 0; i < adev->gfx.num_gfx_rings; i++)
		adev->gfx.gfx_ring[i].funcs = &gfx_v11_0_ring_funcs_gfx;

	for (i = 0; i < adev->gfx.num_compute_rings; i++)
		adev->gfx.compute_ring[i].funcs = &gfx_v11_0_ring_funcs_compute;
}

static const struct amdgpu_irq_src_funcs gfx_v11_0_eop_irq_funcs = {
	.set = gfx_v11_0_set_eop_interrupt_state,
	.process = gfx_v11_0_eop_irq,
};

static const struct amdgpu_irq_src_funcs gfx_v11_0_priv_reg_irq_funcs = {
	.set = gfx_v11_0_set_priv_reg_fault_state,
	.process = gfx_v11_0_priv_reg_irq,
};

static const struct amdgpu_irq_src_funcs gfx_v11_0_bad_op_irq_funcs = {
	.set = gfx_v11_0_set_bad_op_fault_state,
	.process = gfx_v11_0_bad_op_irq,
};

static const struct amdgpu_irq_src_funcs gfx_v11_0_priv_inst_irq_funcs = {
	.set = gfx_v11_0_set_priv_inst_fault_state,
	.process = gfx_v11_0_priv_inst_irq,
};

static const struct amdgpu_irq_src_funcs gfx_v11_0_rlc_gc_fed_irq_funcs = {
	.process = gfx_v11_0_rlc_gc_fed_irq,
};

static void gfx_v11_0_set_irq_funcs(struct amdgpu_device *adev)
{
	adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST;
	adev->gfx.eop_irq.funcs = &gfx_v11_0_eop_irq_funcs;

	adev->gfx.priv_reg_irq.num_types = 1;
	adev->gfx.priv_reg_irq.funcs = &gfx_v11_0_priv_reg_irq_funcs;

	adev->gfx.bad_op_irq.num_types = 1;
	adev->gfx.bad_op_irq.funcs = &gfx_v11_0_bad_op_irq_funcs;

	adev->gfx.priv_inst_irq.num_types = 1;
	adev->gfx.priv_inst_irq.funcs = &gfx_v11_0_priv_inst_irq_funcs;

	adev->gfx.rlc_gc_fed_irq.num_types = 1; /* 0x80 FED error */
	adev->gfx.rlc_gc_fed_irq.funcs = &gfx_v11_0_rlc_gc_fed_irq_funcs;

}

static void gfx_v11_0_set_imu_funcs(struct amdgpu_device *adev)
{
	if (adev->flags & AMD_IS_APU)
		adev->gfx.imu.mode = MISSION_MODE;
	else
		adev->gfx.imu.mode = DEBUG_MODE;

	adev->gfx.imu.funcs = &gfx_v11_0_imu_funcs;
}

static void gfx_v11_0_set_rlc_funcs(struct amdgpu_device *adev)
{
	adev->gfx.rlc.funcs = &gfx_v11_0_rlc_funcs;
}

static void gfx_v11_0_set_gds_init(struct amdgpu_device *adev)
{
	unsigned total_cu = adev->gfx.config.max_cu_per_sh *
			    adev->gfx.config.max_sh_per_se *
			    adev->gfx.config.max_shader_engines;

	adev->gds.gds_size = 0x1000;
	adev->gds.gds_compute_max_wave_id = total_cu * 32 - 1;
	adev->gds.gws_size = 64;
	adev->gds.oa_size = 16;
}

static void gfx_v11_0_set_mqd_funcs(struct amdgpu_device *adev)
{
	/* set gfx eng mqd */
	adev->mqds[AMDGPU_HW_IP_GFX].mqd_size =
		sizeof(struct v11_gfx_mqd);
	adev->mqds[AMDGPU_HW_IP_GFX].init_mqd =
		gfx_v11_0_gfx_mqd_init;
	/* set compute eng mqd */
	adev->mqds[AMDGPU_HW_IP_COMPUTE].mqd_size =
		sizeof(struct v11_compute_mqd);
	adev->mqds[AMDGPU_HW_IP_COMPUTE].init_mqd =
		gfx_v11_0_compute_mqd_init;
}

static void gfx_v11_0_set_user_wgp_inactive_bitmap_per_sh(struct amdgpu_device *adev,
							  u32 bitmap)
{
	u32 data;

	if (!bitmap)
		return;

	data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT;
	data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK;

	WREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG, data);
}

static u32 gfx_v11_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev)
{
	u32 data, wgp_bitmask;
	data = RREG32_SOC15(GC, 0, regCC_GC_SHADER_ARRAY_CONFIG);
	data |= RREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG);

	data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK;
	data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT;

	wgp_bitmask =
		amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh >> 1);

	return (~data) & wgp_bitmask;
}

static u32 gfx_v11_0_get_cu_active_bitmap_per_sh(struct amdgpu_device *adev)
{
	u32 wgp_idx, wgp_active_bitmap;
	u32 cu_bitmap_per_wgp, cu_active_bitmap;

	wgp_active_bitmap = gfx_v11_0_get_wgp_active_bitmap_per_sh(adev);
	cu_active_bitmap = 0;

	for (wgp_idx = 0; wgp_idx < 16; wgp_idx++) {
		/* if there is one WGP enabled, it means 2 CUs will be enabled */
		cu_bitmap_per_wgp = 3 << (2 * wgp_idx);
		if (wgp_active_bitmap & (1 << wgp_idx))
			cu_active_bitmap |= cu_bitmap_per_wgp;
	}

	return cu_active_bitmap;
}

static int gfx_v11_0_get_cu_info(struct amdgpu_device *adev,
				 struct amdgpu_cu_info *cu_info)
{
	int i, j, k, counter, active_cu_number = 0;
	u32 mask, bitmap;
	unsigned disable_masks[8 * 2];

	if (!adev || !cu_info)
		return -EINVAL;

	amdgpu_gfx_parse_disable_cu(disable_masks, 8, 2);

	mutex_lock(&adev->grbm_idx_mutex);
	for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
		for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
			bitmap = i * adev->gfx.config.max_sh_per_se + j;
			if (!((gfx_v11_0_get_sa_active_bitmap(adev) >> bitmap) & 1))
				continue;
			mask = 1;
			counter = 0;
			gfx_v11_0_select_se_sh(adev, i, j, 0xffffffff, 0);
			if (i < 8 && j < 2)
				gfx_v11_0_set_user_wgp_inactive_bitmap_per_sh(
					adev, disable_masks[i * 2 + j]);
			bitmap = gfx_v11_0_get_cu_active_bitmap_per_sh(adev);

			/**
			 * GFX11 could support more than 4 SEs, while the bitmap
			 * in cu_info struct is 4x4 and ioctl interface struct
			 * drm_amdgpu_info_device should keep stable.
			 * So we use last two columns of bitmap to store cu mask for
			 * SEs 4 to 7, the layout of the bitmap is as below:
			 *    SE0: {SH0,SH1} --> {bitmap[0][0], bitmap[0][1]}
			 *    SE1: {SH0,SH1} --> {bitmap[1][0], bitmap[1][1]}
			 *    SE2: {SH0,SH1} --> {bitmap[2][0], bitmap[2][1]}
			 *    SE3: {SH0,SH1} --> {bitmap[3][0], bitmap[3][1]}
			 *    SE4: {SH0,SH1} --> {bitmap[0][2], bitmap[0][3]}
			 *    SE5: {SH0,SH1} --> {bitmap[1][2], bitmap[1][3]}
			 *    SE6: {SH0,SH1} --> {bitmap[2][2], bitmap[2][3]}
			 *    SE7: {SH0,SH1} --> {bitmap[3][2], bitmap[3][3]}
			 */
			cu_info->bitmap[0][i % 4][j + (i / 4) * 2] = bitmap;

			for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) {
				if (bitmap & mask)
					counter++;

				mask <<= 1;
			}
			active_cu_number += counter;
		}
	}
	gfx_v11_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0);
	mutex_unlock(&adev->grbm_idx_mutex);

	cu_info->number = active_cu_number;
	cu_info->simd_per_cu = NUM_SIMD_PER_CU;

	return 0;
}

const struct amdgpu_ip_block_version gfx_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_GFX,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &gfx_v11_0_ip_funcs,
};