/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn32_clk_mgr_smu_msg.h"
#include "clk_mgr_internal.h"
#include "reg_helper.h"
#include "dalsmc.h"
#include "dcn32_smu13_driver_if.h"
#define mmDAL_MSG_REG 0x1628A
#define mmDAL_ARG_REG 0x16273
#define mmDAL_RESP_REG 0x16274
#define REG(reg_name) \
mm ## reg_name
#include "logger_types.h"
#define smu_print(str, ...) {DC_LOG_SMU(str, ##__VA_ARGS__); }
/*
* Function to be used instead of REG_WAIT macro because the wait ends when
* the register is NOT EQUAL to zero, and because the translation in msg_if.h
* won't work with REG_WAIT.
*/
static uint32_t dcn32_smu_wait_for_response(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries)
{
const uint32_t initial_max_retries = max_retries;
uint32_t reg = 0;
do {
reg = REG_READ(DAL_RESP_REG);
if (reg)
break;
if (delay_us >= 1000)
msleep(delay_us/1000);
else if (delay_us > 0)
udelay(delay_us);
} while (max_retries--);
TRACE_SMU_DELAY(delay_us * (initial_max_retries - max_retries), clk_mgr->base.ctx);
return reg;
}
static bool dcn32_smu_send_msg_with_param(struct clk_mgr_internal *clk_mgr, uint32_t msg_id, uint32_t param_in, uint32_t *param_out)
{
/* Wait for response register to be ready */
dcn32_smu_wait_for_response(clk_mgr, 10, 200000);
/* Clear response register */
REG_WRITE(DAL_RESP_REG, 0);
/* Set the parameter register for the SMU message */
REG_WRITE(DAL_ARG_REG, param_in);
/* Trigger the message transaction by writing the message ID */
REG_WRITE(DAL_MSG_REG, msg_id);
TRACE_SMU_MSG(msg_id, param_in, clk_mgr->base.ctx);
/* Wait for response */
if (dcn32_smu_wait_for_response(clk_mgr, 10, 200000) == DALSMC_Result_OK) {
if (param_out)
*param_out = REG_READ(DAL_ARG_REG);
return true;
}
return false;
}
/*
* Use these functions to return back delay information so we can aggregate the total
* delay when requesting hardmin clk
*
* dcn32_smu_wait_for_response_delay
* dcn32_smu_send_msg_with_param_delay
*
*/
static uint32_t dcn32_smu_wait_for_response_delay(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries, unsigned int *total_delay_us)
{
uint32_t reg = 0;
*total_delay_us = 0;
do {
reg = REG_READ(DAL_RESP_REG);
if (reg)
break;
if (delay_us >= 1000)
msleep(delay_us/1000);
else if (delay_us > 0)
udelay(delay_us);
*total_delay_us += delay_us;
} while (max_retries--);
TRACE_SMU_DELAY(*total_delay_us, clk_mgr->base.ctx);
return reg;
}
static bool dcn32_smu_send_msg_with_param_delay(struct clk_mgr_internal *clk_mgr, uint32_t msg_id, uint32_t param_in, uint32_t *param_out, unsigned int *total_delay_us)
{
unsigned int delay1_us, delay2_us;
*total_delay_us = 0;
/* Wait for response register to be ready */
dcn32_smu_wait_for_response_delay(clk_mgr, 10, 200000, &delay1_us);
/* Clear response register */
REG_WRITE(DAL_RESP_REG, 0);
/* Set the parameter register for the SMU message */
REG_WRITE(DAL_ARG_REG, param_in);
/* Trigger the message transaction by writing the message ID */
REG_WRITE(DAL_MSG_REG, msg_id);
TRACE_SMU_MSG(msg_id, param_in, clk_mgr->base.ctx);
/* Wait for response */
if (dcn32_smu_wait_for_response_delay(clk_mgr, 10, 200000, &delay2_us) == DALSMC_Result_OK) {
if (param_out)
*param_out = REG_READ(DAL_ARG_REG);
*total_delay_us = delay1_us + delay2_us;
return true;
}
*total_delay_us = delay1_us + 2000000;
return false;
}
void dcn32_smu_send_fclk_pstate_message(struct clk_mgr_internal *clk_mgr, bool enable)
{
smu_print("FCLK P-state support value is : %d\n", enable);
dcn32_smu_send_msg_with_param(clk_mgr,
DALSMC_MSG_SetFclkSwitchAllow, enable ? FCLK_PSTATE_SUPPORTED : FCLK_PSTATE_NOTSUPPORTED, NULL);
}
void dcn32_smu_send_cab_for_uclk_message(struct clk_mgr_internal *clk_mgr, unsigned int num_ways)
{
uint32_t param = (num_ways << 1) | (num_ways > 0);
dcn32_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetCabForUclkPstate, param, NULL);
smu_print("Numways for SubVP : %d\n", num_ways);
}
void dcn32_smu_transfer_wm_table_dram_2_smu(struct clk_mgr_internal *clk_mgr)
{
smu_print("SMU Transfer WM table DRAM 2 SMU\n");
dcn32_smu_send_msg_with_param(clk_mgr,
DALSMC_MSG_TransferTableDram2Smu, TABLE_WATERMARKS, NULL);
}
void dcn32_smu_set_pme_workaround(struct clk_mgr_internal *clk_mgr)
{
smu_print("SMU Set PME workaround\n");
dcn32_smu_send_msg_with_param(clk_mgr,
DALSMC_MSG_BacoAudioD3PME, 0, NULL);
}
/* Check PMFW version if it supports ReturnHardMinStatus message */
static bool dcn32_get_hard_min_status_supported(struct clk_mgr_internal *clk_mgr)
{
if (ASICREV_IS_GC_11_0_0(clk_mgr->base.ctx->asic_id.hw_internal_rev)) {
if (clk_mgr->smu_ver >= 0x4e6a00)
return true;
} else if (ASICREV_IS_GC_11_0_2(clk_mgr->base.ctx->asic_id.hw_internal_rev)) {
if (clk_mgr->smu_ver >= 0x524e00)
return true;
} else { /* ASICREV_IS_GC_11_0_3 */
if (clk_mgr->smu_ver >= 0x503900)
return true;
}
return false;
}
/* Returns the clocks which were fulfilled by the DAL hard min arbiter in PMFW */
static unsigned int dcn32_smu_get_hard_min_status(struct clk_mgr_internal *clk_mgr, bool *no_timeout, unsigned int *total_delay_us)
{
uint32_t response = 0;
/* bits 23:16 for clock type, lower 16 bits for frequency in MHz */
uint32_t param = 0;
*no_timeout = dcn32_smu_send_msg_with_param_delay(clk_mgr,
DALSMC_MSG_ReturnHardMinStatus, param, &response, total_delay_us);
smu_print("SMU Get hard min status: no_timeout %d delay %d us clk bits %x\n",
*no_timeout, *total_delay_us, response);
return response;
}
static bool dcn32_smu_wait_get_hard_min_status(struct clk_mgr_internal *clk_mgr,
uint32_t clk)
{
int readDalHardMinClkBits, checkDalHardMinClkBits;
unsigned int total_delay_us, read_total_delay_us;
bool no_timeout, hard_min_done;
static unsigned int cur_wait_get_hard_min_max_us;
static unsigned int cur_wait_get_hard_min_max_timeouts;
checkDalHardMinClkBits = CHECK_HARD_MIN_CLK_DPREFCLK;
if (clk == PPCLK_DISPCLK)
checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DISPCLK;
if (clk == PPCLK_DPPCLK)
checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DPPCLK;
if (clk == PPCLK_DCFCLK)
checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DCFCLK;
if (clk == PPCLK_DTBCLK)
checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DTBCLK;
if (clk == PPCLK_UCLK)
checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_UCLK;
if (checkDalHardMinClkBits == CHECK_HARD_MIN_CLK_DPREFCLK)
return 0;
total_delay_us = 0;
hard_min_done = false;
while (1) {
readDalHardMinClkBits = dcn32_smu_get_hard_min_status(clk_mgr, &no_timeout, &read_total_delay_us);
total_delay_us += read_total_delay_us;
if (checkDalHardMinClkBits == (readDalHardMinClkBits & checkDalHardMinClkBits)) {
hard_min_done = true;
break;
}
if (total_delay_us >= 2000000) {
cur_wait_get_hard_min_max_timeouts++;
smu_print("SMU Wait get hard min status: %d timeouts\n", cur_wait_get_hard_min_max_timeouts);
break;
}
msleep(1);
total_delay_us += 1000;
}
if (total_delay_us > cur_wait_get_hard_min_max_us)
cur_wait_get_hard_min_max_us = total_delay_us;
smu_print("SMU Wait get hard min status: no_timeout %d, delay %d us, max %d us, read %x, check %x\n",
no_timeout, total_delay_us, cur_wait_get_hard_min_max_us, readDalHardMinClkBits, checkDalHardMinClkBits);
return hard_min_done;
}
/* Returns the actual frequency that was set in MHz, 0 on failure */
unsigned int dcn32_smu_set_hard_min_by_freq(struct clk_mgr_internal *clk_mgr, uint32_t clk, uint16_t freq_mhz)
{
uint32_t response = 0;
bool hard_min_done = false;
/* bits 23:16 for clock type, lower 16 bits for frequency in MHz */
uint32_t param = (clk << 16) | freq_mhz;
smu_print("SMU Set hard min by freq: clk = %d, freq_mhz = %d MHz\n", clk, freq_mhz);
dcn32_smu_send_msg_with_param(clk_mgr,
DALSMC_MSG_SetHardMinByFreq, param, &response);
if (dcn32_get_hard_min_status_supported(clk_mgr)) {
hard_min_done = dcn32_smu_wait_get_hard_min_status(clk_mgr, clk);
smu_print("SMU Frequency set = %d KHz hard_min_done %d\n", response, hard_min_done);
} else
smu_print("SMU Frequency set = %d KHz\n", response);
return response;
}
void dcn32_smu_wait_for_dmub_ack_mclk(struct clk_mgr_internal *clk_mgr, bool enable)
{
smu_print("PMFW to wait for DMCUB ack for MCLK : %d\n", enable);
dcn32_smu_send_msg_with_param(clk_mgr, 0x14, enable ? 1 : 0, NULL);
}