// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices AD7944/85/86 PulSAR ADC family driver.
*
* Copyright 2024 Analog Devices, Inc.
* Copyright 2024 BayLibre, SAS
*/
#include <linux/align.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/string_helpers.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define AD7944_INTERNAL_REF_MV 4096
struct ad7944_timing_spec {
/* Normal mode max conversion time (t_{CONV}). */
unsigned int conv_ns;
/* TURBO mode max conversion time (t_{CONV}). */
unsigned int turbo_conv_ns;
};
enum ad7944_spi_mode {
/* datasheet calls this "4-wire mode" */
AD7944_SPI_MODE_DEFAULT,
/* datasheet calls this "3-wire mode" (not related to SPI_3WIRE!) */
AD7944_SPI_MODE_SINGLE,
/* datasheet calls this "chain mode" */
AD7944_SPI_MODE_CHAIN,
};
/* maps adi,spi-mode property value to enum */
static const char * const ad7944_spi_modes[] = {
[AD7944_SPI_MODE_DEFAULT] = "",
[AD7944_SPI_MODE_SINGLE] = "single",
[AD7944_SPI_MODE_CHAIN] = "chain",
};
struct ad7944_adc {
struct spi_device *spi;
enum ad7944_spi_mode spi_mode;
struct spi_transfer xfers[3];
struct spi_message msg;
void *chain_mode_buf;
/* Chip-specific timing specifications. */
const struct ad7944_timing_spec *timing_spec;
/* GPIO connected to CNV pin. */
struct gpio_desc *cnv;
/* Optional GPIO to enable turbo mode. */
struct gpio_desc *turbo;
/* Indicates TURBO is hard-wired to be always enabled. */
bool always_turbo;
/* Reference voltage (millivolts). */
unsigned int ref_mv;
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
struct {
union {
u16 u16;
u32 u32;
} raw;
u64 timestamp __aligned(8);
} sample __aligned(IIO_DMA_MINALIGN);
};
/* quite time before CNV rising edge */
#define T_QUIET_NS 20
static const struct ad7944_timing_spec ad7944_timing_spec = {
.conv_ns = 420,
.turbo_conv_ns = 320,
};
static const struct ad7944_timing_spec ad7986_timing_spec = {
.conv_ns = 500,
.turbo_conv_ns = 400,
};
struct ad7944_chip_info {
const char *name;
const struct ad7944_timing_spec *timing_spec;
const struct iio_chan_spec channels[2];
};
/*
* AD7944_DEFINE_CHIP_INFO - Define a chip info structure for a specific chip
* @_name: The name of the chip
* @_ts: The timing specification for the chip
* @_bits: The number of bits in the conversion result
* @_diff: Whether the chip is true differential or not
*/
#define AD7944_DEFINE_CHIP_INFO(_name, _ts, _bits, _diff) \
static const struct ad7944_chip_info _name##_chip_info = { \
.name = #_name, \
.timing_spec = &_ts##_timing_spec, \
.channels = { \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.differential = _diff, \
.channel = 0, \
.channel2 = _diff ? 1 : 0, \
.scan_index = 0, \
.scan_type.sign = _diff ? 's' : 'u', \
.scan_type.realbits = _bits, \
.scan_type.storagebits = _bits > 16 ? 32 : 16, \
.scan_type.endianness = IIO_CPU, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
| BIT(IIO_CHAN_INFO_SCALE), \
}, \
IIO_CHAN_SOFT_TIMESTAMP(1), \
}, \
}
/* pseudo-differential with ground sense */
AD7944_DEFINE_CHIP_INFO(ad7944, ad7944, 14, 0);
AD7944_DEFINE_CHIP_INFO(ad7985, ad7944, 16, 0);
/* fully differential */
AD7944_DEFINE_CHIP_INFO(ad7986, ad7986, 18, 1);
static int ad7944_3wire_cs_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
const struct iio_chan_spec *chan)
{
unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
: adc->timing_spec->conv_ns;
struct spi_transfer *xfers = adc->xfers;
/*
* NB: can get better performance from some SPI controllers if we use
* the same bits_per_word in every transfer.
*/
xfers[0].bits_per_word = chan->scan_type.realbits;
/*
* CS is tied to CNV and we need a low to high transition to start the
* conversion, so place CNV low for t_QUIET to prepare for this.
*/
xfers[0].delay.value = T_QUIET_NS;
xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
/*
* CS has to be high for full conversion time to avoid triggering the
* busy indication.
*/
xfers[1].cs_off = 1;
xfers[1].delay.value = t_conv_ns;
xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
xfers[1].bits_per_word = chan->scan_type.realbits;
/* Then we can read the data during the acquisition phase */
xfers[2].rx_buf = &adc->sample.raw;
xfers[2].len = BITS_TO_BYTES(chan->scan_type.storagebits);
xfers[2].bits_per_word = chan->scan_type.realbits;
spi_message_init_with_transfers(&adc->msg, xfers, 3);
return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
}
static int ad7944_4wire_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
const struct iio_chan_spec *chan)
{
unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
: adc->timing_spec->conv_ns;
struct spi_transfer *xfers = adc->xfers;
/*
* NB: can get better performance from some SPI controllers if we use
* the same bits_per_word in every transfer.
*/
xfers[0].bits_per_word = chan->scan_type.realbits;
/*
* CS has to be high for full conversion time to avoid triggering the
* busy indication.
*/
xfers[0].cs_off = 1;
xfers[0].delay.value = t_conv_ns;
xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
xfers[1].rx_buf = &adc->sample.raw;
xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
xfers[1].bits_per_word = chan->scan_type.realbits;
spi_message_init_with_transfers(&adc->msg, xfers, 2);
return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
}
static int ad7944_chain_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
const struct iio_chan_spec *chan,
u32 n_chain_dev)
{
struct spi_transfer *xfers = adc->xfers;
/*
* NB: SCLK has to be low before we toggle CS to avoid triggering the
* busy indication.
*/
if (adc->spi->mode & SPI_CPOL)
return dev_err_probe(dev, -EINVAL,
"chain mode requires ~SPI_CPOL\n");
/*
* We only support CNV connected to CS in chain mode and we need CNV
* to be high during the transfer to trigger the conversion.
*/
if (!(adc->spi->mode & SPI_CS_HIGH))
return dev_err_probe(dev, -EINVAL,
"chain mode requires SPI_CS_HIGH\n");
/* CNV has to be high for full conversion time before reading data. */
xfers[0].delay.value = adc->timing_spec->conv_ns;
xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
xfers[1].rx_buf = adc->chain_mode_buf;
xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits) * n_chain_dev;
xfers[1].bits_per_word = chan->scan_type.realbits;
spi_message_init_with_transfers(&adc->msg, xfers, 2);
return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
}
/**
* ad7944_convert_and_acquire - Perform a single conversion and acquisition
* @adc: The ADC device structure
* Return: 0 on success, a negative error code on failure
*
* Perform a conversion and acquisition of a single sample using the
* pre-optimized adc->msg.
*
* Upon successful return adc->sample.raw will contain the conversion result
* (or adc->chain_mode_buf if the device is using chain mode).
*/
static int ad7944_convert_and_acquire(struct ad7944_adc *adc)
{
int ret;
/*
* In 4-wire mode, the CNV line is held high for the entire conversion
* and acquisition process. In other modes adc->cnv is NULL and is
* ignored (CS is wired to CNV in those cases).
*/
gpiod_set_value_cansleep(adc->cnv, 1);
ret = spi_sync(adc->spi, &adc->msg);
gpiod_set_value_cansleep(adc->cnv, 0);
return ret;
}
static int ad7944_single_conversion(struct ad7944_adc *adc,
const struct iio_chan_spec *chan,
int *val)
{
int ret;
ret = ad7944_convert_and_acquire(adc);
if (ret)
return ret;
if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
if (chan->scan_type.storagebits > 16)
*val = ((u32 *)adc->chain_mode_buf)[chan->scan_index];
else
*val = ((u16 *)adc->chain_mode_buf)[chan->scan_index];
} else {
if (chan->scan_type.storagebits > 16)
*val = adc->sample.raw.u32;
else
*val = adc->sample.raw.u16;
}
if (chan->scan_type.sign == 's')
*val = sign_extend32(*val, chan->scan_type.realbits - 1);
return IIO_VAL_INT;
}
static int ad7944_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long info)
{
struct ad7944_adc *adc = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad7944_single_conversion(adc, chan, val);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_VOLTAGE:
*val = adc->ref_mv;
if (chan->scan_type.sign == 's')
*val2 = chan->scan_type.realbits - 1;
else
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static const struct iio_info ad7944_iio_info = {
.read_raw = &ad7944_read_raw,
};
static irqreturn_t ad7944_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad7944_adc *adc = iio_priv(indio_dev);
int ret;
ret = ad7944_convert_and_acquire(adc);
if (ret)
goto out;
if (adc->spi_mode == AD7944_SPI_MODE_CHAIN)
iio_push_to_buffers_with_timestamp(indio_dev, adc->chain_mode_buf,
pf->timestamp);
else
iio_push_to_buffers_with_timestamp(indio_dev, &adc->sample.raw,
pf->timestamp);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
/**
* ad7944_chain_mode_alloc - allocate and initialize channel specs and buffers
* for daisy-chained devices
* @dev: The device for devm_ functions
* @chan_template: The channel template for the devices (array of 2 channels
* voltage and timestamp)
* @n_chain_dev: The number of devices in the chain
* @chain_chan: Pointer to receive the allocated channel specs
* @chain_mode_buf: Pointer to receive the allocated rx buffer
* @chain_scan_masks: Pointer to receive the allocated scan masks
* Return: 0 on success, a negative error code on failure
*/
static int ad7944_chain_mode_alloc(struct device *dev,
const struct iio_chan_spec *chan_template,
u32 n_chain_dev,
struct iio_chan_spec **chain_chan,
void **chain_mode_buf,
unsigned long **chain_scan_masks)
{
struct iio_chan_spec *chan;
size_t chain_mode_buf_size;
unsigned long *scan_masks;
void *buf;
int i;
/* 1 channel for each device in chain plus 1 for soft timestamp */
chan = devm_kcalloc(dev, n_chain_dev + 1, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
for (i = 0; i < n_chain_dev; i++) {
chan[i] = chan_template[0];
if (chan_template[0].differential) {
chan[i].channel = 2 * i;
chan[i].channel2 = 2 * i + 1;
} else {
chan[i].channel = i;
}
chan[i].scan_index = i;
}
/* soft timestamp */
chan[i] = chan_template[1];
chan[i].scan_index = i;
*chain_chan = chan;
/* 1 word for each voltage channel + aligned u64 for timestamp */
chain_mode_buf_size = ALIGN(n_chain_dev *
BITS_TO_BYTES(chan[0].scan_type.storagebits), sizeof(u64))
+ sizeof(u64);
buf = devm_kzalloc(dev, chain_mode_buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
*chain_mode_buf = buf;
/*
* Have to limit n_chain_dev due to current implementation of
* available_scan_masks.
*/
if (n_chain_dev > BITS_PER_LONG)
return dev_err_probe(dev, -EINVAL,
"chain is limited to 32 devices\n");
scan_masks = devm_kcalloc(dev, 2, sizeof(*scan_masks), GFP_KERNEL);
if (!scan_masks)
return -ENOMEM;
/*
* Scan mask is needed since we always have to read all devices in the
* chain in one SPI transfer.
*/
scan_masks[0] = GENMASK(n_chain_dev - 1, 0);
*chain_scan_masks = scan_masks;
return 0;
}
static const char * const ad7944_power_supplies[] = {
"avdd", "dvdd", "bvdd", "vio"
};
static int ad7944_probe(struct spi_device *spi)
{
const struct ad7944_chip_info *chip_info;
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad7944_adc *adc;
bool have_refin;
struct iio_chan_spec *chain_chan;
unsigned long *chain_scan_masks;
u32 n_chain_dev;
int ret, ref_mv;
indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->spi = spi;
chip_info = spi_get_device_match_data(spi);
if (!chip_info)
return dev_err_probe(dev, -EINVAL, "no chip info\n");
adc->timing_spec = chip_info->timing_spec;
ret = device_property_match_property_string(dev, "adi,spi-mode",
ad7944_spi_modes,
ARRAY_SIZE(ad7944_spi_modes));
/* absence of adi,spi-mode property means default mode */
if (ret == -EINVAL)
adc->spi_mode = AD7944_SPI_MODE_DEFAULT;
else if (ret < 0)
return dev_err_probe(dev, ret,
"getting adi,spi-mode property failed\n");
else
adc->spi_mode = ret;
/*
* Some chips use unusual word sizes, so check now instead of waiting
* for the first xfer.
*/
if (!spi_is_bpw_supported(spi, chip_info->channels[0].scan_type.realbits))
return dev_err_probe(dev, -EINVAL,
"SPI host does not support %d bits per word\n",
chip_info->channels[0].scan_type.realbits);
ret = devm_regulator_bulk_get_enable(dev,
ARRAY_SIZE(ad7944_power_supplies),
ad7944_power_supplies);
if (ret)
return dev_err_probe(dev, ret,
"failed to get and enable supplies\n");
/*
* Sort out what is being used for the reference voltage. Options are:
* - internal reference: neither REF or REFIN is connected
* - internal reference with external buffer: REF not connected, REFIN
* is connected
* - external reference: REF is connected, REFIN is not connected
*/
ret = devm_regulator_get_enable_read_voltage(dev, "ref");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "failed to get REF voltage\n");
ref_mv = ret == -ENODEV ? 0 : ret / 1000;
ret = devm_regulator_get_enable_optional(dev, "refin");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "failed to get REFIN voltage\n");
have_refin = ret != -ENODEV;
if (have_refin && ref_mv)
return dev_err_probe(dev, -EINVAL,
"cannot have both refin and ref supplies\n");
adc->ref_mv = ref_mv ?: AD7944_INTERNAL_REF_MV;
adc->cnv = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_LOW);
if (IS_ERR(adc->cnv))
return dev_err_probe(dev, PTR_ERR(adc->cnv),
"failed to get CNV GPIO\n");
if (!adc->cnv && adc->spi_mode == AD7944_SPI_MODE_DEFAULT)
return dev_err_probe(&spi->dev, -EINVAL, "CNV GPIO is required\n");
if (adc->cnv && adc->spi_mode != AD7944_SPI_MODE_DEFAULT)
return dev_err_probe(&spi->dev, -EINVAL,
"CNV GPIO in single and chain mode is not currently supported\n");
adc->turbo = devm_gpiod_get_optional(dev, "turbo", GPIOD_OUT_LOW);
if (IS_ERR(adc->turbo))
return dev_err_probe(dev, PTR_ERR(adc->turbo),
"failed to get TURBO GPIO\n");
adc->always_turbo = device_property_present(dev, "adi,always-turbo");
if (adc->turbo && adc->always_turbo)
return dev_err_probe(dev, -EINVAL,
"cannot have both turbo-gpios and adi,always-turbo\n");
if (adc->spi_mode == AD7944_SPI_MODE_CHAIN && adc->always_turbo)
return dev_err_probe(dev, -EINVAL,
"cannot have both chain mode and always turbo\n");
switch (adc->spi_mode) {
case AD7944_SPI_MODE_DEFAULT:
ret = ad7944_4wire_mode_init_msg(dev, adc, &chip_info->channels[0]);
if (ret)
return ret;
break;
case AD7944_SPI_MODE_SINGLE:
ret = ad7944_3wire_cs_mode_init_msg(dev, adc, &chip_info->channels[0]);
if (ret)
return ret;
break;
case AD7944_SPI_MODE_CHAIN:
ret = device_property_read_u32(dev, "#daisy-chained-devices",
&n_chain_dev);
if (ret)
return dev_err_probe(dev, ret,
"failed to get #daisy-chained-devices\n");
ret = ad7944_chain_mode_alloc(dev, chip_info->channels,
n_chain_dev, &chain_chan,
&adc->chain_mode_buf,
&chain_scan_masks);
if (ret)
return ret;
ret = ad7944_chain_mode_init_msg(dev, adc, &chain_chan[0],
n_chain_dev);
if (ret)
return ret;
break;
}
indio_dev->name = chip_info->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &ad7944_iio_info;
if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
indio_dev->available_scan_masks = chain_scan_masks;
indio_dev->channels = chain_chan;
indio_dev->num_channels = n_chain_dev + 1;
} else {
indio_dev->channels = chip_info->channels;
indio_dev->num_channels = ARRAY_SIZE(chip_info->channels);
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
ad7944_trigger_handler, NULL);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id ad7944_of_match[] = {
{ .compatible = "adi,ad7944", .data = &ad7944_chip_info },
{ .compatible = "adi,ad7985", .data = &ad7985_chip_info },
{ .compatible = "adi,ad7986", .data = &ad7986_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, ad7944_of_match);
static const struct spi_device_id ad7944_spi_id[] = {
{ "ad7944", (kernel_ulong_t)&ad7944_chip_info },
{ "ad7985", (kernel_ulong_t)&ad7985_chip_info },
{ "ad7986", (kernel_ulong_t)&ad7986_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad7944_spi_id);
static struct spi_driver ad7944_driver = {
.driver = {
.name = "ad7944",
.of_match_table = ad7944_of_match,
},
.probe = ad7944_probe,
.id_table = ad7944_spi_id,
};
module_spi_driver(ad7944_driver);
MODULE_AUTHOR("David Lechner <[email protected]>");
MODULE_DESCRIPTION("Analog Devices AD7944 PulSAR ADC family driver");
MODULE_LICENSE("GPL");