// SPDX-License-Identifier: GPL-2.0
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/string.h>
#include <linux/xarray.h>
#include <drm/drm_drv.h>
#include <drm/drm_kunit_helpers.h>
#include <kunit/test.h>
#include "regs/xe_gt_regs.h"
#include "regs/xe_reg_defs.h"
#include "xe_device.h"
#include "xe_device_types.h"
#include "xe_kunit_helpers.h"
#include "xe_pci_test.h"
#include "xe_reg_sr.h"
#include "xe_rtp.h"
#define REGULAR_REG1 XE_REG(1)
#define REGULAR_REG2 XE_REG(2)
#define REGULAR_REG3 XE_REG(3)
#define MCR_REG1 XE_REG_MCR(1)
#define MCR_REG2 XE_REG_MCR(2)
#define MCR_REG3 XE_REG_MCR(3)
#define MASKED_REG1 XE_REG(1, XE_REG_OPTION_MASKED)
#undef XE_REG_MCR
#define XE_REG_MCR(...) XE_REG(__VA_ARGS__, .mcr = 1)
struct rtp_to_sr_test_case {
const char *name;
struct xe_reg expected_reg;
u32 expected_set_bits;
u32 expected_clr_bits;
unsigned long expected_count_sr_entries;
unsigned int expected_sr_errors;
unsigned long expected_active;
const struct xe_rtp_entry_sr *entries;
};
struct rtp_test_case {
const char *name;
unsigned long expected_active;
const struct xe_rtp_entry *entries;
};
static bool match_yes(const struct xe_gt *gt, const struct xe_hw_engine *hwe)
{
return true;
}
static bool match_no(const struct xe_gt *gt, const struct xe_hw_engine *hwe)
{
return false;
}
static const struct rtp_to_sr_test_case rtp_to_sr_cases[] = {
{
.name = "coalesce-same-reg",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0) | REG_BIT(1),
.expected_clr_bits = REG_BIT(0) | REG_BIT(1),
.expected_active = BIT(0) | BIT(1),
.expected_count_sr_entries = 1,
/* Different bits on the same register: create a single entry */
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(1)))
},
{}
},
},
{
.name = "no-match-no-add",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(0),
.expected_active = BIT(0),
.expected_count_sr_entries = 1,
/* Don't coalesce second entry since rules don't match */
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_no)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(1)))
},
{}
},
},
{
.name = "match-or",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0) | REG_BIT(1) | REG_BIT(2),
.expected_clr_bits = REG_BIT(0) | REG_BIT(1) | REG_BIT(2),
.expected_active = BIT(0) | BIT(1) | BIT(2),
.expected_count_sr_entries = 1,
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("first"),
XE_RTP_RULES(FUNC(match_yes), OR, FUNC(match_no)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("middle"),
XE_RTP_RULES(FUNC(match_no), FUNC(match_no), OR,
FUNC(match_yes), OR,
FUNC(match_no)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(1)))
},
{ XE_RTP_NAME("last"),
XE_RTP_RULES(FUNC(match_no), OR, FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(2)))
},
{ XE_RTP_NAME("no-match"),
XE_RTP_RULES(FUNC(match_no), OR, FUNC(match_no)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(3)))
},
{}
},
},
{
.name = "match-or-xfail",
.expected_reg = REGULAR_REG1,
.expected_count_sr_entries = 0,
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("leading-or"),
XE_RTP_RULES(OR, FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("trailing-or"),
/*
* First condition is match_no, otherwise the failure
* wouldn't really trigger as RTP stops processing as
* soon as it has a matching set of rules
*/
XE_RTP_RULES(FUNC(match_no), OR),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(1)))
},
{ XE_RTP_NAME("no-or-or-yes"),
XE_RTP_RULES(FUNC(match_no), OR, OR, FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(2)))
},
{}
},
},
{
.name = "no-match-no-add-multiple-rules",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(0),
.expected_active = BIT(0),
.expected_count_sr_entries = 1,
/* Don't coalesce second entry due to one of the rules */
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes), FUNC(match_no)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(1)))
},
{}
},
},
{
.name = "two-regs-two-entries",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(0),
.expected_active = BIT(0) | BIT(1),
.expected_count_sr_entries = 2,
/* Same bits on different registers are not coalesced */
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG2, REG_BIT(0)))
},
{}
},
},
{
.name = "clr-one-set-other",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(1) | REG_BIT(0),
.expected_active = BIT(0) | BIT(1),
.expected_count_sr_entries = 1,
/* Check clr vs set actions on different bits */
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(CLR(REGULAR_REG1, REG_BIT(1)))
},
{}
},
},
{
#define TEMP_MASK REG_GENMASK(10, 8)
#define TEMP_FIELD REG_FIELD_PREP(TEMP_MASK, 2)
.name = "set-field",
.expected_reg = REGULAR_REG1,
.expected_set_bits = TEMP_FIELD,
.expected_clr_bits = TEMP_MASK,
.expected_active = BIT(0),
.expected_count_sr_entries = 1,
/* Check FIELD_SET works */
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(FIELD_SET(REGULAR_REG1,
TEMP_MASK, TEMP_FIELD))
},
{}
},
#undef TEMP_MASK
#undef TEMP_FIELD
},
{
.name = "conflict-duplicate",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(0),
.expected_active = BIT(0) | BIT(1),
.expected_count_sr_entries = 1,
.expected_sr_errors = 1,
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
/* drop: setting same values twice */
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
{}
},
},
{
.name = "conflict-not-disjoint",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(0),
.expected_active = BIT(0) | BIT(1),
.expected_count_sr_entries = 1,
.expected_sr_errors = 1,
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
/* drop: bits are not disjoint with previous entries */
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(CLR(REGULAR_REG1, REG_GENMASK(1, 0)))
},
{}
},
},
{
.name = "conflict-reg-type",
.expected_reg = REGULAR_REG1,
.expected_set_bits = REG_BIT(0),
.expected_clr_bits = REG_BIT(0),
.expected_active = BIT(0) | BIT(1) | BIT(2),
.expected_count_sr_entries = 1,
.expected_sr_errors = 2,
.entries = (const struct xe_rtp_entry_sr[]) {
{ XE_RTP_NAME("basic-1"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(REGULAR_REG1, REG_BIT(0)))
},
/* drop: regular vs MCR */
{ XE_RTP_NAME("basic-2"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(MCR_REG1, REG_BIT(1)))
},
/* drop: regular vs masked */
{ XE_RTP_NAME("basic-3"),
XE_RTP_RULES(FUNC(match_yes)),
XE_RTP_ACTIONS(SET(MASKED_REG1, REG_BIT(0)))
},
{}
},
},
};
static void xe_rtp_process_to_sr_tests(struct kunit *test)
{
const struct rtp_to_sr_test_case *param = test->param_value;
struct xe_device *xe = test->priv;
struct xe_gt *gt = xe_device_get_root_tile(xe)->primary_gt;
struct xe_reg_sr *reg_sr = >->reg_sr;
const struct xe_reg_sr_entry *sre, *sr_entry = NULL;
struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(gt);
unsigned long idx, count_sr_entries = 0, count_rtp_entries = 0, active = 0;
xe_reg_sr_init(reg_sr, "xe_rtp_to_sr_tests", xe);
while (param->entries[count_rtp_entries].rules)
count_rtp_entries++;
xe_rtp_process_ctx_enable_active_tracking(&ctx, &active, count_rtp_entries);
xe_rtp_process_to_sr(&ctx, param->entries, reg_sr);
xa_for_each(®_sr->xa, idx, sre) {
if (idx == param->expected_reg.addr)
sr_entry = sre;
count_sr_entries++;
}
KUNIT_EXPECT_EQ(test, active, param->expected_active);
KUNIT_EXPECT_EQ(test, count_sr_entries, param->expected_count_sr_entries);
if (count_sr_entries) {
KUNIT_EXPECT_EQ(test, sr_entry->clr_bits, param->expected_clr_bits);
KUNIT_EXPECT_EQ(test, sr_entry->set_bits, param->expected_set_bits);
KUNIT_EXPECT_EQ(test, sr_entry->reg.raw, param->expected_reg.raw);
} else {
KUNIT_EXPECT_NULL(test, sr_entry);
}
KUNIT_EXPECT_EQ(test, reg_sr->errors, param->expected_sr_errors);
}
/*
* Entries below follow the logic used with xe_wa_oob.rules:
* 1) Entries with empty name are OR'ed: all entries marked active since the
* last entry with a name
* 2) There are no action associated with rules
*/
static const struct rtp_test_case rtp_cases[] = {
{
.name = "active1",
.expected_active = BIT(0),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_yes)),
},
{}
},
},
{
.name = "active2",
.expected_active = BIT(0) | BIT(1),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_yes)),
},
{ XE_RTP_NAME("r2"),
XE_RTP_RULES(FUNC(match_yes)),
},
{}
},
},
{
.name = "active-inactive",
.expected_active = BIT(0),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_yes)),
},
{ XE_RTP_NAME("r2"),
XE_RTP_RULES(FUNC(match_no)),
},
{}
},
},
{
.name = "inactive-active",
.expected_active = BIT(1),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_no)),
},
{ XE_RTP_NAME("r2"),
XE_RTP_RULES(FUNC(match_yes)),
},
{}
},
},
{
.name = "inactive-1st_or_active-inactive",
.expected_active = BIT(1),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_no)),
},
{ XE_RTP_NAME("r2_or_conditions"),
XE_RTP_RULES(FUNC(match_yes), OR,
FUNC(match_no), OR,
FUNC(match_no)) },
{ XE_RTP_NAME("r3"),
XE_RTP_RULES(FUNC(match_no)),
},
{}
},
},
{
.name = "inactive-2nd_or_active-inactive",
.expected_active = BIT(1),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_no)),
},
{ XE_RTP_NAME("r2_or_conditions"),
XE_RTP_RULES(FUNC(match_no), OR,
FUNC(match_yes), OR,
FUNC(match_no)) },
{ XE_RTP_NAME("r3"),
XE_RTP_RULES(FUNC(match_no)),
},
{}
},
},
{
.name = "inactive-last_or_active-inactive",
.expected_active = BIT(1),
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_no)),
},
{ XE_RTP_NAME("r2_or_conditions"),
XE_RTP_RULES(FUNC(match_no), OR,
FUNC(match_no), OR,
FUNC(match_yes)) },
{ XE_RTP_NAME("r3"),
XE_RTP_RULES(FUNC(match_no)),
},
{}
},
},
{
.name = "inactive-no_or_active-inactive",
.expected_active = 0,
.entries = (const struct xe_rtp_entry[]) {
{ XE_RTP_NAME("r1"),
XE_RTP_RULES(FUNC(match_no)),
},
{ XE_RTP_NAME("r2_or_conditions"),
XE_RTP_RULES(FUNC(match_no), OR,
FUNC(match_no), OR,
FUNC(match_no)) },
{ XE_RTP_NAME("r3"),
XE_RTP_RULES(FUNC(match_no)),
},
{}
},
},
};
static void xe_rtp_process_tests(struct kunit *test)
{
const struct rtp_test_case *param = test->param_value;
struct xe_device *xe = test->priv;
struct xe_gt *gt = xe_device_get_root_tile(xe)->primary_gt;
struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(gt);
unsigned long count_rtp_entries = 0, active = 0;
while (param->entries[count_rtp_entries].rules)
count_rtp_entries++;
xe_rtp_process_ctx_enable_active_tracking(&ctx, &active, count_rtp_entries);
xe_rtp_process(&ctx, param->entries);
KUNIT_EXPECT_EQ(test, active, param->expected_active);
}
static void rtp_to_sr_desc(const struct rtp_to_sr_test_case *t, char *desc)
{
strscpy(desc, t->name, KUNIT_PARAM_DESC_SIZE);
}
KUNIT_ARRAY_PARAM(rtp_to_sr, rtp_to_sr_cases, rtp_to_sr_desc);
static void rtp_desc(const struct rtp_test_case *t, char *desc)
{
strscpy(desc, t->name, KUNIT_PARAM_DESC_SIZE);
}
KUNIT_ARRAY_PARAM(rtp, rtp_cases, rtp_desc);
static int xe_rtp_test_init(struct kunit *test)
{
struct xe_device *xe;
struct device *dev;
int ret;
dev = drm_kunit_helper_alloc_device(test);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
xe = xe_kunit_helper_alloc_xe_device(test, dev);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, xe);
/* Initialize an empty device */
test->priv = NULL;
ret = xe_pci_fake_device_init(xe);
KUNIT_ASSERT_EQ(test, ret, 0);
xe->drm.dev = dev;
test->priv = xe;
return 0;
}
static void xe_rtp_test_exit(struct kunit *test)
{
struct xe_device *xe = test->priv;
drm_kunit_helper_free_device(test, xe->drm.dev);
}
static struct kunit_case xe_rtp_tests[] = {
KUNIT_CASE_PARAM(xe_rtp_process_to_sr_tests, rtp_to_sr_gen_params),
KUNIT_CASE_PARAM(xe_rtp_process_tests, rtp_gen_params),
{}
};
static struct kunit_suite xe_rtp_test_suite = {
.name = "xe_rtp",
.init = xe_rtp_test_init,
.exit = xe_rtp_test_exit,
.test_cases = xe_rtp_tests,
};
kunit_test_suite(xe_rtp_test_suite);