// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <drm/drm_vblank.h>
#include <drm/drm_atomic_helper.h>
#include "dc.h"
#include "amdgpu.h"
#include "amdgpu_dm_psr.h"
#include "amdgpu_dm_replay.h"
#include "amdgpu_dm_crtc.h"
#include "amdgpu_dm_plane.h"
#include "amdgpu_dm_trace.h"
#include "amdgpu_dm_debugfs.h"
#define HPD_DETECTION_PERIOD_uS 5000000
#define HPD_DETECTION_TIME_uS 1000
void amdgpu_dm_crtc_handle_vblank(struct amdgpu_crtc *acrtc)
{
struct drm_crtc *crtc = &acrtc->base;
struct drm_device *dev = crtc->dev;
unsigned long flags;
drm_crtc_handle_vblank(crtc);
spin_lock_irqsave(&dev->event_lock, flags);
/* Send completion event for cursor-only commits */
if (acrtc->event && acrtc->pflip_status != AMDGPU_FLIP_SUBMITTED) {
drm_crtc_send_vblank_event(crtc, acrtc->event);
drm_crtc_vblank_put(crtc);
acrtc->event = NULL;
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
bool amdgpu_dm_crtc_modeset_required(struct drm_crtc_state *crtc_state,
struct dc_stream_state *new_stream,
struct dc_stream_state *old_stream)
{
return crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state);
}
bool amdgpu_dm_crtc_vrr_active_irq(struct amdgpu_crtc *acrtc)
{
return acrtc->dm_irq_params.freesync_config.state ==
VRR_STATE_ACTIVE_VARIABLE ||
acrtc->dm_irq_params.freesync_config.state ==
VRR_STATE_ACTIVE_FIXED;
}
int amdgpu_dm_crtc_set_vupdate_irq(struct drm_crtc *crtc, bool enable)
{
enum dc_irq_source irq_source;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
int rc;
if (acrtc->otg_inst == -1)
return 0;
irq_source = IRQ_TYPE_VUPDATE + acrtc->otg_inst;
rc = dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY;
DRM_DEBUG_VBL("crtc %d - vupdate irq %sabling: r=%d\n",
acrtc->crtc_id, enable ? "en" : "dis", rc);
return rc;
}
bool amdgpu_dm_crtc_vrr_active(struct dm_crtc_state *dm_state)
{
return dm_state->freesync_config.state == VRR_STATE_ACTIVE_VARIABLE ||
dm_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED;
}
/**
* amdgpu_dm_crtc_set_panel_sr_feature() - Manage panel self-refresh features.
*
* @vblank_work: is a pointer to a struct vblank_control_work object.
* @vblank_enabled: indicates whether the DRM vblank counter is currently
* enabled (true) or disabled (false).
* @allow_sr_entry: represents whether entry into the self-refresh mode is
* allowed (true) or not allowed (false).
*
* The DRM vblank counter enable/disable action is used as the trigger to enable
* or disable various panel self-refresh features:
*
* Panel Replay and PSR SU
* - Enable when:
* - vblank counter is disabled
* - entry is allowed: usermode demonstrates an adequate number of fast
* commits)
* - CRC capture window isn't active
* - Keep enabled even when vblank counter gets enabled
*
* PSR1
* - Enable condition same as above
* - Disable when vblank counter is enabled
*/
static void amdgpu_dm_crtc_set_panel_sr_feature(
struct vblank_control_work *vblank_work,
bool vblank_enabled, bool allow_sr_entry)
{
struct dc_link *link = vblank_work->stream->link;
bool is_sr_active = (link->replay_settings.replay_allow_active ||
link->psr_settings.psr_allow_active);
bool is_crc_window_active = false;
#ifdef CONFIG_DRM_AMD_SECURE_DISPLAY
is_crc_window_active =
amdgpu_dm_crc_window_is_activated(&vblank_work->acrtc->base);
#endif
if (link->replay_settings.replay_feature_enabled &&
allow_sr_entry && !is_sr_active && !is_crc_window_active) {
amdgpu_dm_replay_enable(vblank_work->stream, true);
} else if (vblank_enabled) {
if (link->psr_settings.psr_version < DC_PSR_VERSION_SU_1 && is_sr_active)
amdgpu_dm_psr_disable(vblank_work->stream);
} else if (link->psr_settings.psr_feature_enabled &&
allow_sr_entry && !is_sr_active && !is_crc_window_active) {
struct amdgpu_dm_connector *aconn =
(struct amdgpu_dm_connector *) vblank_work->stream->dm_stream_context;
if (!aconn->disallow_edp_enter_psr) {
struct amdgpu_display_manager *dm = vblank_work->dm;
amdgpu_dm_psr_enable(vblank_work->stream);
if (dm->idle_workqueue &&
dm->dc->idle_optimizations_allowed &&
dm->idle_workqueue->enable &&
!dm->idle_workqueue->running)
schedule_work(&dm->idle_workqueue->work);
}
}
}
bool amdgpu_dm_is_headless(struct amdgpu_device *adev)
{
struct drm_connector *connector;
struct drm_connector_list_iter iter;
struct drm_device *dev;
bool is_headless = true;
if (adev == NULL)
return true;
dev = adev->dm.ddev;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
if (connector->connector_type == DRM_MODE_CONNECTOR_WRITEBACK)
continue;
if (connector->status == connector_status_connected) {
is_headless = false;
break;
}
}
drm_connector_list_iter_end(&iter);
return is_headless;
}
static void amdgpu_dm_idle_worker(struct work_struct *work)
{
struct idle_workqueue *idle_work;
idle_work = container_of(work, struct idle_workqueue, work);
idle_work->dm->idle_workqueue->running = true;
while (idle_work->enable) {
fsleep(HPD_DETECTION_PERIOD_uS);
mutex_lock(&idle_work->dm->dc_lock);
if (!idle_work->dm->dc->idle_optimizations_allowed) {
mutex_unlock(&idle_work->dm->dc_lock);
break;
}
dc_allow_idle_optimizations(idle_work->dm->dc, false);
mutex_unlock(&idle_work->dm->dc_lock);
fsleep(HPD_DETECTION_TIME_uS);
mutex_lock(&idle_work->dm->dc_lock);
if (!amdgpu_dm_is_headless(idle_work->dm->adev) &&
!amdgpu_dm_psr_is_active_allowed(idle_work->dm)) {
mutex_unlock(&idle_work->dm->dc_lock);
break;
}
if (idle_work->enable)
dc_allow_idle_optimizations(idle_work->dm->dc, true);
mutex_unlock(&idle_work->dm->dc_lock);
}
idle_work->dm->idle_workqueue->running = false;
}
struct idle_workqueue *idle_create_workqueue(struct amdgpu_device *adev)
{
struct idle_workqueue *idle_work;
idle_work = kzalloc(sizeof(*idle_work), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(idle_work))
return NULL;
idle_work->dm = &adev->dm;
idle_work->enable = false;
idle_work->running = false;
INIT_WORK(&idle_work->work, amdgpu_dm_idle_worker);
return idle_work;
}
static void amdgpu_dm_crtc_vblank_control_worker(struct work_struct *work)
{
struct vblank_control_work *vblank_work =
container_of(work, struct vblank_control_work, work);
struct amdgpu_display_manager *dm = vblank_work->dm;
mutex_lock(&dm->dc_lock);
if (vblank_work->enable)
dm->active_vblank_irq_count++;
else if (dm->active_vblank_irq_count)
dm->active_vblank_irq_count--;
if (dm->active_vblank_irq_count > 0) {
DRM_DEBUG_KMS("Allow idle optimizations (MALL): false\n");
dc_allow_idle_optimizations(dm->dc, false);
}
/*
* Control PSR based on vblank requirements from OS
*
* If panel supports PSR SU, there's no need to disable PSR when OS is
* submitting fast atomic commits (we infer this by whether the OS
* requests vblank events). Fast atomic commits will simply trigger a
* full-frame-update (FFU); a specific case of selective-update (SU)
* where the SU region is the full hactive*vactive region. See
* fill_dc_dirty_rects().
*/
if (vblank_work->stream && vblank_work->stream->link) {
amdgpu_dm_crtc_set_panel_sr_feature(
vblank_work, vblank_work->enable,
vblank_work->acrtc->dm_irq_params.allow_psr_entry ||
vblank_work->stream->link->replay_settings.replay_feature_enabled);
}
if (dm->active_vblank_irq_count == 0) {
DRM_DEBUG_KMS("Allow idle optimizations (MALL): true\n");
dc_allow_idle_optimizations(dm->dc, true);
}
mutex_unlock(&dm->dc_lock);
dc_stream_release(vblank_work->stream);
kfree(vblank_work);
}
static inline int amdgpu_dm_crtc_set_vblank(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(crtc->state);
struct amdgpu_display_manager *dm = &adev->dm;
struct vblank_control_work *work;
int irq_type;
int rc = 0;
if (acrtc->otg_inst == -1)
goto skip;
irq_type = amdgpu_display_crtc_idx_to_irq_type(adev, acrtc->crtc_id);
if (enable) {
/* vblank irq on -> Only need vupdate irq in vrr mode */
if (amdgpu_dm_crtc_vrr_active(acrtc_state))
rc = amdgpu_dm_crtc_set_vupdate_irq(crtc, true);
} else {
/* vblank irq off -> vupdate irq off */
rc = amdgpu_dm_crtc_set_vupdate_irq(crtc, false);
}
if (rc)
return rc;
/* crtc vblank or vstartup interrupt */
if (enable) {
rc = amdgpu_irq_get(adev, &adev->crtc_irq, irq_type);
drm_dbg_vbl(crtc->dev, "Get crtc_irq ret=%d\n", rc);
} else {
rc = amdgpu_irq_put(adev, &adev->crtc_irq, irq_type);
drm_dbg_vbl(crtc->dev, "Put crtc_irq ret=%d\n", rc);
}
if (rc)
return rc;
/*
* hubp surface flip interrupt
*
* We have no guarantee that the frontend index maps to the same
* backend index - some even map to more than one.
*
* TODO: Use a different interrupt or check DC itself for the mapping.
*/
if (enable) {
rc = amdgpu_irq_get(adev, &adev->pageflip_irq, irq_type);
drm_dbg_vbl(crtc->dev, "Get pageflip_irq ret=%d\n", rc);
} else {
rc = amdgpu_irq_put(adev, &adev->pageflip_irq, irq_type);
drm_dbg_vbl(crtc->dev, "Put pageflip_irq ret=%d\n", rc);
}
if (rc)
return rc;
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
/* crtc vline0 interrupt, only available on DCN+ */
if (amdgpu_ip_version(adev, DCE_HWIP, 0) != 0) {
if (enable) {
rc = amdgpu_irq_get(adev, &adev->vline0_irq, irq_type);
drm_dbg_vbl(crtc->dev, "Get vline0_irq ret=%d\n", rc);
} else {
rc = amdgpu_irq_put(adev, &adev->vline0_irq, irq_type);
drm_dbg_vbl(crtc->dev, "Put vline0_irq ret=%d\n", rc);
}
if (rc)
return rc;
}
#endif
skip:
if (amdgpu_in_reset(adev))
return 0;
if (dm->vblank_control_workqueue) {
work = kzalloc(sizeof(*work), GFP_ATOMIC);
if (!work)
return -ENOMEM;
INIT_WORK(&work->work, amdgpu_dm_crtc_vblank_control_worker);
work->dm = dm;
work->acrtc = acrtc;
work->enable = enable;
if (acrtc_state->stream) {
dc_stream_retain(acrtc_state->stream);
work->stream = acrtc_state->stream;
}
queue_work(dm->vblank_control_workqueue, &work->work);
}
return 0;
}
int amdgpu_dm_crtc_enable_vblank(struct drm_crtc *crtc)
{
return amdgpu_dm_crtc_set_vblank(crtc, true);
}
void amdgpu_dm_crtc_disable_vblank(struct drm_crtc *crtc)
{
amdgpu_dm_crtc_set_vblank(crtc, false);
}
static void amdgpu_dm_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct dm_crtc_state *cur = to_dm_crtc_state(state);
/* TODO Destroy dc_stream objects are stream object is flattened */
if (cur->stream)
dc_stream_release(cur->stream);
__drm_atomic_helper_crtc_destroy_state(state);
kfree(state);
}
static struct drm_crtc_state *amdgpu_dm_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct dm_crtc_state *state, *cur;
cur = to_dm_crtc_state(crtc->state);
if (WARN_ON(!crtc->state))
return NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
if (cur->stream) {
state->stream = cur->stream;
dc_stream_retain(state->stream);
}
state->active_planes = cur->active_planes;
state->vrr_infopacket = cur->vrr_infopacket;
state->abm_level = cur->abm_level;
state->vrr_supported = cur->vrr_supported;
state->freesync_config = cur->freesync_config;
state->cm_has_degamma = cur->cm_has_degamma;
state->cm_is_degamma_srgb = cur->cm_is_degamma_srgb;
state->regamma_tf = cur->regamma_tf;
state->crc_skip_count = cur->crc_skip_count;
state->mpo_requested = cur->mpo_requested;
state->cursor_mode = cur->cursor_mode;
/* TODO Duplicate dc_stream after objects are stream object is flattened */
return &state->base;
}
static void amdgpu_dm_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static void amdgpu_dm_crtc_reset_state(struct drm_crtc *crtc)
{
struct dm_crtc_state *state;
if (crtc->state)
amdgpu_dm_crtc_destroy_state(crtc, crtc->state);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (WARN_ON(!state))
return;
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
#ifdef CONFIG_DEBUG_FS
static int amdgpu_dm_crtc_late_register(struct drm_crtc *crtc)
{
crtc_debugfs_init(crtc);
return 0;
}
#endif
#ifdef AMD_PRIVATE_COLOR
/**
* dm_crtc_additional_color_mgmt - enable additional color properties
* @crtc: DRM CRTC
*
* This function lets the driver enable post-blending CRTC regamma transfer
* function property in addition to DRM CRTC gamma LUT. Default value means
* linear transfer function, which is the default CRTC gamma LUT behaviour
* without this property.
*/
static void
dm_crtc_additional_color_mgmt(struct drm_crtc *crtc)
{
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
if (adev->dm.dc->caps.color.mpc.ogam_ram)
drm_object_attach_property(&crtc->base,
adev->mode_info.regamma_tf_property,
AMDGPU_TRANSFER_FUNCTION_DEFAULT);
}
static int
amdgpu_dm_atomic_crtc_set_property(struct drm_crtc *crtc,
struct drm_crtc_state *state,
struct drm_property *property,
uint64_t val)
{
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(state);
if (property == adev->mode_info.regamma_tf_property) {
if (acrtc_state->regamma_tf != val) {
acrtc_state->regamma_tf = val;
acrtc_state->base.color_mgmt_changed |= 1;
}
} else {
drm_dbg_atomic(crtc->dev,
"[CRTC:%d:%s] unknown property [PROP:%d:%s]]\n",
crtc->base.id, crtc->name,
property->base.id, property->name);
return -EINVAL;
}
return 0;
}
static int
amdgpu_dm_atomic_crtc_get_property(struct drm_crtc *crtc,
const struct drm_crtc_state *state,
struct drm_property *property,
uint64_t *val)
{
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(state);
if (property == adev->mode_info.regamma_tf_property)
*val = acrtc_state->regamma_tf;
else
return -EINVAL;
return 0;
}
#endif
/* Implemented only the options currently available for the driver */
static const struct drm_crtc_funcs amdgpu_dm_crtc_funcs = {
.reset = amdgpu_dm_crtc_reset_state,
.destroy = amdgpu_dm_crtc_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = amdgpu_dm_crtc_duplicate_state,
.atomic_destroy_state = amdgpu_dm_crtc_destroy_state,
.set_crc_source = amdgpu_dm_crtc_set_crc_source,
.verify_crc_source = amdgpu_dm_crtc_verify_crc_source,
.get_crc_sources = amdgpu_dm_crtc_get_crc_sources,
.get_vblank_counter = amdgpu_get_vblank_counter_kms,
.enable_vblank = amdgpu_dm_crtc_enable_vblank,
.disable_vblank = amdgpu_dm_crtc_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
#if defined(CONFIG_DEBUG_FS)
.late_register = amdgpu_dm_crtc_late_register,
#endif
#ifdef AMD_PRIVATE_COLOR
.atomic_set_property = amdgpu_dm_atomic_crtc_set_property,
.atomic_get_property = amdgpu_dm_atomic_crtc_get_property,
#endif
};
static void amdgpu_dm_crtc_helper_disable(struct drm_crtc *crtc)
{
}
static int amdgpu_dm_crtc_count_crtc_active_planes(struct drm_crtc_state *new_crtc_state)
{
struct drm_atomic_state *state = new_crtc_state->state;
struct drm_plane *plane;
int num_active = 0;
drm_for_each_plane_mask(plane, state->dev, new_crtc_state->plane_mask) {
struct drm_plane_state *new_plane_state;
/* Cursor planes are "fake". */
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
new_plane_state = drm_atomic_get_new_plane_state(state, plane);
if (!new_plane_state) {
/*
* The plane is enable on the CRTC and hasn't changed
* state. This means that it previously passed
* validation and is therefore enabled.
*/
num_active += 1;
continue;
}
/* We need a framebuffer to be considered enabled. */
num_active += (new_plane_state->fb != NULL);
}
return num_active;
}
static void amdgpu_dm_crtc_update_crtc_active_planes(struct drm_crtc *crtc,
struct drm_crtc_state *new_crtc_state)
{
struct dm_crtc_state *dm_new_crtc_state =
to_dm_crtc_state(new_crtc_state);
dm_new_crtc_state->active_planes = 0;
if (!dm_new_crtc_state->stream)
return;
dm_new_crtc_state->active_planes =
amdgpu_dm_crtc_count_crtc_active_planes(new_crtc_state);
}
static bool amdgpu_dm_crtc_helper_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static int amdgpu_dm_crtc_helper_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct dc *dc = adev->dm.dc;
struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(crtc_state);
int ret = -EINVAL;
trace_amdgpu_dm_crtc_atomic_check(crtc_state);
amdgpu_dm_crtc_update_crtc_active_planes(crtc, crtc_state);
if (WARN_ON(unlikely(!dm_crtc_state->stream &&
amdgpu_dm_crtc_modeset_required(crtc_state, NULL, dm_crtc_state->stream)))) {
return ret;
}
/*
* We require the primary plane to be enabled whenever the CRTC is, otherwise
* drm_mode_cursor_universal may end up trying to enable the cursor plane while all other
* planes are disabled, which is not supported by the hardware. And there is legacy
* userspace which stops using the HW cursor altogether in response to the resulting EINVAL.
*/
if (crtc_state->enable &&
!(crtc_state->plane_mask & drm_plane_mask(crtc->primary))) {
DRM_DEBUG_ATOMIC("Can't enable a CRTC without enabling the primary plane\n");
return -EINVAL;
}
/*
* Only allow async flips for fast updates that don't change the FB
* pitch, the DCC state, rotation, etc.
*/
if (crtc_state->async_flip &&
dm_crtc_state->update_type != UPDATE_TYPE_FAST) {
drm_dbg_atomic(crtc->dev,
"[CRTC:%d:%s] async flips are only supported for fast updates\n",
crtc->base.id, crtc->name);
return -EINVAL;
}
/* In some use cases, like reset, no stream is attached */
if (!dm_crtc_state->stream)
return 0;
if (dc_validate_stream(dc, dm_crtc_state->stream) == DC_OK)
return 0;
DRM_DEBUG_ATOMIC("Failed DC stream validation\n");
return ret;
}
static const struct drm_crtc_helper_funcs amdgpu_dm_crtc_helper_funcs = {
.disable = amdgpu_dm_crtc_helper_disable,
.atomic_check = amdgpu_dm_crtc_helper_atomic_check,
.mode_fixup = amdgpu_dm_crtc_helper_mode_fixup,
.get_scanout_position = amdgpu_crtc_get_scanout_position,
};
int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
uint32_t crtc_index)
{
struct amdgpu_crtc *acrtc = NULL;
struct drm_plane *cursor_plane;
bool is_dcn;
int res = -ENOMEM;
cursor_plane = kzalloc(sizeof(*cursor_plane), GFP_KERNEL);
if (!cursor_plane)
goto fail;
cursor_plane->type = DRM_PLANE_TYPE_CURSOR;
res = amdgpu_dm_plane_init(dm, cursor_plane, 0, NULL);
acrtc = kzalloc(sizeof(struct amdgpu_crtc), GFP_KERNEL);
if (!acrtc)
goto fail;
res = drm_crtc_init_with_planes(
dm->ddev,
&acrtc->base,
plane,
cursor_plane,
&amdgpu_dm_crtc_funcs, NULL);
if (res)
goto fail;
drm_crtc_helper_add(&acrtc->base, &amdgpu_dm_crtc_helper_funcs);
/* Create (reset) the plane state */
if (acrtc->base.funcs->reset)
acrtc->base.funcs->reset(&acrtc->base);
acrtc->max_cursor_width = dm->adev->dm.dc->caps.max_cursor_size;
acrtc->max_cursor_height = dm->adev->dm.dc->caps.max_cursor_size;
acrtc->crtc_id = crtc_index;
acrtc->base.enabled = false;
acrtc->otg_inst = -1;
dm->adev->mode_info.crtcs[crtc_index] = acrtc;
/* Don't enable DRM CRTC degamma property for DCE since it doesn't
* support programmable degamma anywhere.
*/
is_dcn = dm->adev->dm.dc->caps.color.dpp.dcn_arch;
drm_crtc_enable_color_mgmt(&acrtc->base, is_dcn ? MAX_COLOR_LUT_ENTRIES : 0,
true, MAX_COLOR_LUT_ENTRIES);
drm_mode_crtc_set_gamma_size(&acrtc->base, MAX_COLOR_LEGACY_LUT_ENTRIES);
#ifdef AMD_PRIVATE_COLOR
dm_crtc_additional_color_mgmt(&acrtc->base);
#endif
return 0;
fail:
kfree(acrtc);
kfree(cursor_plane);
return res;
}