// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_gt_topology.h"
#include <linux/bitmap.h>
#include <linux/compiler.h>
#include "regs/xe_gt_regs.h"
#include "xe_assert.h"
#include "xe_gt.h"
#include "xe_mmio.h"
static void
load_dss_mask(struct xe_gt *gt, xe_dss_mask_t mask, int numregs, ...)
{
va_list argp;
u32 fuse_val[XE_MAX_DSS_FUSE_REGS] = {};
int i;
if (drm_WARN_ON(>_to_xe(gt)->drm, numregs > XE_MAX_DSS_FUSE_REGS))
numregs = XE_MAX_DSS_FUSE_REGS;
va_start(argp, numregs);
for (i = 0; i < numregs; i++)
fuse_val[i] = xe_mmio_read32(gt, va_arg(argp, struct xe_reg));
va_end(argp);
bitmap_from_arr32(mask, fuse_val, numregs * 32);
}
static void
load_eu_mask(struct xe_gt *gt, xe_eu_mask_t mask, enum xe_gt_eu_type *eu_type)
{
struct xe_device *xe = gt_to_xe(gt);
u32 reg_val = xe_mmio_read32(gt, XELP_EU_ENABLE);
u32 val = 0;
int i;
BUILD_BUG_ON(XE_MAX_EU_FUSE_REGS > 1);
/*
* Pre-Xe_HP platforms inverted the bit meaning (disable instead
* of enable).
*/
if (GRAPHICS_VERx100(xe) < 1250)
reg_val = ~reg_val & XELP_EU_MASK;
if (GRAPHICS_VERx100(xe) == 1260 || GRAPHICS_VER(xe) >= 20) {
/* SIMD16 EUs, one bit == one EU */
*eu_type = XE_GT_EU_TYPE_SIMD16;
val = reg_val;
} else {
/* SIMD8 EUs, one bit == 2 EU */
*eu_type = XE_GT_EU_TYPE_SIMD8;
for (i = 0; i < fls(reg_val); i++)
if (reg_val & BIT(i))
val |= 0x3 << 2 * i;
}
bitmap_from_arr32(mask, &val, XE_MAX_EU_FUSE_BITS);
}
/**
* gen_l3_mask_from_pattern - Replicate a bit pattern according to a mask
*
* It is used to compute the L3 bank masks in a generic format on
* various platforms where the internal representation of L3 node
* and masks from registers are different.
*
* @xe: device
* @dst: destination
* @pattern: pattern to replicate
* @patternbits: size of the pattern, in bits
* @mask: mask describing where to replicate the pattern
*
* Example 1:
* ----------
* @pattern = 0b1111
* └┬─┘
* @patternbits = 4 (bits)
* @mask = 0b0101
* ││││
* │││└────────────────── 0b1111 (=1×0b1111)
* ││└──────────── 0b0000 │ (=0×0b1111)
* │└────── 0b1111 │ │ (=1×0b1111)
* └ 0b0000 │ │ │ (=0×0b1111)
* │ │ │ │
* @dst = 0b0000 0b1111 0b0000 0b1111
*
* Example 2:
* ----------
* @pattern = 0b11111111
* └┬─────┘
* @patternbits = 8 (bits)
* @mask = 0b10
* ││
* ││
* ││
* │└────────── 0b00000000 (=0×0b11111111)
* └ 0b11111111 │ (=1×0b11111111)
* │ │
* @dst = 0b11111111 0b00000000
*/
static void
gen_l3_mask_from_pattern(struct xe_device *xe, xe_l3_bank_mask_t dst,
xe_l3_bank_mask_t pattern, int patternbits,
unsigned long mask)
{
unsigned long bit;
xe_assert(xe, find_last_bit(pattern, XE_MAX_L3_BANK_MASK_BITS) < patternbits ||
bitmap_empty(pattern, XE_MAX_L3_BANK_MASK_BITS));
xe_assert(xe, !mask || patternbits * (__fls(mask) + 1) <= XE_MAX_L3_BANK_MASK_BITS);
for_each_set_bit(bit, &mask, 32) {
xe_l3_bank_mask_t shifted_pattern = {};
bitmap_shift_left(shifted_pattern, pattern, bit * patternbits,
XE_MAX_L3_BANK_MASK_BITS);
bitmap_or(dst, dst, shifted_pattern, XE_MAX_L3_BANK_MASK_BITS);
}
}
static void
load_l3_bank_mask(struct xe_gt *gt, xe_l3_bank_mask_t l3_bank_mask)
{
struct xe_device *xe = gt_to_xe(gt);
u32 fuse3 = xe_mmio_read32(gt, MIRROR_FUSE3);
if (GRAPHICS_VER(xe) >= 20) {
xe_l3_bank_mask_t per_node = {};
u32 meml3_en = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, fuse3);
u32 bank_val = REG_FIELD_GET(XE2_GT_L3_MODE_MASK, fuse3);
bitmap_from_arr32(per_node, &bank_val, 32);
gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 4,
meml3_en);
} else if (GRAPHICS_VERx100(xe) >= 1270) {
xe_l3_bank_mask_t per_node = {};
xe_l3_bank_mask_t per_mask_bit = {};
u32 meml3_en = REG_FIELD_GET(MEML3_EN_MASK, fuse3);
u32 fuse4 = xe_mmio_read32(gt, XEHP_FUSE4);
u32 bank_val = REG_FIELD_GET(GT_L3_EXC_MASK, fuse4);
bitmap_set_value8(per_mask_bit, 0x3, 0);
gen_l3_mask_from_pattern(xe, per_node, per_mask_bit, 2, bank_val);
gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 4,
meml3_en);
} else if (xe->info.platform == XE_PVC) {
xe_l3_bank_mask_t per_node = {};
xe_l3_bank_mask_t per_mask_bit = {};
u32 meml3_en = REG_FIELD_GET(MEML3_EN_MASK, fuse3);
u32 bank_val = REG_FIELD_GET(XEHPC_GT_L3_MODE_MASK, fuse3);
bitmap_set_value8(per_mask_bit, 0xf, 0);
gen_l3_mask_from_pattern(xe, per_node, per_mask_bit, 4,
bank_val);
gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 16,
meml3_en);
} else if (xe->info.platform == XE_DG2) {
xe_l3_bank_mask_t per_node = {};
u32 mask = REG_FIELD_GET(MEML3_EN_MASK, fuse3);
bitmap_set_value8(per_node, 0xff, 0);
gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 8, mask);
} else {
/* 1:1 register bit to mask bit (inverted register bits) */
u32 mask = REG_FIELD_GET(XELP_GT_L3_MODE_MASK, ~fuse3);
bitmap_from_arr32(l3_bank_mask, &mask, 32);
}
}
static void
get_num_dss_regs(struct xe_device *xe, int *geometry_regs, int *compute_regs)
{
if (GRAPHICS_VER(xe) > 20) {
*geometry_regs = 3;
*compute_regs = 3;
} else if (GRAPHICS_VERx100(xe) == 1260) {
*geometry_regs = 0;
*compute_regs = 2;
} else if (GRAPHICS_VERx100(xe) >= 1250) {
*geometry_regs = 1;
*compute_regs = 1;
} else {
*geometry_regs = 1;
*compute_regs = 0;
}
}
void
xe_gt_topology_init(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
struct drm_printer p;
int num_geometry_regs, num_compute_regs;
get_num_dss_regs(xe, &num_geometry_regs, &num_compute_regs);
/*
* Register counts returned shouldn't exceed the number of registers
* passed as parameters below.
*/
drm_WARN_ON(&xe->drm, num_geometry_regs > 3);
drm_WARN_ON(&xe->drm, num_compute_regs > 3);
load_dss_mask(gt, gt->fuse_topo.g_dss_mask,
num_geometry_regs,
XELP_GT_GEOMETRY_DSS_ENABLE,
XE2_GT_GEOMETRY_DSS_1,
XE2_GT_GEOMETRY_DSS_2);
load_dss_mask(gt, gt->fuse_topo.c_dss_mask, num_compute_regs,
XEHP_GT_COMPUTE_DSS_ENABLE,
XEHPC_GT_COMPUTE_DSS_ENABLE_EXT,
XE2_GT_COMPUTE_DSS_2);
load_eu_mask(gt, gt->fuse_topo.eu_mask_per_dss, >->fuse_topo.eu_type);
load_l3_bank_mask(gt, gt->fuse_topo.l3_bank_mask);
p = drm_dbg_printer(>_to_xe(gt)->drm, DRM_UT_DRIVER, "GT topology");
xe_gt_topology_dump(gt, &p);
}
static const char *eu_type_to_str(enum xe_gt_eu_type eu_type)
{
switch (eu_type) {
case XE_GT_EU_TYPE_SIMD16:
return "simd16";
case XE_GT_EU_TYPE_SIMD8:
return "simd8";
}
return NULL;
}
void
xe_gt_topology_dump(struct xe_gt *gt, struct drm_printer *p)
{
drm_printf(p, "dss mask (geometry): %*pb\n", XE_MAX_DSS_FUSE_BITS,
gt->fuse_topo.g_dss_mask);
drm_printf(p, "dss mask (compute): %*pb\n", XE_MAX_DSS_FUSE_BITS,
gt->fuse_topo.c_dss_mask);
drm_printf(p, "EU mask per DSS: %*pb\n", XE_MAX_EU_FUSE_BITS,
gt->fuse_topo.eu_mask_per_dss);
drm_printf(p, "EU type: %s\n",
eu_type_to_str(gt->fuse_topo.eu_type));
drm_printf(p, "L3 bank mask: %*pb\n", XE_MAX_L3_BANK_MASK_BITS,
gt->fuse_topo.l3_bank_mask);
}
/*
* Used to obtain the index of the first DSS. Can start searching from the
* beginning of a specific dss group (e.g., gslice, cslice, etc.) if
* groupsize and groupnum are non-zero.
*/
unsigned int
xe_dss_mask_group_ffs(const xe_dss_mask_t mask, int groupsize, int groupnum)
{
return find_next_bit(mask, XE_MAX_DSS_FUSE_BITS, groupnum * groupsize);
}
bool xe_dss_mask_empty(const xe_dss_mask_t mask)
{
return bitmap_empty(mask, XE_MAX_DSS_FUSE_BITS);
}
/**
* xe_gt_topology_has_dss_in_quadrant - check fusing of DSS in GT quadrant
* @gt: GT to check
* @quad: Which quadrant of the DSS space to check
*
* Since Xe_HP platforms can have up to four CCS engines, those engines
* are each logically associated with a quarter of the possible DSS. If there
* are no DSS present in one of the four quadrants of the DSS space, the
* corresponding CCS engine is also not available for use.
*
* Returns false if all DSS in a quadrant of the GT are fused off, else true.
*/
bool xe_gt_topology_has_dss_in_quadrant(struct xe_gt *gt, int quad)
{
struct xe_device *xe = gt_to_xe(gt);
xe_dss_mask_t all_dss;
int g_dss_regs, c_dss_regs, dss_per_quad, quad_first;
bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask,
XE_MAX_DSS_FUSE_BITS);
get_num_dss_regs(xe, &g_dss_regs, &c_dss_regs);
dss_per_quad = 32 * max(g_dss_regs, c_dss_regs) / 4;
quad_first = xe_dss_mask_group_ffs(all_dss, dss_per_quad, quad);
return quad_first < (quad + 1) * dss_per_quad;
}
bool xe_gt_has_geometry_dss(struct xe_gt *gt, unsigned int dss)
{
return test_bit(dss, gt->fuse_topo.g_dss_mask);
}
bool xe_gt_has_compute_dss(struct xe_gt *gt, unsigned int dss)
{
return test_bit(dss, gt->fuse_topo.c_dss_mask);
}