linux/drivers/gpu/drm/amd/display/amdgpu_dm/amdgpu_dm_color.c

/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */
#include "amdgpu.h"
#include "amdgpu_mode.h"
#include "amdgpu_dm.h"
#include "dc.h"
#include "modules/color/color_gamma.h"
#include "basics/conversion.h"

/**
 * DOC: overview
 *
 * The DC interface to HW gives us the following color management blocks
 * per pipe (surface):
 *
 * - Input gamma LUT (de-normalized)
 * - Input CSC (normalized)
 * - Surface degamma LUT (normalized)
 * - Surface CSC (normalized)
 * - Surface regamma LUT (normalized)
 * - Output CSC (normalized)
 *
 * But these aren't a direct mapping to DRM color properties. The current DRM
 * interface exposes CRTC degamma, CRTC CTM and CRTC regamma while our hardware
 * is essentially giving:
 *
 * Plane CTM -> Plane degamma -> Plane CTM -> Plane regamma -> Plane CTM
 *
 * The input gamma LUT block isn't really applicable here since it operates
 * on the actual input data itself rather than the HW fp representation. The
 * input and output CSC blocks are technically available to use as part of
 * the DC interface but are typically used internally by DC for conversions
 * between color spaces. These could be blended together with user
 * adjustments in the future but for now these should remain untouched.
 *
 * The pipe blending also happens after these blocks so we don't actually
 * support any CRTC props with correct blending with multiple planes - but we
 * can still support CRTC color management properties in DM in most single
 * plane cases correctly with clever management of the DC interface in DM.
 *
 * As per DRM documentation, blocks should be in hardware bypass when their
 * respective property is set to NULL. A linear DGM/RGM LUT should also
 * considered as putting the respective block into bypass mode.
 *
 * This means that the following
 * configuration is assumed to be the default:
 *
 * Plane DGM Bypass -> Plane CTM Bypass -> Plane RGM Bypass -> ...
 * CRTC DGM Bypass -> CRTC CTM Bypass -> CRTC RGM Bypass
 */

#define MAX_DRM_LUT_VALUE 0xFFFF
#define SDR_WHITE_LEVEL_INIT_VALUE 80

/**
 * amdgpu_dm_init_color_mod - Initialize the color module.
 *
 * We're not using the full color module, only certain components.
 * Only call setup functions for components that we need.
 */
void amdgpu_dm_init_color_mod(void)
{
	setup_x_points_distribution();
}

static inline struct fixed31_32 amdgpu_dm_fixpt_from_s3132(__u64 x)
{
	struct fixed31_32 val;

	/* If negative, convert to 2's complement. */
	if (x & (1ULL << 63))
		x = -(x & ~(1ULL << 63));

	val.value = x;
	return val;
}

#ifdef AMD_PRIVATE_COLOR
/* Pre-defined Transfer Functions (TF)
 *
 * AMD driver supports pre-defined mathematical functions for transferring
 * between encoded values and optical/linear space. Depending on HW color caps,
 * ROMs and curves built by the AMD color module support these transforms.
 *
 * The driver-specific color implementation exposes properties for pre-blending
 * degamma TF, shaper TF (before 3D LUT), and blend(dpp.ogam) TF and
 * post-blending regamma (mpc.ogam) TF. However, only pre-blending degamma
 * supports ROM curves. AMD color module uses pre-defined coefficients to build
 * curves for the other blocks. What can be done by each color block is
 * described by struct dpp_color_capsand struct mpc_color_caps.
 *
 * AMD driver-specific color API exposes the following pre-defined transfer
 * functions:
 *
 * - Identity: linear/identity relationship between pixel value and
 *   luminance value;
 * - Gamma 2.2, Gamma 2.4, Gamma 2.6: pure power functions;
 * - sRGB: 2.4: The piece-wise transfer function from IEC 61966-2-1:1999;
 * - BT.709: has a linear segment in the bottom part and then a power function
 *   with a 0.45 (~1/2.22) gamma for the rest of the range; standardized by
 *   ITU-R BT.709-6;
 * - PQ (Perceptual Quantizer): used for HDR display, allows luminance range
 *   capability of 0 to 10,000 nits; standardized by SMPTE ST 2084.
 *
 * The AMD color model is designed with an assumption that SDR (sRGB, BT.709,
 * Gamma 2.2, etc.) peak white maps (normalized to 1.0 FP) to 80 nits in the PQ
 * system. This has the implication that PQ EOTF (non-linear to linear) maps to
 * [0.0..125.0] where 125.0 = 10,000 nits / 80 nits.
 *
 * Non-linear and linear forms are described in the table below:
 *
 * ┌───────────┬─────────────────────┬──────────────────────┐
 * │           │     Non-linear      │   Linear             │
 * ├───────────┼─────────────────────┼──────────────────────┤
 * │      sRGB │ UNORM or [0.0, 1.0] │ [0.0, 1.0]           │
 * ├───────────┼─────────────────────┼──────────────────────┤
 * │     BT709 │ UNORM or [0.0, 1.0] │ [0.0, 1.0]           │
 * ├───────────┼─────────────────────┼──────────────────────┤
 * │ Gamma 2.x │ UNORM or [0.0, 1.0] │ [0.0, 1.0]           │
 * ├───────────┼─────────────────────┼──────────────────────┤
 * │        PQ │ UNORM or FP16 CCCS* │ [0.0, 125.0]         │
 * ├───────────┼─────────────────────┼──────────────────────┤
 * │  Identity │ UNORM or FP16 CCCS* │ [0.0, 1.0] or CCCS** │
 * └───────────┴─────────────────────┴──────────────────────┘
 * * CCCS: Windows canonical composition color space
 * ** Respectively
 *
 * In the driver-specific API, color block names attached to TF properties
 * suggest the intention regarding non-linear encoding pixel's luminance
 * values. As some newer encodings don't use gamma curve, we make encoding and
 * decoding explicit by defining an enum list of transfer functions supported
 * in terms of EOTF and inverse EOTF, where:
 *
 * - EOTF (electro-optical transfer function): is the transfer function to go
 *   from the encoded value to an optical (linear) value. De-gamma functions
 *   traditionally do this.
 * - Inverse EOTF (simply the inverse of the EOTF): is usually intended to go
 *   from an optical/linear space (which might have been used for blending)
 *   back to the encoded values. Gamma functions traditionally do this.
 */
static const char * const
amdgpu_transfer_function_names[] = {
	[AMDGPU_TRANSFER_FUNCTION_DEFAULT]		= "Default",
	[AMDGPU_TRANSFER_FUNCTION_IDENTITY]		= "Identity",
	[AMDGPU_TRANSFER_FUNCTION_SRGB_EOTF]		= "sRGB EOTF",
	[AMDGPU_TRANSFER_FUNCTION_BT709_INV_OETF]	= "BT.709 inv_OETF",
	[AMDGPU_TRANSFER_FUNCTION_PQ_EOTF]		= "PQ EOTF",
	[AMDGPU_TRANSFER_FUNCTION_GAMMA22_EOTF]		= "Gamma 2.2 EOTF",
	[AMDGPU_TRANSFER_FUNCTION_GAMMA24_EOTF]		= "Gamma 2.4 EOTF",
	[AMDGPU_TRANSFER_FUNCTION_GAMMA26_EOTF]		= "Gamma 2.6 EOTF",
	[AMDGPU_TRANSFER_FUNCTION_SRGB_INV_EOTF]	= "sRGB inv_EOTF",
	[AMDGPU_TRANSFER_FUNCTION_BT709_OETF]		= "BT.709 OETF",
	[AMDGPU_TRANSFER_FUNCTION_PQ_INV_EOTF]		= "PQ inv_EOTF",
	[AMDGPU_TRANSFER_FUNCTION_GAMMA22_INV_EOTF]	= "Gamma 2.2 inv_EOTF",
	[AMDGPU_TRANSFER_FUNCTION_GAMMA24_INV_EOTF]	= "Gamma 2.4 inv_EOTF",
	[AMDGPU_TRANSFER_FUNCTION_GAMMA26_INV_EOTF]	= "Gamma 2.6 inv_EOTF",
};

static const u32 amdgpu_eotf =
	BIT(AMDGPU_TRANSFER_FUNCTION_SRGB_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_BT709_INV_OETF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_PQ_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_GAMMA22_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_GAMMA24_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_GAMMA26_EOTF);

static const u32 amdgpu_inv_eotf =
	BIT(AMDGPU_TRANSFER_FUNCTION_SRGB_INV_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_BT709_OETF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_PQ_INV_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_GAMMA22_INV_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_GAMMA24_INV_EOTF) |
	BIT(AMDGPU_TRANSFER_FUNCTION_GAMMA26_INV_EOTF);

static struct drm_property *
amdgpu_create_tf_property(struct drm_device *dev,
			  const char *name,
			  u32 supported_tf)
{
	u32 transfer_functions = supported_tf |
				 BIT(AMDGPU_TRANSFER_FUNCTION_DEFAULT) |
				 BIT(AMDGPU_TRANSFER_FUNCTION_IDENTITY);
	struct drm_prop_enum_list enum_list[AMDGPU_TRANSFER_FUNCTION_COUNT];
	int i, len;

	len = 0;
	for (i = 0; i < AMDGPU_TRANSFER_FUNCTION_COUNT; i++) {
		if ((transfer_functions & BIT(i)) == 0)
			continue;

		enum_list[len].type = i;
		enum_list[len].name = amdgpu_transfer_function_names[i];
		len++;
	}

	return drm_property_create_enum(dev, DRM_MODE_PROP_ENUM,
					name, enum_list, len);
}

int
amdgpu_dm_create_color_properties(struct amdgpu_device *adev)
{
	struct drm_property *prop;

	prop = drm_property_create(adev_to_drm(adev),
				   DRM_MODE_PROP_BLOB,
				   "AMD_PLANE_DEGAMMA_LUT", 0);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_degamma_lut_property = prop;

	prop = drm_property_create_range(adev_to_drm(adev),
					 DRM_MODE_PROP_IMMUTABLE,
					 "AMD_PLANE_DEGAMMA_LUT_SIZE",
					 0, UINT_MAX);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_degamma_lut_size_property = prop;

	prop = amdgpu_create_tf_property(adev_to_drm(adev),
					 "AMD_PLANE_DEGAMMA_TF",
					 amdgpu_eotf);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_degamma_tf_property = prop;

	prop = drm_property_create_range(adev_to_drm(adev),
					 0, "AMD_PLANE_HDR_MULT", 0, U64_MAX);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_hdr_mult_property = prop;

	prop = drm_property_create(adev_to_drm(adev),
				   DRM_MODE_PROP_BLOB,
				   "AMD_PLANE_CTM", 0);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_ctm_property = prop;

	prop = drm_property_create(adev_to_drm(adev),
				   DRM_MODE_PROP_BLOB,
				   "AMD_PLANE_SHAPER_LUT", 0);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_shaper_lut_property = prop;

	prop = drm_property_create_range(adev_to_drm(adev),
					 DRM_MODE_PROP_IMMUTABLE,
					 "AMD_PLANE_SHAPER_LUT_SIZE", 0, UINT_MAX);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_shaper_lut_size_property = prop;

	prop = amdgpu_create_tf_property(adev_to_drm(adev),
					 "AMD_PLANE_SHAPER_TF",
					 amdgpu_inv_eotf);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_shaper_tf_property = prop;

	prop = drm_property_create(adev_to_drm(adev),
				   DRM_MODE_PROP_BLOB,
				   "AMD_PLANE_LUT3D", 0);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_lut3d_property = prop;

	prop = drm_property_create_range(adev_to_drm(adev),
					 DRM_MODE_PROP_IMMUTABLE,
					 "AMD_PLANE_LUT3D_SIZE", 0, UINT_MAX);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_lut3d_size_property = prop;

	prop = drm_property_create(adev_to_drm(adev),
				   DRM_MODE_PROP_BLOB,
				   "AMD_PLANE_BLEND_LUT", 0);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_blend_lut_property = prop;

	prop = drm_property_create_range(adev_to_drm(adev),
					 DRM_MODE_PROP_IMMUTABLE,
					 "AMD_PLANE_BLEND_LUT_SIZE", 0, UINT_MAX);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_blend_lut_size_property = prop;

	prop = amdgpu_create_tf_property(adev_to_drm(adev),
					 "AMD_PLANE_BLEND_TF",
					 amdgpu_eotf);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.plane_blend_tf_property = prop;

	prop = amdgpu_create_tf_property(adev_to_drm(adev),
					 "AMD_CRTC_REGAMMA_TF",
					 amdgpu_inv_eotf);
	if (!prop)
		return -ENOMEM;
	adev->mode_info.regamma_tf_property = prop;

	return 0;
}
#endif

/**
 * __extract_blob_lut - Extracts the DRM lut and lut size from a blob.
 * @blob: DRM color mgmt property blob
 * @size: lut size
 *
 * Returns:
 * DRM LUT or NULL
 */
static const struct drm_color_lut *
__extract_blob_lut(const struct drm_property_blob *blob, uint32_t *size)
{
	*size = blob ? drm_color_lut_size(blob) : 0;
	return blob ? (struct drm_color_lut *)blob->data : NULL;
}

/**
 * __is_lut_linear - check if the given lut is a linear mapping of values
 * @lut: given lut to check values
 * @size: lut size
 *
 * It is considered linear if the lut represents:
 * f(a) = (0xFF00/MAX_COLOR_LUT_ENTRIES-1)a; for integer a in [0,
 * MAX_COLOR_LUT_ENTRIES)
 *
 * Returns:
 * True if the given lut is a linear mapping of values, i.e. it acts like a
 * bypass LUT. Otherwise, false.
 */
static bool __is_lut_linear(const struct drm_color_lut *lut, uint32_t size)
{
	int i;
	uint32_t expected;
	int delta;

	for (i = 0; i < size; i++) {
		/* All color values should equal */
		if ((lut[i].red != lut[i].green) || (lut[i].green != lut[i].blue))
			return false;

		expected = i * MAX_DRM_LUT_VALUE / (size-1);

		/* Allow a +/-1 error. */
		delta = lut[i].red - expected;
		if (delta < -1 || 1 < delta)
			return false;
	}
	return true;
}

/**
 * __drm_lut_to_dc_gamma - convert the drm_color_lut to dc_gamma.
 * @lut: DRM lookup table for color conversion
 * @gamma: DC gamma to set entries
 * @is_legacy: legacy or atomic gamma
 *
 * The conversion depends on the size of the lut - whether or not it's legacy.
 */
static void __drm_lut_to_dc_gamma(const struct drm_color_lut *lut,
				  struct dc_gamma *gamma, bool is_legacy)
{
	uint32_t r, g, b;
	int i;

	if (is_legacy) {
		for (i = 0; i < MAX_COLOR_LEGACY_LUT_ENTRIES; i++) {
			r = drm_color_lut_extract(lut[i].red, 16);
			g = drm_color_lut_extract(lut[i].green, 16);
			b = drm_color_lut_extract(lut[i].blue, 16);

			gamma->entries.red[i] = dc_fixpt_from_int(r);
			gamma->entries.green[i] = dc_fixpt_from_int(g);
			gamma->entries.blue[i] = dc_fixpt_from_int(b);
		}
		return;
	}

	/* else */
	for (i = 0; i < MAX_COLOR_LUT_ENTRIES; i++) {
		r = drm_color_lut_extract(lut[i].red, 16);
		g = drm_color_lut_extract(lut[i].green, 16);
		b = drm_color_lut_extract(lut[i].blue, 16);

		gamma->entries.red[i] = dc_fixpt_from_fraction(r, MAX_DRM_LUT_VALUE);
		gamma->entries.green[i] = dc_fixpt_from_fraction(g, MAX_DRM_LUT_VALUE);
		gamma->entries.blue[i] = dc_fixpt_from_fraction(b, MAX_DRM_LUT_VALUE);
	}
}

/**
 * __drm_ctm_to_dc_matrix - converts a DRM CTM to a DC CSC float matrix
 * @ctm: DRM color transformation matrix
 * @matrix: DC CSC float matrix
 *
 * The matrix needs to be a 3x4 (12 entry) matrix.
 */
static void __drm_ctm_to_dc_matrix(const struct drm_color_ctm *ctm,
				   struct fixed31_32 *matrix)
{
	int i;

	/*
	 * DRM gives a 3x3 matrix, but DC wants 3x4. Assuming we're operating
	 * with homogeneous coordinates, augment the matrix with 0's.
	 *
	 * The format provided is S31.32, using signed-magnitude representation.
	 * Our fixed31_32 is also S31.32, but is using 2's complement. We have
	 * to convert from signed-magnitude to 2's complement.
	 */
	for (i = 0; i < 12; i++) {
		/* Skip 4th element */
		if (i % 4 == 3) {
			matrix[i] = dc_fixpt_zero;
			continue;
		}

		/* gamut_remap_matrix[i] = ctm[i - floor(i/4)] */
		matrix[i] = amdgpu_dm_fixpt_from_s3132(ctm->matrix[i - (i / 4)]);
	}
}

/**
 * __drm_ctm_3x4_to_dc_matrix - converts a DRM CTM 3x4 to a DC CSC float matrix
 * @ctm: DRM color transformation matrix with 3x4 dimensions
 * @matrix: DC CSC float matrix
 *
 * The matrix needs to be a 3x4 (12 entry) matrix.
 */
static void __drm_ctm_3x4_to_dc_matrix(const struct drm_color_ctm_3x4 *ctm,
				       struct fixed31_32 *matrix)
{
	int i;

	/* The format provided is S31.32, using signed-magnitude representation.
	 * Our fixed31_32 is also S31.32, but is using 2's complement. We have
	 * to convert from signed-magnitude to 2's complement.
	 */
	for (i = 0; i < 12; i++) {
		/* gamut_remap_matrix[i] = ctm[i - floor(i/4)] */
		matrix[i] = amdgpu_dm_fixpt_from_s3132(ctm->matrix[i]);
	}
}

/**
 * __set_legacy_tf - Calculates the legacy transfer function
 * @func: transfer function
 * @lut: lookup table that defines the color space
 * @lut_size: size of respective lut
 * @has_rom: if ROM can be used for hardcoded curve
 *
 * Only for sRGB input space
 *
 * Returns:
 * 0 in case of success, -ENOMEM if fails
 */
static int __set_legacy_tf(struct dc_transfer_func *func,
			   const struct drm_color_lut *lut, uint32_t lut_size,
			   bool has_rom)
{
	struct dc_gamma *gamma = NULL;
	struct calculate_buffer cal_buffer = {0};
	bool res;

	ASSERT(lut && lut_size == MAX_COLOR_LEGACY_LUT_ENTRIES);

	cal_buffer.buffer_index = -1;

	gamma = dc_create_gamma();
	if (!gamma)
		return -ENOMEM;

	gamma->type = GAMMA_RGB_256;
	gamma->num_entries = lut_size;
	__drm_lut_to_dc_gamma(lut, gamma, true);

	res = mod_color_calculate_regamma_params(func, gamma, true, has_rom,
						 NULL, &cal_buffer);

	dc_gamma_release(&gamma);

	return res ? 0 : -ENOMEM;
}

/**
 * __set_output_tf - calculates the output transfer function based on expected input space.
 * @func: transfer function
 * @lut: lookup table that defines the color space
 * @lut_size: size of respective lut
 * @has_rom: if ROM can be used for hardcoded curve
 *
 * Returns:
 * 0 in case of success. -ENOMEM if fails.
 */
static int __set_output_tf(struct dc_transfer_func *func,
			   const struct drm_color_lut *lut, uint32_t lut_size,
			   bool has_rom)
{
	struct dc_gamma *gamma = NULL;
	struct calculate_buffer cal_buffer = {0};
	bool res;

	cal_buffer.buffer_index = -1;

	if (lut_size) {
		ASSERT(lut && lut_size == MAX_COLOR_LUT_ENTRIES);

		gamma = dc_create_gamma();
		if (!gamma)
			return -ENOMEM;

		gamma->num_entries = lut_size;
		__drm_lut_to_dc_gamma(lut, gamma, false);
	}

	if (func->tf == TRANSFER_FUNCTION_LINEAR) {
		/*
		 * Color module doesn't like calculating regamma params
		 * on top of a linear input. But degamma params can be used
		 * instead to simulate this.
		 */
		if (gamma)
			gamma->type = GAMMA_CUSTOM;
		res = mod_color_calculate_degamma_params(NULL, func,
							 gamma, gamma != NULL);
	} else {
		/*
		 * Assume sRGB. The actual mapping will depend on whether the
		 * input was legacy or not.
		 */
		if (gamma)
			gamma->type = GAMMA_CS_TFM_1D;
		res = mod_color_calculate_regamma_params(func, gamma, gamma != NULL,
							 has_rom, NULL, &cal_buffer);
	}

	if (gamma)
		dc_gamma_release(&gamma);

	return res ? 0 : -ENOMEM;
}

static int amdgpu_dm_set_atomic_regamma(struct dc_stream_state *stream,
					const struct drm_color_lut *regamma_lut,
					uint32_t regamma_size, bool has_rom,
					enum dc_transfer_func_predefined tf)
{
	struct dc_transfer_func *out_tf = &stream->out_transfer_func;
	int ret = 0;

	if (regamma_size || tf != TRANSFER_FUNCTION_LINEAR) {
		/*
		 * CRTC RGM goes into RGM LUT.
		 *
		 * Note: there is no implicit sRGB regamma here. We are using
		 * degamma calculation from color module to calculate the curve
		 * from a linear base if gamma TF is not set. However, if gamma
		 * TF (!= Linear) and LUT are set at the same time, we will use
		 * regamma calculation, and the color module will combine the
		 * pre-defined TF and the custom LUT values into the LUT that's
		 * actually programmed.
		 */
		out_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
		out_tf->tf = tf;
		out_tf->sdr_ref_white_level = SDR_WHITE_LEVEL_INIT_VALUE;

		ret = __set_output_tf(out_tf, regamma_lut, regamma_size, has_rom);
	} else {
		/*
		 * No CRTC RGM means we can just put the block into bypass
		 * since we don't have any plane level adjustments using it.
		 */
		out_tf->type = TF_TYPE_BYPASS;
		out_tf->tf = TRANSFER_FUNCTION_LINEAR;
	}

	return ret;
}

/**
 * __set_input_tf - calculates the input transfer function based on expected
 * input space.
 * @caps: dc color capabilities
 * @func: transfer function
 * @lut: lookup table that defines the color space
 * @lut_size: size of respective lut.
 *
 * Returns:
 * 0 in case of success. -ENOMEM if fails.
 */
static int __set_input_tf(struct dc_color_caps *caps, struct dc_transfer_func *func,
			  const struct drm_color_lut *lut, uint32_t lut_size)
{
	struct dc_gamma *gamma = NULL;
	bool res;

	if (lut_size) {
		gamma = dc_create_gamma();
		if (!gamma)
			return -ENOMEM;

		gamma->type = GAMMA_CUSTOM;
		gamma->num_entries = lut_size;

		__drm_lut_to_dc_gamma(lut, gamma, false);
	}

	res = mod_color_calculate_degamma_params(caps, func, gamma, gamma != NULL);

	if (gamma)
		dc_gamma_release(&gamma);

	return res ? 0 : -ENOMEM;
}

static enum dc_transfer_func_predefined
amdgpu_tf_to_dc_tf(enum amdgpu_transfer_function tf)
{
	switch (tf) {
	default:
	case AMDGPU_TRANSFER_FUNCTION_DEFAULT:
	case AMDGPU_TRANSFER_FUNCTION_IDENTITY:
		return TRANSFER_FUNCTION_LINEAR;
	case AMDGPU_TRANSFER_FUNCTION_SRGB_EOTF:
	case AMDGPU_TRANSFER_FUNCTION_SRGB_INV_EOTF:
		return TRANSFER_FUNCTION_SRGB;
	case AMDGPU_TRANSFER_FUNCTION_BT709_OETF:
	case AMDGPU_TRANSFER_FUNCTION_BT709_INV_OETF:
		return TRANSFER_FUNCTION_BT709;
	case AMDGPU_TRANSFER_FUNCTION_PQ_EOTF:
	case AMDGPU_TRANSFER_FUNCTION_PQ_INV_EOTF:
		return TRANSFER_FUNCTION_PQ;
	case AMDGPU_TRANSFER_FUNCTION_GAMMA22_EOTF:
	case AMDGPU_TRANSFER_FUNCTION_GAMMA22_INV_EOTF:
		return TRANSFER_FUNCTION_GAMMA22;
	case AMDGPU_TRANSFER_FUNCTION_GAMMA24_EOTF:
	case AMDGPU_TRANSFER_FUNCTION_GAMMA24_INV_EOTF:
		return TRANSFER_FUNCTION_GAMMA24;
	case AMDGPU_TRANSFER_FUNCTION_GAMMA26_EOTF:
	case AMDGPU_TRANSFER_FUNCTION_GAMMA26_INV_EOTF:
		return TRANSFER_FUNCTION_GAMMA26;
	}
}

static void __to_dc_lut3d_color(struct dc_rgb *rgb,
				const struct drm_color_lut lut,
				int bit_precision)
{
	rgb->red = drm_color_lut_extract(lut.red, bit_precision);
	rgb->green = drm_color_lut_extract(lut.green, bit_precision);
	rgb->blue  = drm_color_lut_extract(lut.blue, bit_precision);
}

static void __drm_3dlut_to_dc_3dlut(const struct drm_color_lut *lut,
				    uint32_t lut3d_size,
				    struct tetrahedral_params *params,
				    bool use_tetrahedral_9,
				    int bit_depth)
{
	struct dc_rgb *lut0;
	struct dc_rgb *lut1;
	struct dc_rgb *lut2;
	struct dc_rgb *lut3;
	int lut_i, i;


	if (use_tetrahedral_9) {
		lut0 = params->tetrahedral_9.lut0;
		lut1 = params->tetrahedral_9.lut1;
		lut2 = params->tetrahedral_9.lut2;
		lut3 = params->tetrahedral_9.lut3;
	} else {
		lut0 = params->tetrahedral_17.lut0;
		lut1 = params->tetrahedral_17.lut1;
		lut2 = params->tetrahedral_17.lut2;
		lut3 = params->tetrahedral_17.lut3;
	}

	for (lut_i = 0, i = 0; i < lut3d_size - 4; lut_i++, i += 4) {
		/*
		 * We should consider the 3D LUT RGB values are distributed
		 * along four arrays lut0-3 where the first sizes 1229 and the
		 * other 1228. The bit depth supported for 3dlut channel is
		 * 12-bit, but DC also supports 10-bit.
		 *
		 * TODO: improve color pipeline API to enable the userspace set
		 * bit depth and 3D LUT size/stride, as specified by VA-API.
		 */
		__to_dc_lut3d_color(&lut0[lut_i], lut[i], bit_depth);
		__to_dc_lut3d_color(&lut1[lut_i], lut[i + 1], bit_depth);
		__to_dc_lut3d_color(&lut2[lut_i], lut[i + 2], bit_depth);
		__to_dc_lut3d_color(&lut3[lut_i], lut[i + 3], bit_depth);
	}
	/* lut0 has 1229 points (lut_size/4 + 1) */
	__to_dc_lut3d_color(&lut0[lut_i], lut[i], bit_depth);
}

/* amdgpu_dm_atomic_lut3d - set DRM 3D LUT to DC stream
 * @drm_lut3d: user 3D LUT
 * @drm_lut3d_size: size of 3D LUT
 * @lut3d: DC 3D LUT
 *
 * Map user 3D LUT data to DC 3D LUT and all necessary bits to program it
 * on DCN accordingly.
 */
static void amdgpu_dm_atomic_lut3d(const struct drm_color_lut *drm_lut3d,
				   uint32_t drm_lut3d_size,
				   struct dc_3dlut *lut)
{
	if (!drm_lut3d_size) {
		lut->state.bits.initialized = 0;
	} else {
		/* Stride and bit depth are not programmable by API yet.
		 * Therefore, only supports 17x17x17 3D LUT (12-bit).
		 */
		lut->lut_3d.use_tetrahedral_9 = false;
		lut->lut_3d.use_12bits = true;
		lut->state.bits.initialized = 1;
		__drm_3dlut_to_dc_3dlut(drm_lut3d, drm_lut3d_size, &lut->lut_3d,
					lut->lut_3d.use_tetrahedral_9,
					MAX_COLOR_3DLUT_BITDEPTH);
	}
}

static int amdgpu_dm_atomic_shaper_lut(const struct drm_color_lut *shaper_lut,
				       bool has_rom,
				       enum dc_transfer_func_predefined tf,
				       uint32_t shaper_size,
				       struct dc_transfer_func *func_shaper)
{
	int ret = 0;

	if (shaper_size || tf != TRANSFER_FUNCTION_LINEAR) {
		/*
		 * If user shaper LUT is set, we assume a linear color space
		 * (linearized by degamma 1D LUT or not).
		 */
		func_shaper->type = TF_TYPE_DISTRIBUTED_POINTS;
		func_shaper->tf = tf;
		func_shaper->sdr_ref_white_level = SDR_WHITE_LEVEL_INIT_VALUE;

		ret = __set_output_tf(func_shaper, shaper_lut, shaper_size, has_rom);
	} else {
		func_shaper->type = TF_TYPE_BYPASS;
		func_shaper->tf = TRANSFER_FUNCTION_LINEAR;
	}

	return ret;
}

static int amdgpu_dm_atomic_blend_lut(const struct drm_color_lut *blend_lut,
				       bool has_rom,
				       enum dc_transfer_func_predefined tf,
				       uint32_t blend_size,
				       struct dc_transfer_func *func_blend)
{
	int ret = 0;

	if (blend_size || tf != TRANSFER_FUNCTION_LINEAR) {
		/*
		 * DRM plane gamma LUT or TF means we are linearizing color
		 * space before blending (similar to degamma programming). As
		 * we don't have hardcoded curve support, or we use AMD color
		 * module to fill the parameters that will be translated to HW
		 * points.
		 */
		func_blend->type = TF_TYPE_DISTRIBUTED_POINTS;
		func_blend->tf = tf;
		func_blend->sdr_ref_white_level = SDR_WHITE_LEVEL_INIT_VALUE;

		ret = __set_input_tf(NULL, func_blend, blend_lut, blend_size);
	} else {
		func_blend->type = TF_TYPE_BYPASS;
		func_blend->tf = TRANSFER_FUNCTION_LINEAR;
	}

	return ret;
}

/**
 * amdgpu_dm_verify_lut3d_size - verifies if 3D LUT is supported and if user
 * shaper and 3D LUTs match the hw supported size
 * @adev: amdgpu device
 * @plane_state: the DRM plane state
 *
 * Verifies if pre-blending (DPP) 3D LUT is supported by the HW (DCN 2.0 or
 * newer) and if the user shaper and 3D LUTs match the supported size.
 *
 * Returns:
 * 0 on success. -EINVAL if lut size are invalid.
 */
int amdgpu_dm_verify_lut3d_size(struct amdgpu_device *adev,
				struct drm_plane_state *plane_state)
{
	struct dm_plane_state *dm_plane_state = to_dm_plane_state(plane_state);
	const struct drm_color_lut *shaper = NULL, *lut3d = NULL;
	uint32_t exp_size, size, dim_size = MAX_COLOR_3DLUT_SIZE;
	bool has_3dlut = adev->dm.dc->caps.color.dpp.hw_3d_lut;

	/* shaper LUT is only available if 3D LUT color caps */
	exp_size = has_3dlut ? MAX_COLOR_LUT_ENTRIES : 0;
	shaper = __extract_blob_lut(dm_plane_state->shaper_lut, &size);

	if (shaper && size != exp_size) {
		drm_dbg(&adev->ddev,
			"Invalid Shaper LUT size. Should be %u but got %u.\n",
			exp_size, size);
		return -EINVAL;
	}

	/* The number of 3D LUT entries is the dimension size cubed */
	exp_size = has_3dlut ? dim_size * dim_size * dim_size : 0;
	lut3d = __extract_blob_lut(dm_plane_state->lut3d, &size);

	if (lut3d && size != exp_size) {
		drm_dbg(&adev->ddev,
			"Invalid 3D LUT size. Should be %u but got %u.\n",
			exp_size, size);
		return -EINVAL;
	}

	return 0;
}

/**
 * amdgpu_dm_verify_lut_sizes - verifies if DRM luts match the hw supported sizes
 * @crtc_state: the DRM CRTC state
 *
 * Verifies that the Degamma and Gamma LUTs attached to the &crtc_state
 * are of the expected size.
 *
 * Returns:
 * 0 on success. -EINVAL if any lut sizes are invalid.
 */
int amdgpu_dm_verify_lut_sizes(const struct drm_crtc_state *crtc_state)
{
	const struct drm_color_lut *lut = NULL;
	uint32_t size = 0;

	lut = __extract_blob_lut(crtc_state->degamma_lut, &size);
	if (lut && size != MAX_COLOR_LUT_ENTRIES) {
		DRM_DEBUG_DRIVER(
			"Invalid Degamma LUT size. Should be %u but got %u.\n",
			MAX_COLOR_LUT_ENTRIES, size);
		return -EINVAL;
	}

	lut = __extract_blob_lut(crtc_state->gamma_lut, &size);
	if (lut && size != MAX_COLOR_LUT_ENTRIES &&
	    size != MAX_COLOR_LEGACY_LUT_ENTRIES) {
		DRM_DEBUG_DRIVER(
			"Invalid Gamma LUT size. Should be %u (or %u for legacy) but got %u.\n",
			MAX_COLOR_LUT_ENTRIES, MAX_COLOR_LEGACY_LUT_ENTRIES,
			size);
		return -EINVAL;
	}

	return 0;
}

/**
 * amdgpu_dm_update_crtc_color_mgmt: Maps DRM color management to DC stream.
 * @crtc: amdgpu_dm crtc state
 *
 * With no plane level color management properties we're free to use any
 * of the HW blocks as long as the CRTC CTM always comes before the
 * CRTC RGM and after the CRTC DGM.
 *
 * - The CRTC RGM block will be placed in the RGM LUT block if it is non-linear.
 * - The CRTC DGM block will be placed in the DGM LUT block if it is non-linear.
 * - The CRTC CTM will be placed in the gamut remap block if it is non-linear.
 *
 * The RGM block is typically more fully featured and accurate across
 * all ASICs - DCE can't support a custom non-linear CRTC DGM.
 *
 * For supporting both plane level color management and CRTC level color
 * management at once we have to either restrict the usage of CRTC properties
 * or blend adjustments together.
 *
 * Returns:
 * 0 on success. Error code if setup fails.
 */
int amdgpu_dm_update_crtc_color_mgmt(struct dm_crtc_state *crtc)
{
	struct dc_stream_state *stream = crtc->stream;
	struct amdgpu_device *adev = drm_to_adev(crtc->base.state->dev);
	bool has_rom = adev->asic_type <= CHIP_RAVEN;
	struct drm_color_ctm *ctm = NULL;
	const struct drm_color_lut *degamma_lut, *regamma_lut;
	uint32_t degamma_size, regamma_size;
	bool has_regamma, has_degamma;
	enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_LINEAR;
	bool is_legacy;
	int r;

	tf = amdgpu_tf_to_dc_tf(crtc->regamma_tf);

	r = amdgpu_dm_verify_lut_sizes(&crtc->base);
	if (r)
		return r;

	degamma_lut = __extract_blob_lut(crtc->base.degamma_lut, &degamma_size);
	regamma_lut = __extract_blob_lut(crtc->base.gamma_lut, &regamma_size);

	has_degamma =
		degamma_lut && !__is_lut_linear(degamma_lut, degamma_size);

	has_regamma =
		regamma_lut && !__is_lut_linear(regamma_lut, regamma_size);

	is_legacy = regamma_size == MAX_COLOR_LEGACY_LUT_ENTRIES;

	/* Reset all adjustments. */
	crtc->cm_has_degamma = false;
	crtc->cm_is_degamma_srgb = false;

	/* Setup regamma and degamma. */
	if (is_legacy) {
		/*
		 * Legacy regamma forces us to use the sRGB RGM as a base.
		 * This also means we can't use linear DGM since DGM needs
		 * to use sRGB as a base as well, resulting in incorrect CRTC
		 * DGM and CRTC CTM.
		 *
		 * TODO: Just map this to the standard regamma interface
		 * instead since this isn't really right. One of the cases
		 * where this setup currently fails is trying to do an
		 * inverse color ramp in legacy userspace.
		 */
		crtc->cm_is_degamma_srgb = true;
		stream->out_transfer_func.type = TF_TYPE_DISTRIBUTED_POINTS;
		stream->out_transfer_func.tf = TRANSFER_FUNCTION_SRGB;
		/*
		 * Note: although we pass has_rom as parameter here, we never
		 * actually use ROM because the color module only takes the ROM
		 * path if transfer_func->type == PREDEFINED.
		 *
		 * See more in mod_color_calculate_regamma_params()
		 */
		r = __set_legacy_tf(&stream->out_transfer_func, regamma_lut,
				    regamma_size, has_rom);
		if (r)
			return r;
	} else {
		regamma_size = has_regamma ? regamma_size : 0;
		r = amdgpu_dm_set_atomic_regamma(stream, regamma_lut,
						 regamma_size, has_rom, tf);
		if (r)
			return r;
	}

	/*
	 * CRTC DGM goes into DGM LUT. It would be nice to place it
	 * into the RGM since it's a more featured block but we'd
	 * have to place the CTM in the OCSC in that case.
	 */
	crtc->cm_has_degamma = has_degamma;

	/* Setup CRTC CTM. */
	if (crtc->base.ctm) {
		ctm = (struct drm_color_ctm *)crtc->base.ctm->data;

		/*
		 * Gamut remapping must be used for gamma correction
		 * since it comes before the regamma correction.
		 *
		 * OCSC could be used for gamma correction, but we'd need to
		 * blend the adjustments together with the required output
		 * conversion matrix - so just use the gamut remap block
		 * for now.
		 */
		__drm_ctm_to_dc_matrix(ctm, stream->gamut_remap_matrix.matrix);

		stream->gamut_remap_matrix.enable_remap = true;
		stream->csc_color_matrix.enable_adjustment = false;
	} else {
		/* Bypass CTM. */
		stream->gamut_remap_matrix.enable_remap = false;
		stream->csc_color_matrix.enable_adjustment = false;
	}

	return 0;
}

static int
map_crtc_degamma_to_dc_plane(struct dm_crtc_state *crtc,
			     struct dc_plane_state *dc_plane_state,
			     struct dc_color_caps *caps)
{
	const struct drm_color_lut *degamma_lut;
	enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_SRGB;
	uint32_t degamma_size;
	int r;

	/* Get the correct base transfer function for implicit degamma. */
	switch (dc_plane_state->format) {
	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
		/* DC doesn't have a transfer function for BT601 specifically. */
		tf = TRANSFER_FUNCTION_BT709;
		break;
	default:
		break;
	}

	if (crtc->cm_has_degamma) {
		degamma_lut = __extract_blob_lut(crtc->base.degamma_lut,
						 &degamma_size);
		ASSERT(degamma_size == MAX_COLOR_LUT_ENTRIES);

		dc_plane_state->in_transfer_func.type = TF_TYPE_DISTRIBUTED_POINTS;

		/*
		 * This case isn't fully correct, but also fairly
		 * uncommon. This is userspace trying to use a
		 * legacy gamma LUT + atomic degamma LUT
		 * at the same time.
		 *
		 * Legacy gamma requires the input to be in linear
		 * space, so that means we need to apply an sRGB
		 * degamma. But color module also doesn't support
		 * a user ramp in this case so the degamma will
		 * be lost.
		 *
		 * Even if we did support it, it's still not right:
		 *
		 * Input -> CRTC DGM -> sRGB DGM -> CRTC CTM ->
		 * sRGB RGM -> CRTC RGM -> Output
		 *
		 * The CSC will be done in the wrong space since
		 * we're applying an sRGB DGM on top of the CRTC
		 * DGM.
		 *
		 * TODO: Don't use the legacy gamma interface and just
		 * map these to the atomic one instead.
		 */
		if (crtc->cm_is_degamma_srgb)
			dc_plane_state->in_transfer_func.tf = tf;
		else
			dc_plane_state->in_transfer_func.tf =
				TRANSFER_FUNCTION_LINEAR;

		r = __set_input_tf(caps, &dc_plane_state->in_transfer_func,
				   degamma_lut, degamma_size);
		if (r)
			return r;
	} else {
		/*
		 * For legacy gamma support we need the regamma input
		 * in linear space. Assume that the input is sRGB.
		 */
		dc_plane_state->in_transfer_func.type = TF_TYPE_PREDEFINED;
		dc_plane_state->in_transfer_func.tf = tf;

		if (tf != TRANSFER_FUNCTION_SRGB &&
		    !mod_color_calculate_degamma_params(caps,
							&dc_plane_state->in_transfer_func,
							NULL, false))
			return -ENOMEM;
	}

	return 0;
}

static int
__set_dm_plane_degamma(struct drm_plane_state *plane_state,
		       struct dc_plane_state *dc_plane_state,
		       struct dc_color_caps *color_caps)
{
	struct dm_plane_state *dm_plane_state = to_dm_plane_state(plane_state);
	const struct drm_color_lut *degamma_lut;
	enum amdgpu_transfer_function tf = AMDGPU_TRANSFER_FUNCTION_DEFAULT;
	uint32_t degamma_size;
	bool has_degamma_lut;
	int ret;

	degamma_lut = __extract_blob_lut(dm_plane_state->degamma_lut,
					 &degamma_size);

	has_degamma_lut = degamma_lut &&
			  !__is_lut_linear(degamma_lut, degamma_size);

	tf = dm_plane_state->degamma_tf;

	/* If we don't have plane degamma LUT nor TF to set on DC, we have
	 * nothing to do here, return.
	 */
	if (!has_degamma_lut && tf == AMDGPU_TRANSFER_FUNCTION_DEFAULT)
		return -EINVAL;

	dc_plane_state->in_transfer_func.tf = amdgpu_tf_to_dc_tf(tf);

	if (has_degamma_lut) {
		ASSERT(degamma_size == MAX_COLOR_LUT_ENTRIES);

		dc_plane_state->in_transfer_func.type =
			TF_TYPE_DISTRIBUTED_POINTS;

		ret = __set_input_tf(color_caps, &dc_plane_state->in_transfer_func,
				     degamma_lut, degamma_size);
		if (ret)
			return ret;
       } else {
		dc_plane_state->in_transfer_func.type =
			TF_TYPE_PREDEFINED;

		if (!mod_color_calculate_degamma_params(color_caps,
		    &dc_plane_state->in_transfer_func, NULL, false))
			return -ENOMEM;
	}
	return 0;
}

static int
amdgpu_dm_plane_set_color_properties(struct drm_plane_state *plane_state,
				     struct dc_plane_state *dc_plane_state)
{
	struct dm_plane_state *dm_plane_state = to_dm_plane_state(plane_state);
	enum amdgpu_transfer_function shaper_tf = AMDGPU_TRANSFER_FUNCTION_DEFAULT;
	enum amdgpu_transfer_function blend_tf = AMDGPU_TRANSFER_FUNCTION_DEFAULT;
	const struct drm_color_lut *shaper_lut, *lut3d, *blend_lut;
	uint32_t shaper_size, lut3d_size, blend_size;
	int ret;

	dc_plane_state->hdr_mult = amdgpu_dm_fixpt_from_s3132(dm_plane_state->hdr_mult);

	shaper_lut = __extract_blob_lut(dm_plane_state->shaper_lut, &shaper_size);
	shaper_size = shaper_lut != NULL ? shaper_size : 0;
	shaper_tf = dm_plane_state->shaper_tf;
	lut3d = __extract_blob_lut(dm_plane_state->lut3d, &lut3d_size);
	lut3d_size = lut3d != NULL ? lut3d_size : 0;

	amdgpu_dm_atomic_lut3d(lut3d, lut3d_size, &dc_plane_state->lut3d_func);
	ret = amdgpu_dm_atomic_shaper_lut(shaper_lut, false,
					  amdgpu_tf_to_dc_tf(shaper_tf),
					  shaper_size,
					  &dc_plane_state->in_shaper_func);
	if (ret) {
		drm_dbg_kms(plane_state->plane->dev,
			    "setting plane %d shaper LUT failed.\n",
			    plane_state->plane->index);

		return ret;
	}

	blend_tf = dm_plane_state->blend_tf;
	blend_lut = __extract_blob_lut(dm_plane_state->blend_lut, &blend_size);
	blend_size = blend_lut != NULL ? blend_size : 0;

	ret = amdgpu_dm_atomic_blend_lut(blend_lut, false,
					 amdgpu_tf_to_dc_tf(blend_tf),
					 blend_size, &dc_plane_state->blend_tf);
	if (ret) {
		drm_dbg_kms(plane_state->plane->dev,
			    "setting plane %d gamma lut failed.\n",
			    plane_state->plane->index);

		return ret;
	}

	return 0;
}

/**
 * amdgpu_dm_update_plane_color_mgmt: Maps DRM color management to DC plane.
 * @crtc: amdgpu_dm crtc state
 * @plane_state: DRM plane state
 * @dc_plane_state: target DC surface
 *
 * Update the underlying dc_stream_state's input transfer function (ITF) in
 * preparation for hardware commit. The transfer function used depends on
 * the preparation done on the stream for color management.
 *
 * Returns:
 * 0 on success. -ENOMEM if mem allocation fails.
 */
int amdgpu_dm_update_plane_color_mgmt(struct dm_crtc_state *crtc,
				      struct drm_plane_state *plane_state,
				      struct dc_plane_state *dc_plane_state)
{
	struct amdgpu_device *adev = drm_to_adev(crtc->base.state->dev);
	struct dm_plane_state *dm_plane_state = to_dm_plane_state(plane_state);
	struct drm_color_ctm_3x4 *ctm = NULL;
	struct dc_color_caps *color_caps = NULL;
	bool has_crtc_cm_degamma;
	int ret;

	ret = amdgpu_dm_verify_lut3d_size(adev, plane_state);
	if (ret) {
		drm_dbg_driver(&adev->ddev, "amdgpu_dm_verify_lut3d_size() failed\n");
		return ret;
	}

	if (dc_plane_state->ctx && dc_plane_state->ctx->dc)
		color_caps = &dc_plane_state->ctx->dc->caps.color;

	/* Initially, we can just bypass the DGM block. */
	dc_plane_state->in_transfer_func.type = TF_TYPE_BYPASS;
	dc_plane_state->in_transfer_func.tf = TRANSFER_FUNCTION_LINEAR;

	/* After, we start to update values according to color props */
	has_crtc_cm_degamma = (crtc->cm_has_degamma || crtc->cm_is_degamma_srgb);

	ret = __set_dm_plane_degamma(plane_state, dc_plane_state, color_caps);
	if (ret == -ENOMEM)
		return ret;

	/* We only have one degamma block available (pre-blending) for the
	 * whole color correction pipeline, so that we can't actually perform
	 * plane and CRTC degamma at the same time. Explicitly reject atomic
	 * updates when userspace sets both plane and CRTC degamma properties.
	 */
	if (has_crtc_cm_degamma && ret != -EINVAL) {
		drm_dbg_kms(crtc->base.crtc->dev,
			    "doesn't support plane and CRTC degamma at the same time\n");
		return -EINVAL;
	}

	/* If we are here, it means we don't have plane degamma settings, check
	 * if we have CRTC degamma waiting for mapping to pre-blending degamma
	 * block
	 */
	if (has_crtc_cm_degamma) {
		/*
		 * AMD HW doesn't have post-blending degamma caps. When DRM
		 * CRTC atomic degamma is set, we maps it to DPP degamma block
		 * (pre-blending) or, on legacy gamma, we use DPP degamma to
		 * linearize (implicit degamma) from sRGB/BT709 according to
		 * the input space.
		 */
		ret = map_crtc_degamma_to_dc_plane(crtc, dc_plane_state, color_caps);
		if (ret)
			return ret;
	}

	/* Setup CRTC CTM. */
	if (dm_plane_state->ctm) {
		ctm = (struct drm_color_ctm_3x4 *)dm_plane_state->ctm->data;
		/*
		 * DCN2 and older don't support both pre-blending and
		 * post-blending gamut remap. For this HW family, if we have
		 * the plane and CRTC CTMs simultaneously, CRTC CTM takes
		 * priority, and we discard plane CTM, as implemented in
		 * dcn10_program_gamut_remap(). However, DCN3+ has DPP
		 * (pre-blending) and MPC (post-blending) `gamut remap` blocks;
		 * therefore, we can program plane and CRTC CTMs together by
		 * mapping CRTC CTM to MPC and keeping plane CTM setup at DPP,
		 * as it's done by dcn30_program_gamut_remap().
		 */
		__drm_ctm_3x4_to_dc_matrix(ctm, dc_plane_state->gamut_remap_matrix.matrix);

		dc_plane_state->gamut_remap_matrix.enable_remap = true;
		dc_plane_state->input_csc_color_matrix.enable_adjustment = false;
	} else {
		/* Bypass CTM. */
		dc_plane_state->gamut_remap_matrix.enable_remap = false;
		dc_plane_state->input_csc_color_matrix.enable_adjustment = false;
	}

	return amdgpu_dm_plane_set_color_properties(plane_state, dc_plane_state);
}