/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dccg.h"
#include "clk_mgr_internal.h"
#include "dce100/dce_clk_mgr.h"
#include "dcn20_clk_mgr.h"
#include "reg_helper.h"
#include "core_types.h"
#include "dm_helpers.h"
#include "navi10_ip_offset.h"
#include "dcn/dcn_2_0_0_offset.h"
#include "dcn/dcn_2_0_0_sh_mask.h"
#include "clk/clk_11_0_0_offset.h"
#include "clk/clk_11_0_0_sh_mask.h"
#undef FN
#define FN(reg_name, field_name) \
clk_mgr->clk_mgr_shift->field_name, clk_mgr->clk_mgr_mask->field_name
#define REG(reg) \
(clk_mgr->regs->reg)
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define CLK_BASE_INNER(seg) \
CLK_BASE__INST0_SEG ## seg
static const struct clk_mgr_registers clk_mgr_regs = {
CLK_REG_LIST_NV10()
};
static const struct clk_mgr_shift clk_mgr_shift = {
CLK_MASK_SH_LIST_NV10(__SHIFT)
};
static const struct clk_mgr_mask clk_mgr_mask = {
CLK_MASK_SH_LIST_NV10(_MASK)
};
uint32_t dentist_get_did_from_divider(int divider)
{
uint32_t divider_id;
/* we want to floor here to get higher clock than required rather than lower */
if (divider < DENTIST_DIVIDER_RANGE_2_START) {
if (divider < DENTIST_DIVIDER_RANGE_1_START)
divider_id = DENTIST_BASE_DID_1;
else
divider_id = DENTIST_BASE_DID_1
+ (divider - DENTIST_DIVIDER_RANGE_1_START)
/ DENTIST_DIVIDER_RANGE_1_STEP;
} else if (divider < DENTIST_DIVIDER_RANGE_3_START) {
divider_id = DENTIST_BASE_DID_2
+ (divider - DENTIST_DIVIDER_RANGE_2_START)
/ DENTIST_DIVIDER_RANGE_2_STEP;
} else if (divider < DENTIST_DIVIDER_RANGE_4_START) {
divider_id = DENTIST_BASE_DID_3
+ (divider - DENTIST_DIVIDER_RANGE_3_START)
/ DENTIST_DIVIDER_RANGE_3_STEP;
} else {
divider_id = DENTIST_BASE_DID_4
+ (divider - DENTIST_DIVIDER_RANGE_4_START)
/ DENTIST_DIVIDER_RANGE_4_STEP;
if (divider_id > DENTIST_MAX_DID)
divider_id = DENTIST_MAX_DID;
}
return divider_id;
}
void dcn20_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
struct dc_state *context, bool safe_to_lower)
{
int i;
clk_mgr->dccg->ref_dppclk = clk_mgr->base.clks.dppclk_khz;
for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
int dpp_inst, dppclk_khz, prev_dppclk_khz;
/* Loop index will match dpp->inst if resource exists,
* and we want to avoid dependency on dpp object
*/
dpp_inst = i;
dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i];
if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
clk_mgr->dccg->funcs->update_dpp_dto(
clk_mgr->dccg, dpp_inst, dppclk_khz);
}
}
void dcn20_update_clocks_update_dentist(struct clk_mgr_internal *clk_mgr, struct dc_state *context)
{
int dpp_divider = 0;
int disp_divider = 0;
uint32_t dppclk_wdivider = 0;
uint32_t dispclk_wdivider = 0;
uint32_t current_dispclk_wdivider;
uint32_t i;
if (clk_mgr->base.clks.dppclk_khz == 0 || clk_mgr->base.clks.dispclk_khz == 0)
return;
dpp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR
* clk_mgr->base.dentist_vco_freq_khz / clk_mgr->base.clks.dppclk_khz;
disp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR
* clk_mgr->base.dentist_vco_freq_khz / clk_mgr->base.clks.dispclk_khz;
dppclk_wdivider = dentist_get_did_from_divider(dpp_divider);
dispclk_wdivider = dentist_get_did_from_divider(disp_divider);
REG_GET(DENTIST_DISPCLK_CNTL,
DENTIST_DISPCLK_WDIVIDER, ¤t_dispclk_wdivider);
/* When changing divider to or from 127, some extra programming is required to prevent corruption */
if (current_dispclk_wdivider == 127 && dispclk_wdivider != 127) {
for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
uint32_t fifo_level;
struct dccg *dccg = clk_mgr->base.ctx->dc->res_pool->dccg;
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
int32_t N;
int32_t j;
if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER))
continue;
/* Virtual encoders don't have this function */
if (!stream_enc->funcs->get_fifo_cal_average_level)
continue;
fifo_level = stream_enc->funcs->get_fifo_cal_average_level(
stream_enc);
N = fifo_level / 4;
dccg->funcs->set_fifo_errdet_ovr_en(
dccg,
true);
for (j = 0; j < N - 4; j++)
dccg->funcs->otg_drop_pixel(
dccg,
pipe_ctx->stream_res.tg->inst);
dccg->funcs->set_fifo_errdet_ovr_en(
dccg,
false);
}
} else if (dispclk_wdivider == 127 && current_dispclk_wdivider != 127) {
REG_UPDATE(DENTIST_DISPCLK_CNTL,
DENTIST_DISPCLK_WDIVIDER, 126);
REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_DONE, 1, 50, 2000);
for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct dccg *dccg = clk_mgr->base.ctx->dc->res_pool->dccg;
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
uint32_t fifo_level;
int32_t N;
int32_t j;
if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER))
continue;
/* Virtual encoders don't have this function */
if (!stream_enc->funcs->get_fifo_cal_average_level)
continue;
fifo_level = stream_enc->funcs->get_fifo_cal_average_level(
stream_enc);
N = fifo_level / 4;
dccg->funcs->set_fifo_errdet_ovr_en(dccg, true);
for (j = 0; j < 12 - N; j++)
dccg->funcs->otg_add_pixel(dccg,
pipe_ctx->stream_res.tg->inst);
dccg->funcs->set_fifo_errdet_ovr_en(dccg, false);
}
}
REG_UPDATE(DENTIST_DISPCLK_CNTL,
DENTIST_DISPCLK_WDIVIDER, dispclk_wdivider);
REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_DONE, 1, 50, 2000);
REG_UPDATE(DENTIST_DISPCLK_CNTL,
DENTIST_DPPCLK_WDIVIDER, dppclk_wdivider);
REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_CHG_DONE, 1, 5, 100);
}
void dcn2_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
struct pp_smu_funcs_nv *pp_smu = NULL;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool enter_display_off = false;
bool dpp_clock_lowered = false;
struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
bool force_reset = false;
bool p_state_change_support;
int total_plane_count;
if (dc->work_arounds.skip_clock_update)
return;
if (clk_mgr_base->clks.dispclk_khz == 0 ||
dc->debug.force_clock_mode & 0x1) {
//this is from resume or boot up, if forced_clock cfg option used, we bypass program dispclk and DPPCLK, but need set them for S3.
force_reset = true;
dcn2_read_clocks_from_hw_dentist(clk_mgr_base);
//force_clock_mode 0x1: force reset the clock even it is the same clock as long as it is in Passive level.
}
display_count = clk_mgr_helper_get_active_display_cnt(dc, context);
if (dc->res_pool->pp_smu)
pp_smu = &dc->res_pool->pp_smu->nv_funcs;
if (display_count == 0)
enter_display_off = true;
if (enter_display_off == safe_to_lower) {
if (pp_smu && pp_smu->set_display_count)
pp_smu->set_display_count(&pp_smu->pp_smu, display_count);
}
if (dc->debug.force_min_dcfclk_mhz > 0)
new_clocks->dcfclk_khz = (new_clocks->dcfclk_khz > (dc->debug.force_min_dcfclk_mhz * 1000)) ?
new_clocks->dcfclk_khz : (dc->debug.force_min_dcfclk_mhz * 1000);
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
if (pp_smu && pp_smu->set_hard_min_dcfclk_by_freq)
pp_smu->set_hard_min_dcfclk_by_freq(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_khz));
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
if (pp_smu && pp_smu->set_min_deep_sleep_dcfclk)
pp_smu->set_min_deep_sleep_dcfclk(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_deep_sleep_khz));
}
if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr_base->clks.socclk_khz)) {
clk_mgr_base->clks.socclk_khz = new_clocks->socclk_khz;
if (pp_smu && pp_smu->set_hard_min_socclk_by_freq)
pp_smu->set_hard_min_socclk_by_freq(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.socclk_khz));
}
total_plane_count = clk_mgr_helper_get_active_plane_cnt(dc, context);
p_state_change_support = new_clocks->p_state_change_support || (total_plane_count == 0);
if (should_update_pstate_support(safe_to_lower, p_state_change_support, clk_mgr_base->clks.p_state_change_support)) {
clk_mgr_base->clks.prev_p_state_change_support = clk_mgr_base->clks.p_state_change_support;
clk_mgr_base->clks.p_state_change_support = p_state_change_support;
if (pp_smu && pp_smu->set_pstate_handshake_support)
pp_smu->set_pstate_handshake_support(&pp_smu->pp_smu, clk_mgr_base->clks.p_state_change_support);
}
if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr_base->clks.dramclk_khz)) {
clk_mgr_base->clks.dramclk_khz = new_clocks->dramclk_khz;
if (pp_smu && pp_smu->set_hard_min_uclk_by_freq)
pp_smu->set_hard_min_uclk_by_freq(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz));
}
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr->base.clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
update_dispclk = true;
}
if (update_dppclk || update_dispclk) {
new_clocks->disp_dpp_voltage_level_khz = new_clocks->dppclk_khz;
if (update_dispclk)
new_clocks->disp_dpp_voltage_level_khz = new_clocks->dispclk_khz > new_clocks->dppclk_khz ? new_clocks->dispclk_khz : new_clocks->dppclk_khz;
clk_mgr_base->clks.disp_dpp_voltage_level_khz = new_clocks->disp_dpp_voltage_level_khz;
if (pp_smu && pp_smu->set_voltage_by_freq)
pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_DISPCLK, khz_to_mhz_ceil(clk_mgr_base->clks.disp_dpp_voltage_level_khz));
}
if (dc->config.forced_clocks == false || (force_reset && safe_to_lower)) {
if (dpp_clock_lowered) {
// if clock is being lowered, increase DTO before lowering refclk
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
dcn20_update_clocks_update_dentist(clk_mgr, context);
} else {
// if clock is being raised, increase refclk before lowering DTO
if (update_dppclk || update_dispclk)
dcn20_update_clocks_update_dentist(clk_mgr, context);
// always update dtos unless clock is lowered and not safe to lower
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
}
}
if (update_dispclk &&
dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
/*update dmcu for wait_loop count*/
dmcu->funcs->set_psr_wait_loop(dmcu,
clk_mgr_base->clks.dispclk_khz / 1000 / 7);
}
}
void dcn2_update_clocks_fpga(struct clk_mgr *clk_mgr,
struct dc_state *context,
bool safe_to_lower)
{
struct clk_mgr_internal *clk_mgr_int = TO_CLK_MGR_INTERNAL(clk_mgr);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
/* Min fclk = 1.2GHz since all the extra scemi logic seems to run off of it */
int fclk_adj = new_clocks->fclk_khz > 1200000 ? new_clocks->fclk_khz : 1200000;
if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr->clks.phyclk_khz)) {
clk_mgr->clks.phyclk_khz = new_clocks->phyclk_khz;
}
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr->clks.dcfclk_khz)) {
clk_mgr->clks.dcfclk_khz = new_clocks->dcfclk_khz;
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr->clks.dcfclk_deep_sleep_khz)) {
clk_mgr->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
}
if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr->clks.socclk_khz)) {
clk_mgr->clks.socclk_khz = new_clocks->socclk_khz;
}
if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr->clks.dramclk_khz)) {
clk_mgr->clks.dramclk_khz = new_clocks->dramclk_khz;
}
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->clks.dppclk_khz)) {
clk_mgr->clks.dppclk_khz = new_clocks->dppclk_khz;
}
if (should_set_clock(safe_to_lower, fclk_adj, clk_mgr->clks.fclk_khz)) {
clk_mgr->clks.fclk_khz = fclk_adj;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr->clks.dispclk_khz)) {
clk_mgr->clks.dispclk_khz = new_clocks->dispclk_khz;
}
/* Both fclk and ref_dppclk run on the same scemi clock.
* So take the higher value since the DPP DTO is typically programmed
* such that max dppclk is 1:1 with ref_dppclk.
*/
if (clk_mgr->clks.fclk_khz > clk_mgr->clks.dppclk_khz)
clk_mgr->clks.dppclk_khz = clk_mgr->clks.fclk_khz;
if (clk_mgr->clks.dppclk_khz > clk_mgr->clks.fclk_khz)
clk_mgr->clks.fclk_khz = clk_mgr->clks.dppclk_khz;
// Both fclk and ref_dppclk run on the same scemi clock.
clk_mgr_int->dccg->ref_dppclk = clk_mgr->clks.fclk_khz;
/* TODO: set dtbclk in correct place */
clk_mgr->clks.dtbclk_en = false;
dm_set_dcn_clocks(clk_mgr->ctx, &clk_mgr->clks);
}
void dcn2_init_clocks(struct clk_mgr *clk_mgr)
{
memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
// Assumption is that boot state always supports pstate
clk_mgr->clks.p_state_change_support = true;
clk_mgr->clks.prev_p_state_change_support = true;
}
static void dcn2_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct pp_smu_funcs_nv *pp_smu = NULL;
if (clk_mgr->pp_smu) {
pp_smu = &clk_mgr->pp_smu->nv_funcs;
if (pp_smu->set_pme_wa_enable)
pp_smu->set_pme_wa_enable(&pp_smu->pp_smu);
}
}
void dcn2_read_clocks_from_hw_dentist(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
uint32_t dispclk_wdivider;
uint32_t dppclk_wdivider;
int disp_divider;
int dpp_divider;
REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, &dispclk_wdivider);
REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_WDIVIDER, &dppclk_wdivider);
disp_divider = dentist_get_divider_from_did(dispclk_wdivider);
dpp_divider = dentist_get_divider_from_did(dppclk_wdivider);
if (disp_divider && dpp_divider) {
/* Calculate the current DFS clock, in kHz.*/
clk_mgr_base->clks.dispclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR
* clk_mgr->base.dentist_vco_freq_khz) / disp_divider;
clk_mgr_base->clks.dppclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR
* clk_mgr->base.dentist_vco_freq_khz) / dpp_divider;
}
}
void dcn2_get_clock(struct clk_mgr *clk_mgr,
struct dc_state *context,
enum dc_clock_type clock_type,
struct dc_clock_config *clock_cfg)
{
if (clock_type == DC_CLOCK_TYPE_DISPCLK) {
clock_cfg->max_clock_khz = context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz;
clock_cfg->min_clock_khz = DCN_MINIMUM_DISPCLK_Khz;
clock_cfg->current_clock_khz = clk_mgr->clks.dispclk_khz;
clock_cfg->bw_requirequired_clock_khz = context->bw_ctx.bw.dcn.clk.bw_dispclk_khz;
}
if (clock_type == DC_CLOCK_TYPE_DPPCLK) {
clock_cfg->max_clock_khz = context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
clock_cfg->min_clock_khz = DCN_MINIMUM_DPPCLK_Khz;
clock_cfg->current_clock_khz = clk_mgr->clks.dppclk_khz;
clock_cfg->bw_requirequired_clock_khz = context->bw_ctx.bw.dcn.clk.bw_dppclk_khz;
}
}
static bool dcn2_are_clock_states_equal(struct dc_clocks *a,
struct dc_clocks *b)
{
if (a->dispclk_khz != b->dispclk_khz)
return false;
else if (a->dppclk_khz != b->dppclk_khz)
return false;
else if (a->disp_dpp_voltage_level_khz != b->disp_dpp_voltage_level_khz)
return false;
else if (a->dcfclk_khz != b->dcfclk_khz)
return false;
else if (a->socclk_khz != b->socclk_khz)
return false;
else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
return false;
else if (a->dramclk_khz != b->dramclk_khz)
return false;
else if (a->p_state_change_support != b->p_state_change_support)
return false;
return true;
}
/* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
static void dcn2_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
unsigned int i, max_phyclk_req = 0;
struct pp_smu_funcs_nv *pp_smu = NULL;
if (!clk_mgr->pp_smu || !clk_mgr->pp_smu->nv_funcs.set_voltage_by_freq)
return;
pp_smu = &clk_mgr->pp_smu->nv_funcs;
clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
for (i = 0; i < MAX_LINKS; i++) {
if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
}
if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_PHYCLK, khz_to_mhz_ceil(clk_mgr_base->clks.phyclk_khz));
}
}
static struct clk_mgr_funcs dcn2_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.update_clocks = dcn2_update_clocks,
.init_clocks = dcn2_init_clocks,
.enable_pme_wa = dcn2_enable_pme_wa,
.get_clock = dcn2_get_clock,
.are_clock_states_equal = dcn2_are_clock_states_equal,
.notify_link_rate_change = dcn2_notify_link_rate_change,
};
void dcn20_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_internal *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
int dprefclk_did;
int target_div;
uint32_t pll_req_reg;
struct fixed31_32 pll_req;
clk_mgr->base.ctx = ctx;
clk_mgr->pp_smu = pp_smu;
clk_mgr->base.funcs = &dcn2_funcs;
clk_mgr->regs = &clk_mgr_regs;
clk_mgr->clk_mgr_shift = &clk_mgr_shift;
clk_mgr->clk_mgr_mask = &clk_mgr_mask;
clk_mgr->dccg = dccg;
clk_mgr->dfs_bypass_disp_clk = 0;
clk_mgr->dprefclk_ss_percentage = 0;
clk_mgr->dprefclk_ss_divider = 1000;
clk_mgr->ss_on_dprefclk = false;
clk_mgr->base.dprefclk_khz = 700000; // 700 MHz planned if VCO is 3.85 GHz, will be retrieved
/* DFS Slice 2 should be used for DPREFCLK */
dprefclk_did = REG_READ(CLK3_CLK2_DFS_CNTL);
/* Convert DPREFCLK DFS Slice DID to actual divider */
target_div = dentist_get_divider_from_did(dprefclk_did);
/* get FbMult value */
pll_req_reg = REG_READ(CLK3_CLK_PLL_REQ);
/* set up a fixed-point number
* this works because the int part is on the right edge of the register
* and the frac part is on the left edge
*/
pll_req = dc_fixpt_from_int(pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_int);
pll_req.value |= pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_frac;
/* multiply by REFCLK period */
pll_req = dc_fixpt_mul_int(pll_req, 100000);
/* integer part is now VCO frequency in kHz */
clk_mgr->base.dentist_vco_freq_khz = dc_fixpt_floor(pll_req);
/* in case we don't get a value from the register, use default */
if (clk_mgr->base.dentist_vco_freq_khz == 0)
clk_mgr->base.dentist_vco_freq_khz = 3850000;
/* Calculate the DPREFCLK in kHz.*/
clk_mgr->base.dprefclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR
* clk_mgr->base.dentist_vco_freq_khz) / target_div;
//Integrated_info table does not exist on dGPU projects so should not be referenced
//anywhere in code for dGPUs.
//Also there is no plan for now that DFS BYPASS will be used on NV10/12/14.
clk_mgr->dfs_bypass_enabled = false;
dce_clock_read_ss_info(clk_mgr);
}