/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Jani Nikula <[email protected]>
*/
#include <linux/dmi.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_atomic.h"
#include "intel_backlight.h"
#include "intel_connector.h"
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dsi.h"
#include "intel_dsi_vbt.h"
#include "intel_fifo_underrun.h"
#include "intel_panel.h"
#include "skl_scaler.h"
#include "vlv_dsi.h"
#include "vlv_dsi_pll.h"
#include "vlv_dsi_regs.h"
#include "vlv_sideband.h"
/* return pixels in terms of txbyteclkhs */
static u16 txbyteclkhs(u16 pixels, int bpp, int lane_count,
u16 burst_mode_ratio)
{
return DIV_ROUND_UP(DIV_ROUND_UP(pixels * bpp * burst_mode_ratio,
8 * 100), lane_count);
}
/* return pixels equvalent to txbyteclkhs */
static u16 pixels_from_txbyteclkhs(u16 clk_hs, int bpp, int lane_count,
u16 burst_mode_ratio)
{
return DIV_ROUND_UP((clk_hs * lane_count * 8 * 100),
(bpp * burst_mode_ratio));
}
enum mipi_dsi_pixel_format pixel_format_from_register_bits(u32 fmt)
{
/* It just so happens the VBT matches register contents. */
switch (fmt) {
case VID_MODE_FORMAT_RGB888:
return MIPI_DSI_FMT_RGB888;
case VID_MODE_FORMAT_RGB666:
return MIPI_DSI_FMT_RGB666;
case VID_MODE_FORMAT_RGB666_PACKED:
return MIPI_DSI_FMT_RGB666_PACKED;
case VID_MODE_FORMAT_RGB565:
return MIPI_DSI_FMT_RGB565;
default:
MISSING_CASE(fmt);
return MIPI_DSI_FMT_RGB666;
}
}
void vlv_dsi_wait_for_fifo_empty(struct intel_dsi *intel_dsi, enum port port)
{
struct intel_display *display = to_intel_display(&intel_dsi->base);
u32 mask;
mask = LP_CTRL_FIFO_EMPTY | HS_CTRL_FIFO_EMPTY |
LP_DATA_FIFO_EMPTY | HS_DATA_FIFO_EMPTY;
if (intel_de_wait_for_set(display, MIPI_GEN_FIFO_STAT(display, port),
mask, 100))
drm_err(display->drm, "DPI FIFOs are not empty\n");
}
static void write_data(struct intel_display *display,
i915_reg_t reg,
const u8 *data, u32 len)
{
u32 i, j;
for (i = 0; i < len; i += 4) {
u32 val = 0;
for (j = 0; j < min_t(u32, len - i, 4); j++)
val |= *data++ << 8 * j;
intel_de_write(display, reg, val);
}
}
static void read_data(struct intel_display *display,
i915_reg_t reg,
u8 *data, u32 len)
{
u32 i, j;
for (i = 0; i < len; i += 4) {
u32 val = intel_de_read(display, reg);
for (j = 0; j < min_t(u32, len - i, 4); j++)
*data++ = val >> 8 * j;
}
}
static ssize_t intel_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct intel_dsi_host *intel_dsi_host = to_intel_dsi_host(host);
struct intel_dsi *intel_dsi = intel_dsi_host->intel_dsi;
struct intel_display *display = to_intel_display(&intel_dsi->base);
enum port port = intel_dsi_host->port;
struct mipi_dsi_packet packet;
ssize_t ret;
const u8 *header;
i915_reg_t data_reg, ctrl_reg;
u32 data_mask, ctrl_mask;
ret = mipi_dsi_create_packet(&packet, msg);
if (ret < 0)
return ret;
header = packet.header;
if (msg->flags & MIPI_DSI_MSG_USE_LPM) {
data_reg = MIPI_LP_GEN_DATA(display, port);
data_mask = LP_DATA_FIFO_FULL;
ctrl_reg = MIPI_LP_GEN_CTRL(display, port);
ctrl_mask = LP_CTRL_FIFO_FULL;
} else {
data_reg = MIPI_HS_GEN_DATA(display, port);
data_mask = HS_DATA_FIFO_FULL;
ctrl_reg = MIPI_HS_GEN_CTRL(display, port);
ctrl_mask = HS_CTRL_FIFO_FULL;
}
/* note: this is never true for reads */
if (packet.payload_length) {
if (intel_de_wait_for_clear(display, MIPI_GEN_FIFO_STAT(display, port),
data_mask, 50))
drm_err(display->drm,
"Timeout waiting for HS/LP DATA FIFO !full\n");
write_data(display, data_reg, packet.payload,
packet.payload_length);
}
if (msg->rx_len) {
intel_de_write(display, MIPI_INTR_STAT(display, port),
GEN_READ_DATA_AVAIL);
}
if (intel_de_wait_for_clear(display, MIPI_GEN_FIFO_STAT(display, port),
ctrl_mask, 50)) {
drm_err(display->drm,
"Timeout waiting for HS/LP CTRL FIFO !full\n");
}
intel_de_write(display, ctrl_reg,
header[2] << 16 | header[1] << 8 | header[0]);
/* ->rx_len is set only for reads */
if (msg->rx_len) {
data_mask = GEN_READ_DATA_AVAIL;
if (intel_de_wait_for_set(display, MIPI_INTR_STAT(display, port),
data_mask, 50))
drm_err(display->drm,
"Timeout waiting for read data.\n");
read_data(display, data_reg, msg->rx_buf, msg->rx_len);
}
/* XXX: fix for reads and writes */
return 4 + packet.payload_length;
}
static int intel_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
return 0;
}
static int intel_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
return 0;
}
static const struct mipi_dsi_host_ops intel_dsi_host_ops = {
.attach = intel_dsi_host_attach,
.detach = intel_dsi_host_detach,
.transfer = intel_dsi_host_transfer,
};
/*
* send a video mode command
*
* XXX: commands with data in MIPI_DPI_DATA?
*/
static int dpi_send_cmd(struct intel_dsi *intel_dsi, u32 cmd, bool hs,
enum port port)
{
struct intel_display *display = to_intel_display(&intel_dsi->base);
u32 mask;
/* XXX: pipe, hs */
if (hs)
cmd &= ~DPI_LP_MODE;
else
cmd |= DPI_LP_MODE;
/* clear bit */
intel_de_write(display, MIPI_INTR_STAT(display, port), SPL_PKT_SENT_INTERRUPT);
/* XXX: old code skips write if control unchanged */
if (cmd == intel_de_read(display, MIPI_DPI_CONTROL(display, port)))
drm_dbg_kms(display->drm,
"Same special packet %02x twice in a row.\n", cmd);
intel_de_write(display, MIPI_DPI_CONTROL(display, port), cmd);
mask = SPL_PKT_SENT_INTERRUPT;
if (intel_de_wait_for_set(display, MIPI_INTR_STAT(display, port), mask, 100))
drm_err(display->drm,
"Video mode command 0x%08x send failed.\n", cmd);
return 0;
}
static void band_gap_reset(struct drm_i915_private *dev_priv)
{
vlv_flisdsi_get(dev_priv);
vlv_flisdsi_write(dev_priv, 0x08, 0x0001);
vlv_flisdsi_write(dev_priv, 0x0F, 0x0005);
vlv_flisdsi_write(dev_priv, 0x0F, 0x0025);
udelay(150);
vlv_flisdsi_write(dev_priv, 0x0F, 0x0000);
vlv_flisdsi_write(dev_priv, 0x08, 0x0000);
vlv_flisdsi_put(dev_priv);
}
static int intel_dsi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_connector *intel_connector = intel_dsi->attached_connector;
struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
int ret;
drm_dbg_kms(&dev_priv->drm, "\n");
pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
ret = intel_panel_compute_config(intel_connector, adjusted_mode);
if (ret)
return ret;
ret = intel_panel_fitting(pipe_config, conn_state);
if (ret)
return ret;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return -EINVAL;
/* DSI uses short packets for sync events, so clear mode flags for DSI */
adjusted_mode->flags = 0;
if (intel_dsi->pixel_format == MIPI_DSI_FMT_RGB888)
pipe_config->pipe_bpp = 24;
else
pipe_config->pipe_bpp = 18;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
/* Enable Frame time stamp based scanline reporting */
pipe_config->mode_flags |=
I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP;
/* Dual link goes to DSI transcoder A. */
if (intel_dsi->ports == BIT(PORT_C))
pipe_config->cpu_transcoder = TRANSCODER_DSI_C;
else
pipe_config->cpu_transcoder = TRANSCODER_DSI_A;
ret = bxt_dsi_pll_compute(encoder, pipe_config);
if (ret)
return -EINVAL;
} else {
ret = vlv_dsi_pll_compute(encoder, pipe_config);
if (ret)
return -EINVAL;
}
pipe_config->clock_set = true;
return 0;
}
static bool glk_dsi_enable_io(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
bool cold_boot = false;
/* Set the MIPI mode
* If MIPI_Mode is off, then writing to LP_Wake bit is not reflecting.
* Power ON MIPI IO first and then write into IO reset and LP wake bits
*/
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(display, MIPI_CTRL(display, port), 0, GLK_MIPIIO_ENABLE);
/* Put the IO into reset */
intel_de_rmw(display, MIPI_CTRL(display, PORT_A), GLK_MIPIIO_RESET_RELEASED, 0);
/* Program LP Wake */
for_each_dsi_port(port, intel_dsi->ports) {
u32 tmp = intel_de_read(display, MIPI_DEVICE_READY(display, port));
intel_de_rmw(display, MIPI_CTRL(display, port),
GLK_LP_WAKE, (tmp & DEVICE_READY) ? GLK_LP_WAKE : 0);
}
/* Wait for Pwr ACK */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_set(display, MIPI_CTRL(display, port),
GLK_MIPIIO_PORT_POWERED, 20))
drm_err(display->drm, "MIPIO port is powergated\n");
}
/* Check for cold boot scenario */
for_each_dsi_port(port, intel_dsi->ports) {
cold_boot |=
!(intel_de_read(display, MIPI_DEVICE_READY(display, port)) & DEVICE_READY);
}
return cold_boot;
}
static void glk_dsi_device_ready(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
/* Wait for MIPI PHY status bit to set */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_set(display, MIPI_CTRL(display, port),
GLK_PHY_STATUS_PORT_READY, 20))
drm_err(display->drm, "PHY is not ON\n");
}
/* Get IO out of reset */
intel_de_rmw(display, MIPI_CTRL(display, PORT_A), 0, GLK_MIPIIO_RESET_RELEASED);
/* Get IO out of Low power state*/
for_each_dsi_port(port, intel_dsi->ports) {
if (!(intel_de_read(display, MIPI_DEVICE_READY(display, port)) & DEVICE_READY)) {
intel_de_rmw(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_MASK, DEVICE_READY);
usleep_range(10, 15);
} else {
/* Enter ULPS */
intel_de_rmw(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_MASK, ULPS_STATE_ENTER | DEVICE_READY);
/* Wait for ULPS active */
if (intel_de_wait_for_clear(display, MIPI_CTRL(display, port),
GLK_ULPS_NOT_ACTIVE, 20))
drm_err(display->drm, "ULPS not active\n");
/* Exit ULPS */
intel_de_rmw(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_MASK, ULPS_STATE_EXIT | DEVICE_READY);
/* Enter Normal Mode */
intel_de_rmw(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_MASK,
ULPS_STATE_NORMAL_OPERATION | DEVICE_READY);
intel_de_rmw(display, MIPI_CTRL(display, port), GLK_LP_WAKE, 0);
}
}
/* Wait for Stop state */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_set(display, MIPI_CTRL(display, port),
GLK_DATA_LANE_STOP_STATE, 20))
drm_err(display->drm,
"Date lane not in STOP state\n");
}
/* Wait for AFE LATCH */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_set(display, BXT_MIPI_PORT_CTRL(port),
AFE_LATCHOUT, 20))
drm_err(display->drm,
"D-PHY not entering LP-11 state\n");
}
}
static void bxt_dsi_device_ready(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
u32 val;
drm_dbg_kms(display->drm, "\n");
/* Enable MIPI PHY transparent latch */
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_rmw(display, BXT_MIPI_PORT_CTRL(port), 0, LP_OUTPUT_HOLD);
usleep_range(2000, 2500);
}
/* Clear ULPS and set device ready */
for_each_dsi_port(port, intel_dsi->ports) {
val = intel_de_read(display, MIPI_DEVICE_READY(display, port));
val &= ~ULPS_STATE_MASK;
intel_de_write(display, MIPI_DEVICE_READY(display, port), val);
usleep_range(2000, 2500);
val |= DEVICE_READY;
intel_de_write(display, MIPI_DEVICE_READY(display, port), val);
}
}
static void vlv_dsi_device_ready(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
drm_dbg_kms(display->drm, "\n");
vlv_flisdsi_get(dev_priv);
/* program rcomp for compliance, reduce from 50 ohms to 45 ohms
* needed everytime after power gate */
vlv_flisdsi_write(dev_priv, 0x04, 0x0004);
vlv_flisdsi_put(dev_priv);
/* bandgap reset is needed after everytime we do power gate */
band_gap_reset(dev_priv);
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_write(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_ENTER);
usleep_range(2500, 3000);
/* Enable MIPI PHY transparent latch
* Common bit for both MIPI Port A & MIPI Port C
* No similar bit in MIPI Port C reg
*/
intel_de_rmw(display, VLV_MIPI_PORT_CTRL(PORT_A), 0, LP_OUTPUT_HOLD);
usleep_range(1000, 1500);
intel_de_write(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_EXIT);
usleep_range(2500, 3000);
intel_de_write(display, MIPI_DEVICE_READY(display, port),
DEVICE_READY);
usleep_range(2500, 3000);
}
}
static void intel_dsi_device_ready(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (IS_GEMINILAKE(dev_priv))
glk_dsi_device_ready(encoder);
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_dsi_device_ready(encoder);
else
vlv_dsi_device_ready(encoder);
}
static void glk_dsi_enter_low_power_mode(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
/* Enter ULPS */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(display, MIPI_DEVICE_READY(display, port),
ULPS_STATE_MASK, ULPS_STATE_ENTER | DEVICE_READY);
/* Wait for MIPI PHY status bit to unset */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_clear(display, MIPI_CTRL(display, port),
GLK_PHY_STATUS_PORT_READY, 20))
drm_err(display->drm, "PHY is not turning OFF\n");
}
/* Wait for Pwr ACK bit to unset */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_clear(display, MIPI_CTRL(display, port),
GLK_MIPIIO_PORT_POWERED, 20))
drm_err(display->drm,
"MIPI IO Port is not powergated\n");
}
}
static void glk_dsi_disable_mipi_io(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
/* Put the IO into reset */
intel_de_rmw(display, MIPI_CTRL(display, PORT_A), GLK_MIPIIO_RESET_RELEASED, 0);
/* Wait for MIPI PHY status bit to unset */
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_wait_for_clear(display, MIPI_CTRL(display, port),
GLK_PHY_STATUS_PORT_READY, 20))
drm_err(display->drm, "PHY is not turning OFF\n");
}
/* Clear MIPI mode */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(display, MIPI_CTRL(display, port), GLK_MIPIIO_ENABLE, 0);
}
static void glk_dsi_clear_device_ready(struct intel_encoder *encoder)
{
glk_dsi_enter_low_power_mode(encoder);
glk_dsi_disable_mipi_io(encoder);
}
static i915_reg_t port_ctrl_reg(struct drm_i915_private *i915, enum port port)
{
return IS_GEMINILAKE(i915) || IS_BROXTON(i915) ?
BXT_MIPI_PORT_CTRL(port) : VLV_MIPI_PORT_CTRL(port);
}
static void vlv_dsi_clear_device_ready(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
drm_dbg_kms(display->drm, "\n");
for_each_dsi_port(port, intel_dsi->ports) {
/* Common bit for both MIPI Port A & MIPI Port C on VLV/CHV */
i915_reg_t port_ctrl = IS_BROXTON(dev_priv) ?
BXT_MIPI_PORT_CTRL(port) : VLV_MIPI_PORT_CTRL(PORT_A);
intel_de_write(display, MIPI_DEVICE_READY(display, port),
DEVICE_READY | ULPS_STATE_ENTER);
usleep_range(2000, 2500);
intel_de_write(display, MIPI_DEVICE_READY(display, port),
DEVICE_READY | ULPS_STATE_EXIT);
usleep_range(2000, 2500);
intel_de_write(display, MIPI_DEVICE_READY(display, port),
DEVICE_READY | ULPS_STATE_ENTER);
usleep_range(2000, 2500);
/*
* On VLV/CHV, wait till Clock lanes are in LP-00 state for MIPI
* Port A only. MIPI Port C has no similar bit for checking.
*/
if ((IS_BROXTON(dev_priv) || port == PORT_A) &&
intel_de_wait_for_clear(display, port_ctrl,
AFE_LATCHOUT, 30))
drm_err(display->drm, "DSI LP not going Low\n");
/* Disable MIPI PHY transparent latch */
intel_de_rmw(display, port_ctrl, LP_OUTPUT_HOLD, 0);
usleep_range(1000, 1500);
intel_de_write(display, MIPI_DEVICE_READY(display, port), 0x00);
usleep_range(2000, 2500);
}
}
static void intel_dsi_port_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) {
u32 temp = intel_dsi->pixel_overlap;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(display, MIPI_CTRL(display, port),
BXT_PIXEL_OVERLAP_CNT_MASK,
temp << BXT_PIXEL_OVERLAP_CNT_SHIFT);
} else {
intel_de_rmw(display, VLV_CHICKEN_3,
PIXEL_OVERLAP_CNT_MASK,
temp << PIXEL_OVERLAP_CNT_SHIFT);
}
}
for_each_dsi_port(port, intel_dsi->ports) {
i915_reg_t port_ctrl = port_ctrl_reg(dev_priv, port);
u32 temp;
temp = intel_de_read(display, port_ctrl);
temp &= ~LANE_CONFIGURATION_MASK;
temp &= ~DUAL_LINK_MODE_MASK;
if (intel_dsi->ports == (BIT(PORT_A) | BIT(PORT_C))) {
temp |= (intel_dsi->dual_link - 1)
<< DUAL_LINK_MODE_SHIFT;
if (IS_BROXTON(dev_priv))
temp |= LANE_CONFIGURATION_DUAL_LINK_A;
else
temp |= crtc->pipe ?
LANE_CONFIGURATION_DUAL_LINK_B :
LANE_CONFIGURATION_DUAL_LINK_A;
}
if (intel_dsi->pixel_format != MIPI_DSI_FMT_RGB888)
temp |= DITHERING_ENABLE;
/* assert ip_tg_enable signal */
intel_de_write(display, port_ctrl, temp | DPI_ENABLE);
intel_de_posting_read(display, port_ctrl);
}
}
static void intel_dsi_port_disable(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
for_each_dsi_port(port, intel_dsi->ports) {
i915_reg_t port_ctrl = port_ctrl_reg(dev_priv, port);
/* de-assert ip_tg_enable signal */
intel_de_rmw(display, port_ctrl, DPI_ENABLE, 0);
intel_de_posting_read(display, port_ctrl);
}
}
static void intel_dsi_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config);
static void intel_dsi_unprepare(struct intel_encoder *encoder);
/*
* Panel enable/disable sequences from the VBT spec.
*
* Note the spec has AssertReset / DeassertReset swapped from their
* usual naming. We use the normal names to avoid confusion (so below
* they are swapped compared to the spec).
*
* Steps starting with MIPI refer to VBT sequences, note that for v2
* VBTs several steps which have a VBT in v2 are expected to be handled
* directly by the driver, by directly driving gpios for example.
*
* v2 video mode seq v3 video mode seq command mode seq
* - power on - MIPIPanelPowerOn - power on
* - wait t1+t2 - wait t1+t2
* - MIPIDeassertResetPin - MIPIDeassertResetPin - MIPIDeassertResetPin
* - io lines to lp-11 - io lines to lp-11 - io lines to lp-11
* - MIPISendInitialDcsCmds - MIPISendInitialDcsCmds - MIPISendInitialDcsCmds
* - MIPITearOn
* - MIPIDisplayOn
* - turn on DPI - turn on DPI - set pipe to dsr mode
* - MIPIDisplayOn - MIPIDisplayOn
* - wait t5 - wait t5
* - backlight on - MIPIBacklightOn - backlight on
* ... ... ... issue mem cmds ...
* - backlight off - MIPIBacklightOff - backlight off
* - wait t6 - wait t6
* - MIPIDisplayOff
* - turn off DPI - turn off DPI - disable pipe dsr mode
* - MIPITearOff
* - MIPIDisplayOff - MIPIDisplayOff
* - io lines to lp-00 - io lines to lp-00 - io lines to lp-00
* - MIPIAssertResetPin - MIPIAssertResetPin - MIPIAssertResetPin
* - wait t3 - wait t3
* - power off - MIPIPanelPowerOff - power off
* - wait t4 - wait t4
*/
/*
* DSI port enable has to be done before pipe and plane enable, so we do it in
* the pre_enable hook instead of the enable hook.
*/
static void intel_dsi_pre_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum port port;
bool glk_cold_boot = false;
drm_dbg_kms(display->drm, "\n");
intel_dsi_wait_panel_power_cycle(intel_dsi);
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
/*
* The BIOS may leave the PLL in a wonky state where it doesn't
* lock. It needs to be fully powered down to fix it.
*/
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
bxt_dsi_pll_disable(encoder);
bxt_dsi_pll_enable(encoder, pipe_config);
} else {
vlv_dsi_pll_disable(encoder);
vlv_dsi_pll_enable(encoder, pipe_config);
}
if (IS_BROXTON(dev_priv)) {
/* Add MIPI IO reset programming for modeset */
intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, MIPIO_RST_CTRL);
/* Power up DSI regulator */
intel_de_write(display, BXT_P_DSI_REGULATOR_CFG, STAP_SELECT);
intel_de_write(display, BXT_P_DSI_REGULATOR_TX_CTRL, 0);
}
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
/* Disable DPOunit clock gating, can stall pipe */
intel_de_rmw(display, DSPCLK_GATE_D(dev_priv),
0, DPOUNIT_CLOCK_GATE_DISABLE);
}
if (!IS_GEMINILAKE(dev_priv))
intel_dsi_prepare(encoder, pipe_config);
/* Give the panel time to power-on and then deassert its reset */
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_ON);
msleep(intel_dsi->panel_on_delay);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DEASSERT_RESET);
if (IS_GEMINILAKE(dev_priv)) {
glk_cold_boot = glk_dsi_enable_io(encoder);
/* Prepare port in cold boot(s3/s4) scenario */
if (glk_cold_boot)
intel_dsi_prepare(encoder, pipe_config);
}
/* Put device in ready state (LP-11) */
intel_dsi_device_ready(encoder);
/* Prepare port in normal boot scenario */
if (IS_GEMINILAKE(dev_priv) && !glk_cold_boot)
intel_dsi_prepare(encoder, pipe_config);
/* Send initialization commands in LP mode */
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_INIT_OTP);
/*
* Enable port in pre-enable phase itself because as per hw team
* recommendation, port should be enabled before plane & pipe
*/
if (is_cmd_mode(intel_dsi)) {
for_each_dsi_port(port, intel_dsi->ports)
intel_de_write(display,
MIPI_MAX_RETURN_PKT_SIZE(display, port), 8 * 4);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_TEAR_ON);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_ON);
} else {
msleep(20); /* XXX */
for_each_dsi_port(port, intel_dsi->ports)
dpi_send_cmd(intel_dsi, TURN_ON, false, port);
msleep(100);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_ON);
intel_dsi_port_enable(encoder, pipe_config);
}
intel_backlight_enable(pipe_config, conn_state);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_ON);
}
static void bxt_dsi_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
intel_crtc_vblank_on(crtc_state);
}
/*
* DSI port disable has to be done after pipe and plane disable, so we do it in
* the post_disable hook.
*/
static void intel_dsi_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
drm_dbg_kms(&i915->drm, "\n");
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_OFF);
intel_backlight_disable(old_conn_state);
/*
* According to the spec we should send SHUTDOWN before
* MIPI_SEQ_DISPLAY_OFF only for v3+ VBTs, but field testing
* has shown that the v3 sequence works for v2 VBTs too
*/
if (is_vid_mode(intel_dsi)) {
/* Send Shutdown command to the panel in LP mode */
for_each_dsi_port(port, intel_dsi->ports)
dpi_send_cmd(intel_dsi, SHUTDOWN, false, port);
msleep(10);
}
}
static void intel_dsi_clear_device_ready(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (IS_GEMINILAKE(dev_priv))
glk_dsi_clear_device_ready(encoder);
else
vlv_dsi_clear_device_ready(encoder);
}
static void intel_dsi_post_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
drm_dbg_kms(display->drm, "\n");
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
intel_crtc_vblank_off(old_crtc_state);
skl_scaler_disable(old_crtc_state);
}
if (is_vid_mode(intel_dsi)) {
for_each_dsi_port(port, intel_dsi->ports)
vlv_dsi_wait_for_fifo_empty(intel_dsi, port);
intel_dsi_port_disable(encoder);
usleep_range(2000, 5000);
}
intel_dsi_unprepare(encoder);
/*
* if disable packets are sent before sending shutdown packet then in
* some next enable sequence send turn on packet error is observed
*/
if (is_cmd_mode(intel_dsi))
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_TEAR_OFF);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_OFF);
/* Transition to LP-00 */
intel_dsi_clear_device_ready(encoder);
if (IS_BROXTON(dev_priv)) {
/* Power down DSI regulator to save power */
intel_de_write(display, BXT_P_DSI_REGULATOR_CFG, STAP_SELECT);
intel_de_write(display, BXT_P_DSI_REGULATOR_TX_CTRL,
HS_IO_CTRL_SELECT);
/* Add MIPI IO reset programming for modeset */
intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, MIPIO_RST_CTRL, 0);
}
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
bxt_dsi_pll_disable(encoder);
} else {
vlv_dsi_pll_disable(encoder);
intel_de_rmw(display, DSPCLK_GATE_D(dev_priv),
DPOUNIT_CLOCK_GATE_DISABLE, 0);
}
/* Assert reset */
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_ASSERT_RESET);
msleep(intel_dsi->panel_off_delay);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_OFF);
intel_dsi->panel_power_off_time = ktime_get_boottime();
}
static bool intel_dsi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
intel_wakeref_t wakeref;
enum port port;
bool active = false;
drm_dbg_kms(display->drm, "\n");
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
/*
* On Broxton the PLL needs to be enabled with a valid divider
* configuration, otherwise accessing DSI registers will hang the
* machine. See BSpec North Display Engine registers/MIPI[BXT].
*/
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
!bxt_dsi_pll_is_enabled(dev_priv))
goto out_put_power;
/* XXX: this only works for one DSI output */
for_each_dsi_port(port, intel_dsi->ports) {
i915_reg_t port_ctrl = port_ctrl_reg(dev_priv, port);
bool enabled = intel_de_read(display, port_ctrl) & DPI_ENABLE;
/*
* Due to some hardware limitations on VLV/CHV, the DPI enable
* bit in port C control register does not get set. As a
* workaround, check pipe B conf instead.
*/
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
port == PORT_C)
enabled = intel_de_read(display,
TRANSCONF(dev_priv, PIPE_B)) & TRANSCONF_ENABLE;
/* Try command mode if video mode not enabled */
if (!enabled) {
u32 tmp = intel_de_read(display,
MIPI_DSI_FUNC_PRG(display, port));
enabled = tmp & CMD_MODE_DATA_WIDTH_MASK;
}
if (!enabled)
continue;
if (!(intel_de_read(display, MIPI_DEVICE_READY(display, port)) & DEVICE_READY))
continue;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
u32 tmp = intel_de_read(display, MIPI_CTRL(display, port));
tmp &= BXT_PIPE_SELECT_MASK;
tmp >>= BXT_PIPE_SELECT_SHIFT;
if (drm_WARN_ON(display->drm, tmp > PIPE_C))
continue;
*pipe = tmp;
} else {
*pipe = port == PORT_A ? PIPE_A : PIPE_B;
}
active = true;
break;
}
out_put_power:
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return active;
}
static void bxt_dsi_get_pipe_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
struct drm_display_mode *adjusted_mode_sw;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
unsigned int lane_count = intel_dsi->lane_count;
unsigned int bpp, fmt;
enum port port;
u16 hactive, hfp, hsync, hbp, vfp, vsync;
u16 hfp_sw, hsync_sw, hbp_sw;
u16 crtc_htotal_sw, crtc_hsync_start_sw, crtc_hsync_end_sw,
crtc_hblank_start_sw, crtc_hblank_end_sw;
/* FIXME: hw readout should not depend on SW state */
adjusted_mode_sw = &crtc->config->hw.adjusted_mode;
/*
* Atleast one port is active as encoder->get_config called only if
* encoder->get_hw_state() returns true.
*/
for_each_dsi_port(port, intel_dsi->ports) {
if (intel_de_read(display, BXT_MIPI_PORT_CTRL(port)) & DPI_ENABLE)
break;
}
fmt = intel_de_read(display, MIPI_DSI_FUNC_PRG(display, port)) & VID_MODE_FORMAT_MASK;
bpp = mipi_dsi_pixel_format_to_bpp(
pixel_format_from_register_bits(fmt));
pipe_config->pipe_bpp = bdw_get_pipe_misc_bpp(crtc);
/* Enable Frame time stamo based scanline reporting */
pipe_config->mode_flags |=
I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP;
/* In terms of pixels */
adjusted_mode->crtc_hdisplay =
intel_de_read(display,
BXT_MIPI_TRANS_HACTIVE(port));
adjusted_mode->crtc_vdisplay =
intel_de_read(display,
BXT_MIPI_TRANS_VACTIVE(port));
adjusted_mode->crtc_vtotal =
intel_de_read(display,
BXT_MIPI_TRANS_VTOTAL(port));
hactive = adjusted_mode->crtc_hdisplay;
hfp = intel_de_read(display, MIPI_HFP_COUNT(display, port));
/*
* Meaningful for video mode non-burst sync pulse mode only,
* can be zero for non-burst sync events and burst modes
*/
hsync = intel_de_read(display, MIPI_HSYNC_PADDING_COUNT(display, port));
hbp = intel_de_read(display, MIPI_HBP_COUNT(display, port));
/* harizontal values are in terms of high speed byte clock */
hfp = pixels_from_txbyteclkhs(hfp, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hsync = pixels_from_txbyteclkhs(hsync, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hbp = pixels_from_txbyteclkhs(hbp, bpp, lane_count,
intel_dsi->burst_mode_ratio);
if (intel_dsi->dual_link) {
hfp *= 2;
hsync *= 2;
hbp *= 2;
}
/* vertical values are in terms of lines */
vfp = intel_de_read(display, MIPI_VFP_COUNT(display, port));
vsync = intel_de_read(display, MIPI_VSYNC_PADDING_COUNT(display, port));
adjusted_mode->crtc_htotal = hactive + hfp + hsync + hbp;
adjusted_mode->crtc_hsync_start = hfp + adjusted_mode->crtc_hdisplay;
adjusted_mode->crtc_hsync_end = hsync + adjusted_mode->crtc_hsync_start;
adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hdisplay;
adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_htotal;
adjusted_mode->crtc_vsync_start = vfp + adjusted_mode->crtc_vdisplay;
adjusted_mode->crtc_vsync_end = vsync + adjusted_mode->crtc_vsync_start;
adjusted_mode->crtc_vblank_start = adjusted_mode->crtc_vdisplay;
adjusted_mode->crtc_vblank_end = adjusted_mode->crtc_vtotal;
/*
* In BXT DSI there is no regs programmed with few horizontal timings
* in Pixels but txbyteclkhs.. So retrieval process adds some
* ROUND_UP ERRORS in the process of PIXELS<==>txbyteclkhs.
* Actually here for the given adjusted_mode, we are calculating the
* value programmed to the port and then back to the horizontal timing
* param in pixels. This is the expected value, including roundup errors
* And if that is same as retrieved value from port, then
* (HW state) adjusted_mode's horizontal timings are corrected to
* match with SW state to nullify the errors.
*/
/* Calculating the value programmed to the Port register */
hfp_sw = adjusted_mode_sw->crtc_hsync_start -
adjusted_mode_sw->crtc_hdisplay;
hsync_sw = adjusted_mode_sw->crtc_hsync_end -
adjusted_mode_sw->crtc_hsync_start;
hbp_sw = adjusted_mode_sw->crtc_htotal -
adjusted_mode_sw->crtc_hsync_end;
if (intel_dsi->dual_link) {
hfp_sw /= 2;
hsync_sw /= 2;
hbp_sw /= 2;
}
hfp_sw = txbyteclkhs(hfp_sw, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hsync_sw = txbyteclkhs(hsync_sw, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hbp_sw = txbyteclkhs(hbp_sw, bpp, lane_count,
intel_dsi->burst_mode_ratio);
/* Reverse calculating the adjusted mode parameters from port reg vals*/
hfp_sw = pixels_from_txbyteclkhs(hfp_sw, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hsync_sw = pixels_from_txbyteclkhs(hsync_sw, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hbp_sw = pixels_from_txbyteclkhs(hbp_sw, bpp, lane_count,
intel_dsi->burst_mode_ratio);
if (intel_dsi->dual_link) {
hfp_sw *= 2;
hsync_sw *= 2;
hbp_sw *= 2;
}
crtc_htotal_sw = adjusted_mode_sw->crtc_hdisplay + hfp_sw +
hsync_sw + hbp_sw;
crtc_hsync_start_sw = hfp_sw + adjusted_mode_sw->crtc_hdisplay;
crtc_hsync_end_sw = hsync_sw + crtc_hsync_start_sw;
crtc_hblank_start_sw = adjusted_mode_sw->crtc_hdisplay;
crtc_hblank_end_sw = crtc_htotal_sw;
if (adjusted_mode->crtc_htotal == crtc_htotal_sw)
adjusted_mode->crtc_htotal = adjusted_mode_sw->crtc_htotal;
if (adjusted_mode->crtc_hsync_start == crtc_hsync_start_sw)
adjusted_mode->crtc_hsync_start =
adjusted_mode_sw->crtc_hsync_start;
if (adjusted_mode->crtc_hsync_end == crtc_hsync_end_sw)
adjusted_mode->crtc_hsync_end =
adjusted_mode_sw->crtc_hsync_end;
if (adjusted_mode->crtc_hblank_start == crtc_hblank_start_sw)
adjusted_mode->crtc_hblank_start =
adjusted_mode_sw->crtc_hblank_start;
if (adjusted_mode->crtc_hblank_end == crtc_hblank_end_sw)
adjusted_mode->crtc_hblank_end =
adjusted_mode_sw->crtc_hblank_end;
}
static void intel_dsi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
u32 pclk;
drm_dbg_kms(&dev_priv->drm, "\n");
pipe_config->output_types |= BIT(INTEL_OUTPUT_DSI);
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
bxt_dsi_get_pipe_config(encoder, pipe_config);
pclk = bxt_dsi_get_pclk(encoder, pipe_config);
} else {
pclk = vlv_dsi_get_pclk(encoder, pipe_config);
}
pipe_config->port_clock = pclk;
/* FIXME definitely not right for burst/cmd mode/pixel overlap */
pipe_config->hw.adjusted_mode.crtc_clock = pclk;
if (intel_dsi->dual_link)
pipe_config->hw.adjusted_mode.crtc_clock *= 2;
}
/* return txclkesc cycles in terms of divider and duration in us */
static u16 txclkesc(u32 divider, unsigned int us)
{
switch (divider) {
case ESCAPE_CLOCK_DIVIDER_1:
default:
return 20 * us;
case ESCAPE_CLOCK_DIVIDER_2:
return 10 * us;
case ESCAPE_CLOCK_DIVIDER_4:
return 5 * us;
}
}
static void set_dsi_timings(struct intel_encoder *encoder,
const struct drm_display_mode *adjusted_mode)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
unsigned int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
unsigned int lane_count = intel_dsi->lane_count;
u16 hactive, hfp, hsync, hbp, vfp, vsync, vbp;
hactive = adjusted_mode->crtc_hdisplay;
hfp = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_hdisplay;
hsync = adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start;
hbp = adjusted_mode->crtc_htotal - adjusted_mode->crtc_hsync_end;
if (intel_dsi->dual_link) {
hactive /= 2;
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK)
hactive += intel_dsi->pixel_overlap;
hfp /= 2;
hsync /= 2;
hbp /= 2;
}
vfp = adjusted_mode->crtc_vsync_start - adjusted_mode->crtc_vdisplay;
vsync = adjusted_mode->crtc_vsync_end - adjusted_mode->crtc_vsync_start;
vbp = adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vsync_end;
/* horizontal values are in terms of high speed byte clock */
hactive = txbyteclkhs(hactive, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hfp = txbyteclkhs(hfp, bpp, lane_count, intel_dsi->burst_mode_ratio);
hsync = txbyteclkhs(hsync, bpp, lane_count,
intel_dsi->burst_mode_ratio);
hbp = txbyteclkhs(hbp, bpp, lane_count, intel_dsi->burst_mode_ratio);
for_each_dsi_port(port, intel_dsi->ports) {
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
/*
* Program hdisplay and vdisplay on MIPI transcoder.
* This is different from calculated hactive and
* vactive, as they are calculated per channel basis,
* whereas these values should be based on resolution.
*/
intel_de_write(display, BXT_MIPI_TRANS_HACTIVE(port),
adjusted_mode->crtc_hdisplay);
intel_de_write(display, BXT_MIPI_TRANS_VACTIVE(port),
adjusted_mode->crtc_vdisplay);
intel_de_write(display, BXT_MIPI_TRANS_VTOTAL(port),
adjusted_mode->crtc_vtotal);
}
intel_de_write(display, MIPI_HACTIVE_AREA_COUNT(display, port),
hactive);
intel_de_write(display, MIPI_HFP_COUNT(display, port), hfp);
/* meaningful for video mode non-burst sync pulse mode only,
* can be zero for non-burst sync events and burst modes */
intel_de_write(display, MIPI_HSYNC_PADDING_COUNT(display, port),
hsync);
intel_de_write(display, MIPI_HBP_COUNT(display, port), hbp);
/* vertical values are in terms of lines */
intel_de_write(display, MIPI_VFP_COUNT(display, port), vfp);
intel_de_write(display, MIPI_VSYNC_PADDING_COUNT(display, port),
vsync);
intel_de_write(display, MIPI_VBP_COUNT(display, port), vbp);
}
}
static u32 pixel_format_to_reg(enum mipi_dsi_pixel_format fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB888:
return VID_MODE_FORMAT_RGB888;
case MIPI_DSI_FMT_RGB666:
return VID_MODE_FORMAT_RGB666;
case MIPI_DSI_FMT_RGB666_PACKED:
return VID_MODE_FORMAT_RGB666_PACKED;
case MIPI_DSI_FMT_RGB565:
return VID_MODE_FORMAT_RGB565;
default:
MISSING_CASE(fmt);
return VID_MODE_FORMAT_RGB666;
}
}
static void intel_dsi_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
enum port port;
unsigned int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
u32 val, tmp;
u16 mode_hdisplay;
drm_dbg_kms(display->drm, "pipe %c\n", pipe_name(crtc->pipe));
mode_hdisplay = adjusted_mode->crtc_hdisplay;
if (intel_dsi->dual_link) {
mode_hdisplay /= 2;
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK)
mode_hdisplay += intel_dsi->pixel_overlap;
}
for_each_dsi_port(port, intel_dsi->ports) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
/*
* escape clock divider, 20MHz, shared for A and C.
* device ready must be off when doing this! txclkesc?
*/
tmp = intel_de_read(display, MIPI_CTRL(display, PORT_A));
tmp &= ~ESCAPE_CLOCK_DIVIDER_MASK;
intel_de_write(display, MIPI_CTRL(display, PORT_A),
tmp | ESCAPE_CLOCK_DIVIDER_1);
/* read request priority is per pipe */
tmp = intel_de_read(display, MIPI_CTRL(display, port));
tmp &= ~READ_REQUEST_PRIORITY_MASK;
intel_de_write(display, MIPI_CTRL(display, port),
tmp | READ_REQUEST_PRIORITY_HIGH);
} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
enum pipe pipe = crtc->pipe;
intel_de_rmw(display, MIPI_CTRL(display, port),
BXT_PIPE_SELECT_MASK, BXT_PIPE_SELECT(pipe));
}
/* XXX: why here, why like this? handling in irq handler?! */
intel_de_write(display, MIPI_INTR_STAT(display, port), 0xffffffff);
intel_de_write(display, MIPI_INTR_EN(display, port), 0xffffffff);
intel_de_write(display, MIPI_DPHY_PARAM(display, port),
intel_dsi->dphy_reg);
intel_de_write(display, MIPI_DPI_RESOLUTION(display, port),
adjusted_mode->crtc_vdisplay << VERTICAL_ADDRESS_SHIFT | mode_hdisplay << HORIZONTAL_ADDRESS_SHIFT);
}
set_dsi_timings(encoder, adjusted_mode);
val = intel_dsi->lane_count << DATA_LANES_PRG_REG_SHIFT;
if (is_cmd_mode(intel_dsi)) {
val |= intel_dsi->channel << CMD_MODE_CHANNEL_NUMBER_SHIFT;
val |= CMD_MODE_DATA_WIDTH_8_BIT; /* XXX */
} else {
val |= intel_dsi->channel << VID_MODE_CHANNEL_NUMBER_SHIFT;
val |= pixel_format_to_reg(intel_dsi->pixel_format);
}
tmp = 0;
if (intel_dsi->eotp_pkt == 0)
tmp |= EOT_DISABLE;
if (intel_dsi->clock_stop)
tmp |= CLOCKSTOP;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
tmp |= BXT_DPHY_DEFEATURE_EN;
if (!is_cmd_mode(intel_dsi))
tmp |= BXT_DEFEATURE_DPI_FIFO_CTR;
}
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_write(display, MIPI_DSI_FUNC_PRG(display, port), val);
/* timeouts for recovery. one frame IIUC. if counter expires,
* EOT and stop state. */
/*
* In burst mode, value greater than one DPI line Time in byte
* clock (txbyteclkhs) To timeout this timer 1+ of the above
* said value is recommended.
*
* In non-burst mode, Value greater than one DPI frame time in
* byte clock(txbyteclkhs) To timeout this timer 1+ of the above
* said value is recommended.
*
* In DBI only mode, value greater than one DBI frame time in
* byte clock(txbyteclkhs) To timeout this timer 1+ of the above
* said value is recommended.
*/
if (is_vid_mode(intel_dsi) &&
intel_dsi->video_mode == BURST_MODE) {
intel_de_write(display, MIPI_HS_TX_TIMEOUT(display, port),
txbyteclkhs(adjusted_mode->crtc_htotal, bpp, intel_dsi->lane_count, intel_dsi->burst_mode_ratio) + 1);
} else {
intel_de_write(display, MIPI_HS_TX_TIMEOUT(display, port),
txbyteclkhs(adjusted_mode->crtc_vtotal * adjusted_mode->crtc_htotal, bpp, intel_dsi->lane_count, intel_dsi->burst_mode_ratio) + 1);
}
intel_de_write(display, MIPI_LP_RX_TIMEOUT(display, port),
intel_dsi->lp_rx_timeout);
intel_de_write(display, MIPI_TURN_AROUND_TIMEOUT(display, port),
intel_dsi->turn_arnd_val);
intel_de_write(display, MIPI_DEVICE_RESET_TIMER(display, port),
intel_dsi->rst_timer_val);
/* dphy stuff */
/* in terms of low power clock */
intel_de_write(display, MIPI_INIT_COUNT(display, port),
txclkesc(intel_dsi->escape_clk_div, 100));
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
!intel_dsi->dual_link) {
/*
* BXT spec says write MIPI_INIT_COUNT for
* both the ports, even if only one is
* getting used. So write the other port
* if not in dual link mode.
*/
intel_de_write(display,
MIPI_INIT_COUNT(display, port == PORT_A ? PORT_C : PORT_A),
intel_dsi->init_count);
}
/* recovery disables */
intel_de_write(display, MIPI_EOT_DISABLE(display, port), tmp);
/* in terms of low power clock */
intel_de_write(display, MIPI_INIT_COUNT(display, port),
intel_dsi->init_count);
/* in terms of txbyteclkhs. actual high to low switch +
* MIPI_STOP_STATE_STALL * MIPI_LP_BYTECLK.
*
* XXX: write MIPI_STOP_STATE_STALL?
*/
intel_de_write(display, MIPI_HIGH_LOW_SWITCH_COUNT(display, port),
intel_dsi->hs_to_lp_count);
/* XXX: low power clock equivalence in terms of byte clock.
* the number of byte clocks occupied in one low power clock.
* based on txbyteclkhs and txclkesc.
* txclkesc time / txbyteclk time * (105 + MIPI_STOP_STATE_STALL
* ) / 105.???
*/
intel_de_write(display, MIPI_LP_BYTECLK(display, port),
intel_dsi->lp_byte_clk);
if (IS_GEMINILAKE(dev_priv)) {
intel_de_write(display, MIPI_TLPX_TIME_COUNT(display, port),
intel_dsi->lp_byte_clk);
/* Shadow of DPHY reg */
intel_de_write(display, MIPI_CLK_LANE_TIMING(display, port),
intel_dsi->dphy_reg);
}
/* the bw essential for transmitting 16 long packets containing
* 252 bytes meant for dcs write memory command is programmed in
* this register in terms of byte clocks. based on dsi transfer
* rate and the number of lanes configured the time taken to
* transmit 16 long packets in a dsi stream varies. */
intel_de_write(display, MIPI_DBI_BW_CTRL(display, port),
intel_dsi->bw_timer);
intel_de_write(display, MIPI_CLK_LANE_SWITCH_TIME_CNT(display, port),
intel_dsi->clk_lp_to_hs_count << LP_HS_SSW_CNT_SHIFT | intel_dsi->clk_hs_to_lp_count << HS_LP_PWR_SW_CNT_SHIFT);
if (is_vid_mode(intel_dsi)) {
u32 fmt = intel_dsi->video_frmt_cfg_bits | IP_TG_CONFIG;
/*
* Some panels might have resolution which is not a
* multiple of 64 like 1366 x 768. Enable RANDOM
* resolution support for such panels by default.
*/
fmt |= RANDOM_DPI_DISPLAY_RESOLUTION;
switch (intel_dsi->video_mode) {
default:
MISSING_CASE(intel_dsi->video_mode);
fallthrough;
case NON_BURST_SYNC_EVENTS:
fmt |= VIDEO_MODE_NON_BURST_WITH_SYNC_EVENTS;
break;
case NON_BURST_SYNC_PULSE:
fmt |= VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE;
break;
case BURST_MODE:
fmt |= VIDEO_MODE_BURST;
break;
}
intel_de_write(display, MIPI_VIDEO_MODE_FORMAT(display, port), fmt);
}
}
}
static void intel_dsi_unprepare(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
if (IS_GEMINILAKE(dev_priv))
return;
for_each_dsi_port(port, intel_dsi->ports) {
/* Panel commands can be sent when clock is in LP11 */
intel_de_write(display, MIPI_DEVICE_READY(display, port), 0x0);
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_dsi_reset_clocks(encoder, port);
else
vlv_dsi_reset_clocks(encoder, port);
intel_de_write(display, MIPI_EOT_DISABLE(display, port), CLOCKSTOP);
intel_de_rmw(display, MIPI_DSI_FUNC_PRG(display, port), VID_MODE_FORMAT_MASK, 0);
intel_de_write(display, MIPI_DEVICE_READY(display, port), 0x1);
}
}
static const struct drm_encoder_funcs intel_dsi_funcs = {
.destroy = intel_encoder_destroy,
};
static enum drm_mode_status vlv_dsi_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct drm_i915_private *i915 = to_i915(connector->dev);
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
enum drm_mode_status status;
status = intel_cpu_transcoder_mode_valid(i915, mode);
if (status != MODE_OK)
return status;
}
return intel_dsi_mode_valid(connector, mode);
}
static const struct drm_connector_helper_funcs intel_dsi_connector_helper_funcs = {
.get_modes = intel_dsi_get_modes,
.mode_valid = vlv_dsi_mode_valid,
.atomic_check = intel_digital_connector_atomic_check,
};
static const struct drm_connector_funcs intel_dsi_connector_funcs = {
.detect = intel_panel_detect,
.late_register = intel_connector_register,
.early_unregister = intel_connector_unregister,
.destroy = intel_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};
static void vlv_dsi_add_properties(struct intel_connector *connector)
{
const struct drm_display_mode *fixed_mode =
intel_panel_preferred_fixed_mode(connector);
intel_attach_scaling_mode_property(&connector->base);
drm_connector_set_panel_orientation_with_quirk(&connector->base,
intel_dsi_get_panel_orientation(connector),
fixed_mode->hdisplay,
fixed_mode->vdisplay);
}
#define NS_KHZ_RATIO 1000000
#define PREPARE_CNT_MAX 0x3F
#define EXIT_ZERO_CNT_MAX 0x3F
#define CLK_ZERO_CNT_MAX 0xFF
#define TRAIL_CNT_MAX 0x1F
static void vlv_dphy_param_init(struct intel_dsi *intel_dsi)
{
struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev);
struct intel_connector *connector = intel_dsi->attached_connector;
struct mipi_config *mipi_config = connector->panel.vbt.dsi.config;
u32 tlpx_ns, extra_byte_count, tlpx_ui;
u32 ui_num, ui_den;
u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt;
u32 ths_prepare_ns, tclk_trail_ns;
u32 tclk_prepare_clkzero, ths_prepare_hszero;
u32 lp_to_hs_switch, hs_to_lp_switch;
u32 mul;
tlpx_ns = intel_dsi_tlpx_ns(intel_dsi);
switch (intel_dsi->lane_count) {
case 1:
case 2:
extra_byte_count = 2;
break;
case 3:
extra_byte_count = 4;
break;
case 4:
default:
extra_byte_count = 3;
break;
}
/* in Kbps */
ui_num = NS_KHZ_RATIO;
ui_den = intel_dsi_bitrate(intel_dsi);
tclk_prepare_clkzero = mipi_config->tclk_prepare_clkzero;
ths_prepare_hszero = mipi_config->ths_prepare_hszero;
/*
* B060
* LP byte clock = TLPX/ (8UI)
*/
intel_dsi->lp_byte_clk = DIV_ROUND_UP(tlpx_ns * ui_den, 8 * ui_num);
/* DDR clock period = 2 * UI
* UI(sec) = 1/(bitrate * 10^3) (bitrate is in KHZ)
* UI(nsec) = 10^6 / bitrate
* DDR clock period (nsec) = 2 * UI = (2 * 10^6)/ bitrate
* DDR clock count = ns_value / DDR clock period
*
* For GEMINILAKE dphy_param_reg will be programmed in terms of
* HS byte clock count for other platform in HS ddr clock count
*/
mul = IS_GEMINILAKE(dev_priv) ? 8 : 2;
ths_prepare_ns = max(mipi_config->ths_prepare,
mipi_config->tclk_prepare);
/* prepare count */
prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * ui_den, ui_num * mul);
if (prepare_cnt > PREPARE_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "prepare count too high %u\n",
prepare_cnt);
prepare_cnt = PREPARE_CNT_MAX;
}
/* exit zero count */
exit_zero_cnt = DIV_ROUND_UP(
(ths_prepare_hszero - ths_prepare_ns) * ui_den,
ui_num * mul
);
/*
* Exit zero is unified val ths_zero and ths_exit
* minimum value for ths_exit = 110ns
* min (exit_zero_cnt * 2) = 110/UI
* exit_zero_cnt = 55/UI
*/
if (exit_zero_cnt < (55 * ui_den / ui_num) && (55 * ui_den) % ui_num)
exit_zero_cnt += 1;
if (exit_zero_cnt > EXIT_ZERO_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "exit zero count too high %u\n",
exit_zero_cnt);
exit_zero_cnt = EXIT_ZERO_CNT_MAX;
}
/* clk zero count */
clk_zero_cnt = DIV_ROUND_UP(
(tclk_prepare_clkzero - ths_prepare_ns)
* ui_den, ui_num * mul);
if (clk_zero_cnt > CLK_ZERO_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "clock zero count too high %u\n",
clk_zero_cnt);
clk_zero_cnt = CLK_ZERO_CNT_MAX;
}
/* trail count */
tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail);
trail_cnt = DIV_ROUND_UP(tclk_trail_ns * ui_den, ui_num * mul);
if (trail_cnt > TRAIL_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "trail count too high %u\n",
trail_cnt);
trail_cnt = TRAIL_CNT_MAX;
}
/* B080 */
intel_dsi->dphy_reg = exit_zero_cnt << 24 | trail_cnt << 16 |
clk_zero_cnt << 8 | prepare_cnt;
/*
* LP to HS switch count = 4TLPX + PREP_COUNT * mul + EXIT_ZERO_COUNT *
* mul + 10UI + Extra Byte Count
*
* HS to LP switch count = THS-TRAIL + 2TLPX + Extra Byte Count
* Extra Byte Count is calculated according to number of lanes.
* High Low Switch Count is the Max of LP to HS and
* HS to LP switch count
*
*/
tlpx_ui = DIV_ROUND_UP(tlpx_ns * ui_den, ui_num);
/* B044 */
/* FIXME:
* The comment above does not match with the code */
lp_to_hs_switch = DIV_ROUND_UP(4 * tlpx_ui + prepare_cnt * mul +
exit_zero_cnt * mul + 10, 8);
hs_to_lp_switch = DIV_ROUND_UP(mipi_config->ths_trail + 2 * tlpx_ui, 8);
intel_dsi->hs_to_lp_count = max(lp_to_hs_switch, hs_to_lp_switch);
intel_dsi->hs_to_lp_count += extra_byte_count;
/* B088 */
/* LP -> HS for clock lanes
* LP clk sync + LP11 + LP01 + tclk_prepare + tclk_zero +
* extra byte count
* 2TPLX + 1TLPX + 1 TPLX(in ns) + prepare_cnt * 2 + clk_zero_cnt *
* 2(in UI) + extra byte count
* In byteclks = (4TLPX + prepare_cnt * 2 + clk_zero_cnt *2 (in UI)) /
* 8 + extra byte count
*/
intel_dsi->clk_lp_to_hs_count =
DIV_ROUND_UP(
4 * tlpx_ui + prepare_cnt * 2 +
clk_zero_cnt * 2,
8);
intel_dsi->clk_lp_to_hs_count += extra_byte_count;
/* HS->LP for Clock Lanes
* Low Power clock synchronisations + 1Tx byteclk + tclk_trail +
* Extra byte count
* 2TLPX + 8UI + (trail_count*2)(in UI) + Extra byte count
* In byteclks = (2*TLpx(in UI) + trail_count*2 +8)(in UI)/8 +
* Extra byte count
*/
intel_dsi->clk_hs_to_lp_count =
DIV_ROUND_UP(2 * tlpx_ui + trail_cnt * 2 + 8,
8);
intel_dsi->clk_hs_to_lp_count += extra_byte_count;
intel_dsi_log_params(intel_dsi);
}
typedef void (*vlv_dsi_dmi_quirk_func)(struct intel_dsi *intel_dsi);
/*
* Vtotal is wrong on the Asus TF103C leading to the last line of the display
* being shown as the first line. The factory installed Android has a hardcoded
* modeline, causing it to not suffer from this BIOS bug.
*
* Original mode: "1280x800": 60 67700 1280 1312 1328 1376 800 808 812 820 0x8 0xa
* Fixed mode: "1280x800": 60 67700 1280 1312 1328 1376 800 808 812 816 0x8 0xa
*
* https://gitlab.freedesktop.org/drm/intel/-/issues/9381
*/
static void vlv_dsi_asus_tf103c_mode_fixup(struct intel_dsi *intel_dsi)
{
/* Cast away the const as we want to fixup the mode */
struct drm_display_mode *fixed_mode = (struct drm_display_mode *)
intel_panel_preferred_fixed_mode(intel_dsi->attached_connector);
if (fixed_mode->vtotal == 820)
fixed_mode->vtotal -= 4;
}
/*
* On the Lenovo Yoga Tablet 2 830 / 1050 there are 2 problems:
* 1. The I2C MIPI sequence elements reference bus 3. ACPI has I2C1 - I2C7
* which under Linux become bus 0 - 6. And the MIPI sequence reference
* to bus 3 is indented for I2C3 which is bus 2 under Linux.
*
* Note mipi_exec_i2c() cannot just subtract 1 from the bus
* given in the I2C MIPI sequence element. Since on other
* devices the I2C bus-numbers used in the MIPI sequences do
* actually start at 0.
*
* 2. width_/height_mm contain a bogus 192mm x 120mm size. This is
* especially a problem on the 8" 830 version which uses a 10:16
* portrait screen where as the bogus size is 16:10.
*
* https://gitlab.freedesktop.org/drm/intel/-/issues/9379
*/
static void vlv_dsi_lenovo_yoga_tab2_size_fixup(struct intel_dsi *intel_dsi)
{
const struct drm_display_mode *fixed_mode =
intel_panel_preferred_fixed_mode(intel_dsi->attached_connector);
struct drm_display_info *info = &intel_dsi->attached_connector->base.display_info;
intel_dsi->i2c_bus_num = 2;
/*
* The 10" 1050 uses a 1920x1200 landscape screen, where as the 8" 830
* uses a 1200x1920 portrait screen.
*/
if (fixed_mode->hdisplay == 1920) {
info->width_mm = 216;
info->height_mm = 135;
} else {
info->width_mm = 107;
info->height_mm = 171;
}
}
/*
* On the Lenovo Yoga Tab 3 Pro YT3-X90F there are 2 problems:
* 1. i2c_acpi_find_adapter() picks the wrong adapter causing mipi_exec_i2c()
* to not work. Fix this by setting i2c_bus_num.
* 2. There is no backlight off MIPI sequence, causing the backlight to stay on.
* Add a backlight off sequence mirroring the existing backlight on sequence.
*
* https://gitlab.freedesktop.org/drm/intel/-/issues/9380
*/
static void vlv_dsi_lenovo_yoga_tab3_backlight_fixup(struct intel_dsi *intel_dsi)
{
static const u8 backlight_off_sequence[16] = {
/* Header Seq-id 7, length after header 11 bytes */
0x07, 0x0b, 0x00, 0x00, 0x00,
/* MIPI_SEQ_ELEM_I2C bus 0 addr 0x2c reg 0x00 data-len 1 data 0x00 */
0x04, 0x08, 0x00, 0x00, 0x00, 0x2c, 0x00, 0x00, 0x01, 0x00,
/* MIPI_SEQ_ELEM_END */
0x00
};
struct intel_connector *connector = intel_dsi->attached_connector;
intel_dsi->i2c_bus_num = 0;
connector->panel.vbt.dsi.sequence[MIPI_SEQ_BACKLIGHT_OFF] = backlight_off_sequence;
}
static const struct dmi_system_id vlv_dsi_dmi_quirk_table[] = {
{
/* Asus Transformer Pad TF103C */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
DMI_MATCH(DMI_PRODUCT_NAME, "TF103C"),
},
.driver_data = (void *)vlv_dsi_asus_tf103c_mode_fixup,
},
{
/*
* Lenovo Yoga Tablet 2 830F/L or 1050F/L (The 8" and 10"
* Lenovo Yoga Tablet 2 use the same mainboard)
*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Intel Corp."),
DMI_MATCH(DMI_PRODUCT_NAME, "VALLEYVIEW C0 PLATFORM"),
DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"),
/* Partial match on beginning of BIOS version */
DMI_MATCH(DMI_BIOS_VERSION, "BLADE_21"),
},
.driver_data = (void *)vlv_dsi_lenovo_yoga_tab2_size_fixup,
},
{
/* Lenovo Yoga Tab 3 Pro YT3-X90F */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"),
DMI_MATCH(DMI_PRODUCT_VERSION, "Blade3-10A-001"),
},
.driver_data = (void *)vlv_dsi_lenovo_yoga_tab3_backlight_fixup,
},
{ }
};
void vlv_dsi_init(struct drm_i915_private *dev_priv)
{
struct intel_display *display = &dev_priv->display;
struct intel_dsi *intel_dsi;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_display_mode *current_mode;
const struct dmi_system_id *dmi_id;
enum port port;
enum pipe pipe;
drm_dbg_kms(&dev_priv->drm, "\n");
/* There is no detection method for MIPI so rely on VBT */
if (!intel_bios_is_dsi_present(display, &port))
return;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
dev_priv->display.dsi.mmio_base = BXT_MIPI_BASE;
else
dev_priv->display.dsi.mmio_base = VLV_MIPI_BASE;
intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL);
if (!intel_dsi)
return;
connector = intel_connector_alloc();
if (!connector) {
kfree(intel_dsi);
return;
}
encoder = &intel_dsi->base;
intel_dsi->attached_connector = connector;
drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_dsi_funcs,
DRM_MODE_ENCODER_DSI, "DSI %c", port_name(port));
encoder->compute_config = intel_dsi_compute_config;
encoder->pre_enable = intel_dsi_pre_enable;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
encoder->enable = bxt_dsi_enable;
encoder->disable = intel_dsi_disable;
encoder->post_disable = intel_dsi_post_disable;
encoder->get_hw_state = intel_dsi_get_hw_state;
encoder->get_config = intel_dsi_get_config;
encoder->update_pipe = intel_backlight_update;
encoder->shutdown = intel_dsi_shutdown;
connector->get_hw_state = intel_connector_get_hw_state;
encoder->port = port;
encoder->type = INTEL_OUTPUT_DSI;
encoder->power_domain = POWER_DOMAIN_PORT_DSI;
encoder->cloneable = 0;
/*
* On BYT/CHV, pipe A maps to MIPI DSI port A, pipe B maps to MIPI DSI
* port C. BXT isn't limited like this.
*/
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
encoder->pipe_mask = ~0;
else if (port == PORT_A)
encoder->pipe_mask = BIT(PIPE_A);
else
encoder->pipe_mask = BIT(PIPE_B);
intel_dsi->panel_power_off_time = ktime_get_boottime();
intel_bios_init_panel_late(display, &connector->panel, NULL, NULL);
if (connector->panel.vbt.dsi.config->dual_link)
intel_dsi->ports = BIT(PORT_A) | BIT(PORT_C);
else
intel_dsi->ports = BIT(port);
if (drm_WARN_ON(&dev_priv->drm, connector->panel.vbt.dsi.bl_ports & ~intel_dsi->ports))
connector->panel.vbt.dsi.bl_ports &= intel_dsi->ports;
if (drm_WARN_ON(&dev_priv->drm, connector->panel.vbt.dsi.cabc_ports & ~intel_dsi->ports))
connector->panel.vbt.dsi.cabc_ports &= intel_dsi->ports;
/* Create a DSI host (and a device) for each port. */
for_each_dsi_port(port, intel_dsi->ports) {
struct intel_dsi_host *host;
host = intel_dsi_host_init(intel_dsi, &intel_dsi_host_ops,
port);
if (!host)
goto err;
intel_dsi->dsi_hosts[port] = host;
}
if (!intel_dsi_vbt_init(intel_dsi, MIPI_DSI_GENERIC_PANEL_ID)) {
drm_dbg_kms(&dev_priv->drm, "no device found\n");
goto err;
}
/* Use clock read-back from current hw-state for fastboot */
current_mode = intel_encoder_current_mode(encoder);
if (current_mode) {
drm_dbg_kms(&dev_priv->drm, "Calculated pclk %d GOP %d\n",
intel_dsi->pclk, current_mode->clock);
if (intel_fuzzy_clock_check(intel_dsi->pclk,
current_mode->clock)) {
drm_dbg_kms(&dev_priv->drm, "Using GOP pclk\n");
intel_dsi->pclk = current_mode->clock;
}
kfree(current_mode);
}
vlv_dphy_param_init(intel_dsi);
intel_dsi_vbt_gpio_init(intel_dsi,
intel_dsi_get_hw_state(encoder, &pipe));
drm_connector_init(&dev_priv->drm, &connector->base, &intel_dsi_connector_funcs,
DRM_MODE_CONNECTOR_DSI);
drm_connector_helper_add(&connector->base, &intel_dsi_connector_helper_funcs);
connector->base.display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/
intel_connector_attach_encoder(connector, encoder);
mutex_lock(&dev_priv->drm.mode_config.mutex);
intel_panel_add_vbt_lfp_fixed_mode(connector);
mutex_unlock(&dev_priv->drm.mode_config.mutex);
if (!intel_panel_preferred_fixed_mode(connector)) {
drm_dbg_kms(&dev_priv->drm, "no fixed mode\n");
goto err_cleanup_connector;
}
dmi_id = dmi_first_match(vlv_dsi_dmi_quirk_table);
if (dmi_id) {
vlv_dsi_dmi_quirk_func quirk_func =
(vlv_dsi_dmi_quirk_func)dmi_id->driver_data;
quirk_func(intel_dsi);
}
intel_panel_init(connector, NULL);
intel_backlight_setup(connector, INVALID_PIPE);
vlv_dsi_add_properties(connector);
return;
err_cleanup_connector:
drm_connector_cleanup(&connector->base);
err:
drm_encoder_cleanup(&encoder->base);
kfree(intel_dsi);
kfree(connector);
}