// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc_pc.h"
#include <linux/delay.h>
#include <drm/drm_managed.h>
#include <generated/xe_wa_oob.h>
#include "abi/guc_actions_slpc_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_idle.h"
#include "xe_gt_printk.h"
#include "xe_gt_types.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_pcode.h"
#include "xe_pm.h"
#include "xe_sriov.h"
#include "xe_wa.h"
#define MCHBAR_MIRROR_BASE_SNB 0x140000
#define RP_STATE_CAP XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
#define RP0_MASK REG_GENMASK(7, 0)
#define RP1_MASK REG_GENMASK(15, 8)
#define RPN_MASK REG_GENMASK(23, 16)
#define FREQ_INFO_REC XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
#define RPE_MASK REG_GENMASK(15, 8)
#define GT_PERF_STATUS XE_REG(0x1381b4)
#define CAGF_MASK REG_GENMASK(19, 11)
#define GT_FREQUENCY_MULTIPLIER 50
#define GT_FREQUENCY_SCALER 3
#define LNL_MERT_FREQ_CAP 800
#define BMG_MERT_FREQ_CAP 2133
/**
* DOC: GuC Power Conservation (PC)
*
* GuC Power Conservation (PC) supports multiple features for the most
* efficient and performing use of the GT when GuC submission is enabled,
* including frequency management, Render-C states management, and various
* algorithms for power balancing.
*
* Single Loop Power Conservation (SLPC) is the name given to the suite of
* connected power conservation features in the GuC firmware. The firmware
* exposes a programming interface to the host for the control of SLPC.
*
* Frequency management:
* =====================
*
* Xe driver enables SLPC with all of its defaults features and frequency
* selection, which varies per platform.
*
* Render-C States:
* ================
*
* Render-C states is also a GuC PC feature that is now enabled in Xe for
* all platforms.
*
*/
static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc)
{
return container_of(pc, struct xe_guc, pc);
}
static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc)
{
return &pc_to_guc(pc)->ct;
}
static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc)
{
return guc_to_gt(pc_to_guc(pc));
}
static struct xe_device *pc_to_xe(struct xe_guc_pc *pc)
{
return guc_to_xe(pc_to_guc(pc));
}
static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc)
{
return &pc->bo->vmap;
}
#define slpc_shared_data_read(pc_, field_) \
xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
struct slpc_shared_data, field_)
#define slpc_shared_data_write(pc_, field_, val_) \
xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
struct slpc_shared_data, field_, val_)
#define SLPC_EVENT(id, count) \
(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
static int wait_for_pc_state(struct xe_guc_pc *pc,
enum slpc_global_state state)
{
int timeout_us = 5000; /* rought 5ms, but no need for precision */
int slept, wait = 10;
xe_device_assert_mem_access(pc_to_xe(pc));
for (slept = 0; slept < timeout_us;) {
if (slpc_shared_data_read(pc, header.global_state) == state)
return 0;
usleep_range(wait, wait << 1);
slept += wait;
wait <<= 1;
if (slept + wait > timeout_us)
wait = timeout_us - slept;
}
return -ETIMEDOUT;
}
static int pc_action_reset(struct xe_guc_pc *pc)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_RESET, 2),
xe_bo_ggtt_addr(pc->bo),
0,
};
int ret;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n",
ERR_PTR(ret));
return ret;
}
static int pc_action_query_task_state(struct xe_guc_pc *pc)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
xe_bo_ggtt_addr(pc->bo),
0,
};
int ret;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
return -EAGAIN;
/* Blocking here to ensure the results are ready before reading them */
ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
if (ret)
xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n",
ERR_PTR(ret));
return ret;
}
static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
id,
value,
};
int ret;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
return -EAGAIN;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n",
id, value, ERR_PTR(ret));
return ret;
}
static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id)
{
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
id,
};
struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
int ret;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
return -EAGAIN;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe",
ERR_PTR(ret));
return ret;
}
static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC,
mode,
};
int ret;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n",
mode, ERR_PTR(ret));
return ret;
}
static u32 decode_freq(u32 raw)
{
return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
GT_FREQUENCY_SCALER);
}
static u32 encode_freq(u32 freq)
{
return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
GT_FREQUENCY_MULTIPLIER);
}
static u32 pc_get_min_freq(struct xe_guc_pc *pc)
{
u32 freq;
freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
slpc_shared_data_read(pc, task_state_data.freq));
return decode_freq(freq);
}
static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
/* Allow/Disallow punit to process software freq requests */
xe_mmio_write32(gt, RP_CONTROL, state);
}
static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 rpnswreq;
pc_set_manual_rp_ctrl(pc, true);
/* Req freq is in units of 16.66 Mhz */
rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
xe_mmio_write32(gt, RPNSWREQ, rpnswreq);
/* Sleep for a small time to allow pcode to respond */
usleep_range(100, 300);
pc_set_manual_rp_ctrl(pc, false);
}
static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
{
/*
* Let's only check for the rpn-rp0 range. If max < min,
* min becomes a fixed request.
*/
if (freq < pc->rpn_freq || freq > pc->rp0_freq)
return -EINVAL;
/*
* GuC policy is to elevate minimum frequency to the efficient levels
* Our goal is to have the admin choices respected.
*/
pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
freq < pc->rpe_freq);
return pc_action_set_param(pc,
SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
freq);
}
static int pc_get_max_freq(struct xe_guc_pc *pc)
{
u32 freq;
freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
slpc_shared_data_read(pc, task_state_data.freq));
return decode_freq(freq);
}
static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
{
/*
* Let's only check for the rpn-rp0 range. If max < min,
* min becomes a fixed request.
* Also, overclocking is not supported.
*/
if (freq < pc->rpn_freq || freq > pc->rp0_freq)
return -EINVAL;
return pc_action_set_param(pc,
SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
freq);
}
static void mtl_update_rpe_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(gt, MTL_MPE_FREQUENCY);
else
reg = xe_mmio_read32(gt, MTL_GT_RPE_FREQUENCY);
pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
}
static void tgl_update_rpe_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
/*
* For PVC we still need to use fused RP1 as the approximation for RPe
* For other platforms than PVC we get the resolved RPe directly from
* PCODE at a different register
*/
if (xe->info.platform == XE_PVC)
reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
else
reg = xe_mmio_read32(gt, FREQ_INFO_REC);
pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
static void pc_update_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1270)
mtl_update_rpe_value(pc);
else
tgl_update_rpe_value(pc);
/*
* RPe is decided at runtime by PCODE. In the rare case where that's
* smaller than the fused min, we will trust the PCODE and use that
* as our minimum one.
*/
pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
}
/**
* xe_guc_pc_get_act_freq - Get Actual running frequency
* @pc: The GuC PC
*
* Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
*/
u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 freq;
/* When in RC6, actual frequency reported will be 0. */
if (GRAPHICS_VERx100(xe) >= 1270) {
freq = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
} else {
freq = xe_mmio_read32(gt, GT_PERF_STATUS);
freq = REG_FIELD_GET(CAGF_MASK, freq);
}
freq = decode_freq(freq);
return freq;
}
/**
* xe_guc_pc_get_cur_freq - Get Current requested frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
{
struct xe_gt *gt = pc_to_gt(pc);
int ret;
/*
* GuC SLPC plays with cur freq request when GuCRC is enabled
* Block RC6 for a more reliable read.
*/
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
*freq = xe_mmio_read32(gt, RPNSWREQ);
*freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq);
*freq = decode_freq(*freq);
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
return 0;
}
/**
* xe_guc_pc_get_rp0_freq - Get the RP0 freq
* @pc: The GuC PC
*
* Returns: RP0 freq.
*/
u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
{
return pc->rp0_freq;
}
/**
* xe_guc_pc_get_rpe_freq - Get the RPe freq
* @pc: The GuC PC
*
* Returns: RPe freq.
*/
u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
{
pc_update_rp_values(pc);
return pc->rpe_freq;
}
/**
* xe_guc_pc_get_rpn_freq - Get the RPn freq
* @pc: The GuC PC
*
* Returns: RPn freq.
*/
u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
{
return pc->rpn_freq;
}
/**
* xe_guc_pc_get_min_freq - Get the min operational frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
{
struct xe_gt *gt = pc_to_gt(pc);
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
/*
* GuC SLPC plays with min freq request when GuCRC is enabled
* Block RC6 for a more reliable read.
*/
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
goto out;
ret = pc_action_query_task_state(pc);
if (ret)
goto fw;
*freq = pc_get_min_freq(pc);
fw:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_set_min_freq - Set the minimal operational frequency
* @pc: The GuC PC
* @freq: The selected minimal frequency
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset),
* -EINVAL if value out of bounds.
*/
int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
{
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
ret = pc_set_min_freq(pc, freq);
if (ret)
goto out;
pc->user_requested_min = freq;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_get_max_freq - Get Maximum operational frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
{
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
ret = pc_action_query_task_state(pc);
if (ret)
goto out;
*freq = pc_get_max_freq(pc);
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_set_max_freq - Set the maximum operational frequency
* @pc: The GuC PC
* @freq: The selected maximum frequency value
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset),
* -EINVAL if value out of bounds.
*/
int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
{
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
ret = pc_set_max_freq(pc, freq);
if (ret)
goto out;
pc->user_requested_max = freq;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_c_status - get the current GT C state
* @pc: XE_GuC_PC instance
*/
enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg, gt_c_state;
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
reg = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
} else {
reg = xe_mmio_read32(gt, GT_CORE_STATUS);
gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
}
switch (gt_c_state) {
case GT_C6:
return GT_IDLE_C6;
case GT_C0:
return GT_IDLE_C0;
default:
return GT_IDLE_UNKNOWN;
}
}
/**
* xe_guc_pc_rc6_residency - rc6 residency counter
* @pc: Xe_GuC_PC instance
*/
u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
reg = xe_mmio_read32(gt, GT_GFX_RC6);
return reg;
}
/**
* xe_guc_pc_mc6_residency - mc6 residency counter
* @pc: Xe_GuC_PC instance
*/
u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u64 reg;
reg = xe_mmio_read32(gt, MTL_MEDIA_MC6);
return reg;
}
static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
xe_device_assert_mem_access(pc_to_xe(pc));
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(gt, MTL_MEDIAP_STATE_CAP);
else
reg = xe_mmio_read32(gt, MTL_RP_STATE_CAP);
pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
}
static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
xe_device_assert_mem_access(pc_to_xe(pc));
if (xe->info.platform == XE_PVC)
reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
else
reg = xe_mmio_read32(gt, RP_STATE_CAP);
pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1270)
mtl_init_fused_rp_values(pc);
else
tgl_init_fused_rp_values(pc);
}
static u32 pc_max_freq_cap(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
if (XE_WA(gt, 22019338487)) {
if (xe_gt_is_media_type(gt))
return min(LNL_MERT_FREQ_CAP, pc->rp0_freq);
else
return min(BMG_MERT_FREQ_CAP, pc->rp0_freq);
} else {
return pc->rp0_freq;
}
}
/**
* xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT
* frequency to allow faster GuC load times
* @pc: Xe_GuC_PC instance
*/
void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
pc_set_cur_freq(pc, pc_max_freq_cap(pc));
}
/**
* xe_guc_pc_init_early - Initialize RPx values
* @pc: Xe_GuC_PC instance
*/
void xe_guc_pc_init_early(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
pc_init_fused_rp_values(pc);
}
static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
{
int ret;
lockdep_assert_held(&pc->freq_lock);
ret = pc_action_query_task_state(pc);
if (ret)
goto out;
/*
* GuC defaults to some RPmax that is not actually achievable without
* overclocking. Let's adjust it to the Hardware RP0, which is the
* regular maximum
*/
if (pc_get_max_freq(pc) > pc->rp0_freq) {
ret = pc_set_max_freq(pc, pc->rp0_freq);
if (ret)
goto out;
}
/*
* Same thing happens for Server platforms where min is listed as
* RPMax
*/
if (pc_get_min_freq(pc) > pc->rp0_freq)
ret = pc_set_min_freq(pc, pc->rp0_freq);
out:
return ret;
}
static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
{
int ret = 0;
lockdep_assert_held(&pc->freq_lock);
if (pc->user_requested_min != 0) {
ret = pc_set_min_freq(pc, pc->user_requested_min);
if (ret)
return ret;
}
if (pc->user_requested_max != 0) {
ret = pc_set_max_freq(pc, pc->user_requested_max);
if (ret)
return ret;
}
return ret;
}
static int pc_set_mert_freq_cap(struct xe_guc_pc *pc)
{
int ret = 0;
if (XE_WA(pc_to_gt(pc), 22019338487)) {
/*
* Get updated min/max and stash them.
*/
ret = xe_guc_pc_get_min_freq(pc, &pc->stashed_min_freq);
if (!ret)
ret = xe_guc_pc_get_max_freq(pc, &pc->stashed_max_freq);
if (ret)
return ret;
/*
* Ensure min and max are bound by MERT_FREQ_CAP until driver loads.
*/
mutex_lock(&pc->freq_lock);
ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc)));
if (!ret)
ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc)));
mutex_unlock(&pc->freq_lock);
}
return ret;
}
/**
* xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values
* @pc: The GuC PC
*
* Returns: 0 on success,
* error code on failure
*/
int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc)
{
int ret = 0;
if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc)
return 0;
mutex_lock(&pc->freq_lock);
ret = pc_set_max_freq(pc, pc->stashed_max_freq);
if (!ret)
ret = pc_set_min_freq(pc, pc->stashed_min_freq);
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_gucrc_disable - Disable GuC RC
* @pc: Xe_GuC_PC instance
*
* Disables GuC RC by taking control of RC6 back from GuC.
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
struct xe_gt *gt = pc_to_gt(pc);
int ret = 0;
if (xe->info.skip_guc_pc)
return 0;
ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL);
if (ret)
return ret;
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
xe_gt_idle_disable_c6(gt);
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
return 0;
}
/**
* xe_guc_pc_override_gucrc_mode - override GUCRC mode
* @pc: Xe_GuC_PC instance
* @mode: new value of the mode.
*
* Return: 0 on success, negative error code on error
*/
int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode)
{
int ret;
xe_pm_runtime_get(pc_to_xe(pc));
ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
xe_pm_runtime_put(pc_to_xe(pc));
return ret;
}
/**
* xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override
* @pc: Xe_GuC_PC instance
*
* Return: 0 on success, negative error code on error
*/
int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc)
{
int ret;
xe_pm_runtime_get(pc_to_xe(pc));
ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE);
xe_pm_runtime_put(pc_to_xe(pc));
return ret;
}
static void pc_init_pcode_freq(struct xe_guc_pc *pc)
{
u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
XE_WARN_ON(xe_pcode_init_min_freq_table(gt_to_tile(pc_to_gt(pc)), min, max));
}
static int pc_init_freqs(struct xe_guc_pc *pc)
{
int ret;
mutex_lock(&pc->freq_lock);
ret = pc_adjust_freq_bounds(pc);
if (ret)
goto out;
ret = pc_adjust_requested_freq(pc);
if (ret)
goto out;
pc_update_rp_values(pc);
pc_init_pcode_freq(pc);
/*
* The frequencies are really ready for use only after the user
* requested ones got restored.
*/
pc->freq_ready = true;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_start - Start GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_start(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
struct xe_gt *gt = pc_to_gt(pc);
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
int ret;
xe_gt_assert(gt, xe_device_uc_enabled(xe));
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
if (xe->info.skip_guc_pc) {
if (xe->info.platform != XE_PVC)
xe_gt_idle_enable_c6(gt);
/* Request max possible since dynamic freq mgmt is not enabled */
pc_set_cur_freq(pc, UINT_MAX);
ret = 0;
goto out;
}
memset(pc->bo->vmap.vaddr, 0, size);
slpc_shared_data_write(pc, header.size, size);
ret = pc_action_reset(pc);
if (ret)
goto out;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) {
xe_gt_err(gt, "GuC PC Start failed\n");
ret = -EIO;
goto out;
}
ret = pc_init_freqs(pc);
if (ret)
goto out;
ret = pc_set_mert_freq_cap(pc);
if (ret)
goto out;
if (xe->info.platform == XE_PVC) {
xe_guc_pc_gucrc_disable(pc);
ret = 0;
goto out;
}
ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL);
out:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
return ret;
}
/**
* xe_guc_pc_stop - Stop GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_stop(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
if (xe->info.skip_guc_pc) {
xe_gt_idle_disable_c6(pc_to_gt(pc));
return 0;
}
mutex_lock(&pc->freq_lock);
pc->freq_ready = false;
mutex_unlock(&pc->freq_lock);
return 0;
}
/**
* xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component
* @arg: opaque pointer that should point to Xe_GuC_PC instance
*/
static void xe_guc_pc_fini_hw(void *arg)
{
struct xe_guc_pc *pc = arg;
struct xe_device *xe = pc_to_xe(pc);
if (xe_device_wedged(xe))
return;
XE_WARN_ON(xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL));
xe_guc_pc_gucrc_disable(pc);
XE_WARN_ON(xe_guc_pc_stop(pc));
/* Bind requested freq to mert_freq_cap before unload */
pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq));
xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
}
/**
* xe_guc_pc_init - Initialize GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_init(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_device *xe = gt_to_xe(gt);
struct xe_bo *bo;
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
int err;
if (xe->info.skip_guc_pc)
return 0;
err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
if (err)
return err;
bo = xe_managed_bo_create_pin_map(xe, tile, size,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE);
if (IS_ERR(bo))
return PTR_ERR(bo);
pc->bo = bo;
return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc);
}