// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_hw_engine.h"
#include <linux/nospec.h>
#include <drm/drm_managed.h>
#include <uapi/drm/xe_drm.h>
#include "regs/xe_engine_regs.h"
#include "regs/xe_gt_regs.h"
#include "xe_assert.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_execlist.h"
#include "xe_force_wake.h"
#include "xe_gsc.h"
#include "xe_gt.h"
#include "xe_gt_ccs_mode.h"
#include "xe_gt_printk.h"
#include "xe_gt_mcr.h"
#include "xe_gt_topology.h"
#include "xe_hw_engine_group.h"
#include "xe_hw_fence.h"
#include "xe_irq.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_mmio.h"
#include "xe_reg_sr.h"
#include "xe_reg_whitelist.h"
#include "xe_rtp.h"
#include "xe_sched_job.h"
#include "xe_sriov.h"
#include "xe_tuning.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"
#define MAX_MMIO_BASES 3
struct engine_info {
const char *name;
unsigned int class : 8;
unsigned int instance : 8;
unsigned int irq_offset : 8;
enum xe_force_wake_domains domain;
u32 mmio_base;
};
static const struct engine_info engine_infos[] = {
[XE_HW_ENGINE_RCS0] = {
.name = "rcs0",
.class = XE_ENGINE_CLASS_RENDER,
.instance = 0,
.irq_offset = ilog2(INTR_RCS0),
.domain = XE_FW_RENDER,
.mmio_base = RENDER_RING_BASE,
},
[XE_HW_ENGINE_BCS0] = {
.name = "bcs0",
.class = XE_ENGINE_CLASS_COPY,
.instance = 0,
.irq_offset = ilog2(INTR_BCS(0)),
.domain = XE_FW_RENDER,
.mmio_base = BLT_RING_BASE,
},
[XE_HW_ENGINE_BCS1] = {
.name = "bcs1",
.class = XE_ENGINE_CLASS_COPY,
.instance = 1,
.irq_offset = ilog2(INTR_BCS(1)),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS1_RING_BASE,
},
[XE_HW_ENGINE_BCS2] = {
.name = "bcs2",
.class = XE_ENGINE_CLASS_COPY,
.instance = 2,
.irq_offset = ilog2(INTR_BCS(2)),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS2_RING_BASE,
},
[XE_HW_ENGINE_BCS3] = {
.name = "bcs3",
.class = XE_ENGINE_CLASS_COPY,
.instance = 3,
.irq_offset = ilog2(INTR_BCS(3)),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS3_RING_BASE,
},
[XE_HW_ENGINE_BCS4] = {
.name = "bcs4",
.class = XE_ENGINE_CLASS_COPY,
.instance = 4,
.irq_offset = ilog2(INTR_BCS(4)),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS4_RING_BASE,
},
[XE_HW_ENGINE_BCS5] = {
.name = "bcs5",
.class = XE_ENGINE_CLASS_COPY,
.instance = 5,
.irq_offset = ilog2(INTR_BCS(5)),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS5_RING_BASE,
},
[XE_HW_ENGINE_BCS6] = {
.name = "bcs6",
.class = XE_ENGINE_CLASS_COPY,
.instance = 6,
.irq_offset = ilog2(INTR_BCS(6)),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS6_RING_BASE,
},
[XE_HW_ENGINE_BCS7] = {
.name = "bcs7",
.class = XE_ENGINE_CLASS_COPY,
.irq_offset = ilog2(INTR_BCS(7)),
.instance = 7,
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS7_RING_BASE,
},
[XE_HW_ENGINE_BCS8] = {
.name = "bcs8",
.class = XE_ENGINE_CLASS_COPY,
.instance = 8,
.irq_offset = ilog2(INTR_BCS8),
.domain = XE_FW_RENDER,
.mmio_base = XEHPC_BCS8_RING_BASE,
},
[XE_HW_ENGINE_VCS0] = {
.name = "vcs0",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 0,
.irq_offset = 32 + ilog2(INTR_VCS(0)),
.domain = XE_FW_MEDIA_VDBOX0,
.mmio_base = BSD_RING_BASE,
},
[XE_HW_ENGINE_VCS1] = {
.name = "vcs1",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 1,
.irq_offset = 32 + ilog2(INTR_VCS(1)),
.domain = XE_FW_MEDIA_VDBOX1,
.mmio_base = BSD2_RING_BASE,
},
[XE_HW_ENGINE_VCS2] = {
.name = "vcs2",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 2,
.irq_offset = 32 + ilog2(INTR_VCS(2)),
.domain = XE_FW_MEDIA_VDBOX2,
.mmio_base = BSD3_RING_BASE,
},
[XE_HW_ENGINE_VCS3] = {
.name = "vcs3",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 3,
.irq_offset = 32 + ilog2(INTR_VCS(3)),
.domain = XE_FW_MEDIA_VDBOX3,
.mmio_base = BSD4_RING_BASE,
},
[XE_HW_ENGINE_VCS4] = {
.name = "vcs4",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 4,
.irq_offset = 32 + ilog2(INTR_VCS(4)),
.domain = XE_FW_MEDIA_VDBOX4,
.mmio_base = XEHP_BSD5_RING_BASE,
},
[XE_HW_ENGINE_VCS5] = {
.name = "vcs5",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 5,
.irq_offset = 32 + ilog2(INTR_VCS(5)),
.domain = XE_FW_MEDIA_VDBOX5,
.mmio_base = XEHP_BSD6_RING_BASE,
},
[XE_HW_ENGINE_VCS6] = {
.name = "vcs6",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 6,
.irq_offset = 32 + ilog2(INTR_VCS(6)),
.domain = XE_FW_MEDIA_VDBOX6,
.mmio_base = XEHP_BSD7_RING_BASE,
},
[XE_HW_ENGINE_VCS7] = {
.name = "vcs7",
.class = XE_ENGINE_CLASS_VIDEO_DECODE,
.instance = 7,
.irq_offset = 32 + ilog2(INTR_VCS(7)),
.domain = XE_FW_MEDIA_VDBOX7,
.mmio_base = XEHP_BSD8_RING_BASE,
},
[XE_HW_ENGINE_VECS0] = {
.name = "vecs0",
.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
.instance = 0,
.irq_offset = 32 + ilog2(INTR_VECS(0)),
.domain = XE_FW_MEDIA_VEBOX0,
.mmio_base = VEBOX_RING_BASE,
},
[XE_HW_ENGINE_VECS1] = {
.name = "vecs1",
.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
.instance = 1,
.irq_offset = 32 + ilog2(INTR_VECS(1)),
.domain = XE_FW_MEDIA_VEBOX1,
.mmio_base = VEBOX2_RING_BASE,
},
[XE_HW_ENGINE_VECS2] = {
.name = "vecs2",
.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
.instance = 2,
.irq_offset = 32 + ilog2(INTR_VECS(2)),
.domain = XE_FW_MEDIA_VEBOX2,
.mmio_base = XEHP_VEBOX3_RING_BASE,
},
[XE_HW_ENGINE_VECS3] = {
.name = "vecs3",
.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
.instance = 3,
.irq_offset = 32 + ilog2(INTR_VECS(3)),
.domain = XE_FW_MEDIA_VEBOX3,
.mmio_base = XEHP_VEBOX4_RING_BASE,
},
[XE_HW_ENGINE_CCS0] = {
.name = "ccs0",
.class = XE_ENGINE_CLASS_COMPUTE,
.instance = 0,
.irq_offset = ilog2(INTR_CCS(0)),
.domain = XE_FW_RENDER,
.mmio_base = COMPUTE0_RING_BASE,
},
[XE_HW_ENGINE_CCS1] = {
.name = "ccs1",
.class = XE_ENGINE_CLASS_COMPUTE,
.instance = 1,
.irq_offset = ilog2(INTR_CCS(1)),
.domain = XE_FW_RENDER,
.mmio_base = COMPUTE1_RING_BASE,
},
[XE_HW_ENGINE_CCS2] = {
.name = "ccs2",
.class = XE_ENGINE_CLASS_COMPUTE,
.instance = 2,
.irq_offset = ilog2(INTR_CCS(2)),
.domain = XE_FW_RENDER,
.mmio_base = COMPUTE2_RING_BASE,
},
[XE_HW_ENGINE_CCS3] = {
.name = "ccs3",
.class = XE_ENGINE_CLASS_COMPUTE,
.instance = 3,
.irq_offset = ilog2(INTR_CCS(3)),
.domain = XE_FW_RENDER,
.mmio_base = COMPUTE3_RING_BASE,
},
[XE_HW_ENGINE_GSCCS0] = {
.name = "gsccs0",
.class = XE_ENGINE_CLASS_OTHER,
.instance = OTHER_GSC_INSTANCE,
.domain = XE_FW_GSC,
.mmio_base = GSCCS_RING_BASE,
},
};
static void hw_engine_fini(void *arg)
{
struct xe_hw_engine *hwe = arg;
if (hwe->exl_port)
xe_execlist_port_destroy(hwe->exl_port);
hwe->gt = NULL;
}
/**
* xe_hw_engine_mmio_write32() - Write engine register
* @hwe: engine
* @reg: register to write into
* @val: desired 32-bit value to write
*
* This function will write val into an engine specific register.
* Forcewake must be held by the caller.
*
*/
void xe_hw_engine_mmio_write32(struct xe_hw_engine *hwe,
struct xe_reg reg, u32 val)
{
xe_gt_assert(hwe->gt, !(reg.addr & hwe->mmio_base));
xe_force_wake_assert_held(gt_to_fw(hwe->gt), hwe->domain);
reg.addr += hwe->mmio_base;
xe_mmio_write32(hwe->gt, reg, val);
}
/**
* xe_hw_engine_mmio_read32() - Read engine register
* @hwe: engine
* @reg: register to read from
*
* This function will read from an engine specific register.
* Forcewake must be held by the caller.
*
* Return: value of the 32-bit register.
*/
u32 xe_hw_engine_mmio_read32(struct xe_hw_engine *hwe, struct xe_reg reg)
{
xe_gt_assert(hwe->gt, !(reg.addr & hwe->mmio_base));
xe_force_wake_assert_held(gt_to_fw(hwe->gt), hwe->domain);
reg.addr += hwe->mmio_base;
return xe_mmio_read32(hwe->gt, reg);
}
void xe_hw_engine_enable_ring(struct xe_hw_engine *hwe)
{
u32 ccs_mask =
xe_hw_engine_mask_per_class(hwe->gt, XE_ENGINE_CLASS_COMPUTE);
if (hwe->class == XE_ENGINE_CLASS_COMPUTE && ccs_mask)
xe_mmio_write32(hwe->gt, RCU_MODE,
_MASKED_BIT_ENABLE(RCU_MODE_CCS_ENABLE));
xe_hw_engine_mmio_write32(hwe, RING_HWSTAM(0), ~0x0);
xe_hw_engine_mmio_write32(hwe, RING_HWS_PGA(0),
xe_bo_ggtt_addr(hwe->hwsp));
xe_hw_engine_mmio_write32(hwe, RING_MODE(0),
_MASKED_BIT_ENABLE(GFX_DISABLE_LEGACY_MODE));
xe_hw_engine_mmio_write32(hwe, RING_MI_MODE(0),
_MASKED_BIT_DISABLE(STOP_RING));
xe_hw_engine_mmio_read32(hwe, RING_MI_MODE(0));
}
static bool xe_hw_engine_match_fixed_cslice_mode(const struct xe_gt *gt,
const struct xe_hw_engine *hwe)
{
return xe_gt_ccs_mode_enabled(gt) &&
xe_rtp_match_first_render_or_compute(gt, hwe);
}
static bool xe_rtp_cfeg_wmtp_disabled(const struct xe_gt *gt,
const struct xe_hw_engine *hwe)
{
if (GRAPHICS_VER(gt_to_xe(gt)) < 20)
return false;
if (hwe->class != XE_ENGINE_CLASS_COMPUTE &&
hwe->class != XE_ENGINE_CLASS_RENDER)
return false;
return xe_mmio_read32(hwe->gt, XEHP_FUSE4) & CFEG_WMTP_DISABLE;
}
void
xe_hw_engine_setup_default_lrc_state(struct xe_hw_engine *hwe)
{
struct xe_gt *gt = hwe->gt;
const u8 mocs_write_idx = gt->mocs.uc_index;
const u8 mocs_read_idx = gt->mocs.uc_index;
u32 blit_cctl_val = REG_FIELD_PREP(BLIT_CCTL_DST_MOCS_MASK, mocs_write_idx) |
REG_FIELD_PREP(BLIT_CCTL_SRC_MOCS_MASK, mocs_read_idx);
struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(hwe);
const struct xe_rtp_entry_sr lrc_setup[] = {
/*
* Some blitter commands do not have a field for MOCS, those
* commands will use MOCS index pointed by BLIT_CCTL.
* BLIT_CCTL registers are needed to be programmed to un-cached.
*/
{ XE_RTP_NAME("BLIT_CCTL_default_MOCS"),
XE_RTP_RULES(GRAPHICS_VERSION_RANGE(1200, XE_RTP_END_VERSION_UNDEFINED),
ENGINE_CLASS(COPY)),
XE_RTP_ACTIONS(FIELD_SET(BLIT_CCTL(0),
BLIT_CCTL_DST_MOCS_MASK |
BLIT_CCTL_SRC_MOCS_MASK,
blit_cctl_val,
XE_RTP_ACTION_FLAG(ENGINE_BASE)))
},
/* Use Fixed slice CCS mode */
{ XE_RTP_NAME("RCU_MODE_FIXED_SLICE_CCS_MODE"),
XE_RTP_RULES(FUNC(xe_hw_engine_match_fixed_cslice_mode)),
XE_RTP_ACTIONS(FIELD_SET(RCU_MODE, RCU_MODE_FIXED_SLICE_CCS_MODE,
RCU_MODE_FIXED_SLICE_CCS_MODE))
},
/* Disable WMTP if HW doesn't support it */
{ XE_RTP_NAME("DISABLE_WMTP_ON_UNSUPPORTED_HW"),
XE_RTP_RULES(FUNC(xe_rtp_cfeg_wmtp_disabled)),
XE_RTP_ACTIONS(FIELD_SET(CS_CHICKEN1(0),
PREEMPT_GPGPU_LEVEL_MASK,
PREEMPT_GPGPU_THREAD_GROUP_LEVEL)),
XE_RTP_ENTRY_FLAG(FOREACH_ENGINE)
},
{}
};
xe_rtp_process_to_sr(&ctx, lrc_setup, &hwe->reg_lrc);
}
static void
hw_engine_setup_default_state(struct xe_hw_engine *hwe)
{
struct xe_gt *gt = hwe->gt;
struct xe_device *xe = gt_to_xe(gt);
/*
* RING_CMD_CCTL specifies the default MOCS entry that will be
* used by the command streamer when executing commands that
* don't have a way to explicitly specify a MOCS setting.
* The default should usually reference whichever MOCS entry
* corresponds to uncached behavior, although use of a WB cached
* entry is recommended by the spec in certain circumstances on
* specific platforms.
* Bspec: 72161
*/
const u8 mocs_write_idx = gt->mocs.uc_index;
const u8 mocs_read_idx = hwe->class == XE_ENGINE_CLASS_COMPUTE &&
(GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC) ?
gt->mocs.wb_index : gt->mocs.uc_index;
u32 ring_cmd_cctl_val = REG_FIELD_PREP(CMD_CCTL_WRITE_OVERRIDE_MASK, mocs_write_idx) |
REG_FIELD_PREP(CMD_CCTL_READ_OVERRIDE_MASK, mocs_read_idx);
struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(hwe);
const struct xe_rtp_entry_sr engine_entries[] = {
{ XE_RTP_NAME("RING_CMD_CCTL_default_MOCS"),
XE_RTP_RULES(GRAPHICS_VERSION_RANGE(1200, XE_RTP_END_VERSION_UNDEFINED)),
XE_RTP_ACTIONS(FIELD_SET(RING_CMD_CCTL(0),
CMD_CCTL_WRITE_OVERRIDE_MASK |
CMD_CCTL_READ_OVERRIDE_MASK,
ring_cmd_cctl_val,
XE_RTP_ACTION_FLAG(ENGINE_BASE)))
},
/*
* To allow the GSC engine to go idle on MTL we need to enable
* idle messaging and set the hysteresis value (we use 0xA=5us
* as recommended in spec). On platforms after MTL this is
* enabled by default.
*/
{ XE_RTP_NAME("MTL GSCCS IDLE MSG enable"),
XE_RTP_RULES(MEDIA_VERSION(1300), ENGINE_CLASS(OTHER)),
XE_RTP_ACTIONS(CLR(RING_PSMI_CTL(0),
IDLE_MSG_DISABLE,
XE_RTP_ACTION_FLAG(ENGINE_BASE)),
FIELD_SET(RING_PWRCTX_MAXCNT(0),
IDLE_WAIT_TIME,
0xA,
XE_RTP_ACTION_FLAG(ENGINE_BASE)))
},
/* Enable Priority Mem Read */
{ XE_RTP_NAME("Priority_Mem_Read"),
XE_RTP_RULES(GRAPHICS_VERSION_RANGE(2001, XE_RTP_END_VERSION_UNDEFINED)),
XE_RTP_ACTIONS(SET(CSFE_CHICKEN1(0), CS_PRIORITY_MEM_READ,
XE_RTP_ACTION_FLAG(ENGINE_BASE)))
},
{}
};
xe_rtp_process_to_sr(&ctx, engine_entries, &hwe->reg_sr);
}
static void hw_engine_init_early(struct xe_gt *gt, struct xe_hw_engine *hwe,
enum xe_hw_engine_id id)
{
const struct engine_info *info;
if (WARN_ON(id >= ARRAY_SIZE(engine_infos) || !engine_infos[id].name))
return;
if (!(gt->info.engine_mask & BIT(id)))
return;
info = &engine_infos[id];
xe_gt_assert(gt, !hwe->gt);
hwe->gt = gt;
hwe->class = info->class;
hwe->instance = info->instance;
hwe->mmio_base = info->mmio_base;
hwe->irq_offset = info->irq_offset;
hwe->domain = info->domain;
hwe->name = info->name;
hwe->fence_irq = >->fence_irq[info->class];
hwe->engine_id = id;
hwe->eclass = >->eclass[hwe->class];
if (!hwe->eclass->sched_props.job_timeout_ms) {
hwe->eclass->sched_props.job_timeout_ms = 5 * 1000;
hwe->eclass->sched_props.job_timeout_min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
hwe->eclass->sched_props.job_timeout_max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
hwe->eclass->sched_props.timeslice_us = 1 * 1000;
hwe->eclass->sched_props.timeslice_min = XE_HW_ENGINE_TIMESLICE_MIN;
hwe->eclass->sched_props.timeslice_max = XE_HW_ENGINE_TIMESLICE_MAX;
hwe->eclass->sched_props.preempt_timeout_us = XE_HW_ENGINE_PREEMPT_TIMEOUT;
hwe->eclass->sched_props.preempt_timeout_min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
hwe->eclass->sched_props.preempt_timeout_max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
/*
* The GSC engine can accept submissions while the GSC shim is
* being reset, during which time the submission is stalled. In
* the worst case, the shim reset can take up to the maximum GSC
* command execution time (250ms), so the request start can be
* delayed by that much; the request itself can take that long
* without being preemptible, which means worst case it can
* theoretically take up to 500ms for a preemption to go through
* on the GSC engine. Adding to that an extra 100ms as a safety
* margin, we get a minimum recommended timeout of 600ms.
* The preempt_timeout value can't be tuned for OTHER_CLASS
* because the class is reserved for kernel usage, so we just
* need to make sure that the starting value is above that
* threshold; since our default value (640ms) is greater than
* 600ms, the only way we can go below is via a kconfig setting.
* If that happens, log it in dmesg and update the value.
*/
if (hwe->class == XE_ENGINE_CLASS_OTHER) {
const u32 min_preempt_timeout = 600 * 1000;
if (hwe->eclass->sched_props.preempt_timeout_us < min_preempt_timeout) {
hwe->eclass->sched_props.preempt_timeout_us = min_preempt_timeout;
xe_gt_notice(gt, "Increasing preempt_timeout for GSC to 600ms\n");
}
}
/* Record default props */
hwe->eclass->defaults = hwe->eclass->sched_props;
}
xe_reg_sr_init(&hwe->reg_sr, hwe->name, gt_to_xe(gt));
xe_tuning_process_engine(hwe);
xe_wa_process_engine(hwe);
hw_engine_setup_default_state(hwe);
xe_reg_sr_init(&hwe->reg_whitelist, hwe->name, gt_to_xe(gt));
xe_reg_whitelist_process_engine(hwe);
}
static int hw_engine_init(struct xe_gt *gt, struct xe_hw_engine *hwe,
enum xe_hw_engine_id id)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_tile *tile = gt_to_tile(gt);
int err;
xe_gt_assert(gt, id < ARRAY_SIZE(engine_infos) && engine_infos[id].name);
xe_gt_assert(gt, gt->info.engine_mask & BIT(id));
xe_reg_sr_apply_mmio(&hwe->reg_sr, gt);
xe_reg_sr_apply_whitelist(hwe);
hwe->hwsp = xe_managed_bo_create_pin_map(xe, tile, SZ_4K,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE);
if (IS_ERR(hwe->hwsp)) {
err = PTR_ERR(hwe->hwsp);
goto err_name;
}
if (!xe_device_uc_enabled(xe)) {
hwe->exl_port = xe_execlist_port_create(xe, hwe);
if (IS_ERR(hwe->exl_port)) {
err = PTR_ERR(hwe->exl_port);
goto err_hwsp;
}
} else {
/* GSCCS has a special interrupt for reset */
if (hwe->class == XE_ENGINE_CLASS_OTHER)
hwe->irq_handler = xe_gsc_hwe_irq_handler;
if (!IS_SRIOV_VF(xe))
xe_hw_engine_enable_ring(hwe);
}
/* We reserve the highest BCS instance for USM */
if (xe->info.has_usm && hwe->class == XE_ENGINE_CLASS_COPY)
gt->usm.reserved_bcs_instance = hwe->instance;
return devm_add_action_or_reset(xe->drm.dev, hw_engine_fini, hwe);
err_hwsp:
xe_bo_unpin_map_no_vm(hwe->hwsp);
err_name:
hwe->name = NULL;
return err;
}
static void hw_engine_setup_logical_mapping(struct xe_gt *gt)
{
int class;
/* FIXME: Doing a simple logical mapping that works for most hardware */
for (class = 0; class < XE_ENGINE_CLASS_MAX; ++class) {
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
int logical_instance = 0;
for_each_hw_engine(hwe, gt, id)
if (hwe->class == class)
hwe->logical_instance = logical_instance++;
}
}
static void read_media_fuses(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
u32 media_fuse;
u16 vdbox_mask;
u16 vebox_mask;
int i, j;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
media_fuse = xe_mmio_read32(gt, GT_VEBOX_VDBOX_DISABLE);
/*
* Pre-Xe_HP platforms had register bits representing absent engines,
* whereas Xe_HP and beyond have bits representing present engines.
* Invert the polarity on old platforms so that we can use common
* handling below.
*/
if (GRAPHICS_VERx100(xe) < 1250)
media_fuse = ~media_fuse;
vdbox_mask = REG_FIELD_GET(GT_VDBOX_DISABLE_MASK, media_fuse);
vebox_mask = REG_FIELD_GET(GT_VEBOX_DISABLE_MASK, media_fuse);
for (i = XE_HW_ENGINE_VCS0, j = 0; i <= XE_HW_ENGINE_VCS7; ++i, ++j) {
if (!(gt->info.engine_mask & BIT(i)))
continue;
if (!(BIT(j) & vdbox_mask)) {
gt->info.engine_mask &= ~BIT(i);
drm_info(&xe->drm, "vcs%u fused off\n", j);
}
}
for (i = XE_HW_ENGINE_VECS0, j = 0; i <= XE_HW_ENGINE_VECS3; ++i, ++j) {
if (!(gt->info.engine_mask & BIT(i)))
continue;
if (!(BIT(j) & vebox_mask)) {
gt->info.engine_mask &= ~BIT(i);
drm_info(&xe->drm, "vecs%u fused off\n", j);
}
}
}
static void read_copy_fuses(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
u32 bcs_mask;
if (GRAPHICS_VERx100(xe) < 1260 || GRAPHICS_VERx100(xe) >= 1270)
return;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
bcs_mask = xe_mmio_read32(gt, MIRROR_FUSE3);
bcs_mask = REG_FIELD_GET(MEML3_EN_MASK, bcs_mask);
/* BCS0 is always present; only BCS1-BCS8 may be fused off */
for (int i = XE_HW_ENGINE_BCS1, j = 0; i <= XE_HW_ENGINE_BCS8; ++i, ++j) {
if (!(gt->info.engine_mask & BIT(i)))
continue;
if (!(BIT(j / 2) & bcs_mask)) {
gt->info.engine_mask &= ~BIT(i);
drm_info(&xe->drm, "bcs%u fused off\n", j);
}
}
}
static void read_compute_fuses_from_dss(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
/*
* CCS fusing based on DSS masks only applies to platforms that can
* have more than one CCS.
*/
if (hweight64(gt->info.engine_mask &
GENMASK_ULL(XE_HW_ENGINE_CCS3, XE_HW_ENGINE_CCS0)) <= 1)
return;
/*
* CCS availability on Xe_HP is inferred from the presence of DSS in
* each quadrant.
*/
for (int i = XE_HW_ENGINE_CCS0, j = 0; i <= XE_HW_ENGINE_CCS3; ++i, ++j) {
if (!(gt->info.engine_mask & BIT(i)))
continue;
if (!xe_gt_topology_has_dss_in_quadrant(gt, j)) {
gt->info.engine_mask &= ~BIT(i);
drm_info(&xe->drm, "ccs%u fused off\n", j);
}
}
}
static void read_compute_fuses_from_reg(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
u32 ccs_mask;
ccs_mask = xe_mmio_read32(gt, XEHP_FUSE4);
ccs_mask = REG_FIELD_GET(CCS_EN_MASK, ccs_mask);
for (int i = XE_HW_ENGINE_CCS0, j = 0; i <= XE_HW_ENGINE_CCS3; ++i, ++j) {
if (!(gt->info.engine_mask & BIT(i)))
continue;
if ((ccs_mask & BIT(j)) == 0) {
gt->info.engine_mask &= ~BIT(i);
drm_info(&xe->drm, "ccs%u fused off\n", j);
}
}
}
static void read_compute_fuses(struct xe_gt *gt)
{
if (GRAPHICS_VER(gt_to_xe(gt)) >= 20)
read_compute_fuses_from_reg(gt);
else
read_compute_fuses_from_dss(gt);
}
static void check_gsc_availability(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
if (!(gt->info.engine_mask & BIT(XE_HW_ENGINE_GSCCS0)))
return;
/*
* The GSCCS is only used to communicate with the GSC FW, so if we don't
* have the FW there is nothing we need the engine for and can therefore
* skip its initialization.
*/
if (!xe_uc_fw_is_available(>->uc.gsc.fw)) {
gt->info.engine_mask &= ~BIT(XE_HW_ENGINE_GSCCS0);
/* interrupts where previously enabled, so turn them off */
xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, 0);
xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~0);
drm_info(&xe->drm, "gsccs disabled due to lack of FW\n");
}
}
int xe_hw_engines_init_early(struct xe_gt *gt)
{
int i;
read_media_fuses(gt);
read_copy_fuses(gt);
read_compute_fuses(gt);
check_gsc_availability(gt);
BUILD_BUG_ON(XE_HW_ENGINE_PREEMPT_TIMEOUT < XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN);
BUILD_BUG_ON(XE_HW_ENGINE_PREEMPT_TIMEOUT > XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX);
for (i = 0; i < ARRAY_SIZE(gt->hw_engines); i++)
hw_engine_init_early(gt, >->hw_engines[i], i);
return 0;
}
int xe_hw_engines_init(struct xe_gt *gt)
{
int err;
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
for_each_hw_engine(hwe, gt, id) {
err = hw_engine_init(gt, hwe, id);
if (err)
return err;
}
hw_engine_setup_logical_mapping(gt);
err = xe_hw_engine_setup_groups(gt);
if (err)
return err;
return 0;
}
void xe_hw_engine_handle_irq(struct xe_hw_engine *hwe, u16 intr_vec)
{
wake_up_all(>_to_xe(hwe->gt)->ufence_wq);
if (hwe->irq_handler)
hwe->irq_handler(hwe, intr_vec);
if (intr_vec & GT_RENDER_USER_INTERRUPT)
xe_hw_fence_irq_run(hwe->fence_irq);
}
static bool
is_slice_common_per_gslice(struct xe_device *xe)
{
return GRAPHICS_VERx100(xe) >= 1255;
}
static void
xe_hw_engine_snapshot_instdone_capture(struct xe_hw_engine *hwe,
struct xe_hw_engine_snapshot *snapshot)
{
struct xe_gt *gt = hwe->gt;
struct xe_device *xe = gt_to_xe(gt);
unsigned int dss;
u16 group, instance;
snapshot->reg.instdone.ring = xe_hw_engine_mmio_read32(hwe, RING_INSTDONE(0));
if (snapshot->hwe->class != XE_ENGINE_CLASS_RENDER)
return;
if (is_slice_common_per_gslice(xe) == false) {
snapshot->reg.instdone.slice_common[0] =
xe_mmio_read32(gt, SC_INSTDONE);
snapshot->reg.instdone.slice_common_extra[0] =
xe_mmio_read32(gt, SC_INSTDONE_EXTRA);
snapshot->reg.instdone.slice_common_extra2[0] =
xe_mmio_read32(gt, SC_INSTDONE_EXTRA2);
} else {
for_each_geometry_dss(dss, gt, group, instance) {
snapshot->reg.instdone.slice_common[dss] =
xe_gt_mcr_unicast_read(gt, XEHPG_SC_INSTDONE, group, instance);
snapshot->reg.instdone.slice_common_extra[dss] =
xe_gt_mcr_unicast_read(gt, XEHPG_SC_INSTDONE_EXTRA, group, instance);
snapshot->reg.instdone.slice_common_extra2[dss] =
xe_gt_mcr_unicast_read(gt, XEHPG_SC_INSTDONE_EXTRA2, group, instance);
}
}
for_each_geometry_dss(dss, gt, group, instance) {
snapshot->reg.instdone.sampler[dss] =
xe_gt_mcr_unicast_read(gt, SAMPLER_INSTDONE, group, instance);
snapshot->reg.instdone.row[dss] =
xe_gt_mcr_unicast_read(gt, ROW_INSTDONE, group, instance);
if (GRAPHICS_VERx100(xe) >= 1255)
snapshot->reg.instdone.geom_svg[dss] =
xe_gt_mcr_unicast_read(gt, XEHPG_INSTDONE_GEOM_SVGUNIT,
group, instance);
}
}
/**
* xe_hw_engine_snapshot_capture - Take a quick snapshot of the HW Engine.
* @hwe: Xe HW Engine.
*
* This can be printed out in a later stage like during dev_coredump
* analysis.
*
* Returns: a Xe HW Engine snapshot object that must be freed by the
* caller, using `xe_hw_engine_snapshot_free`.
*/
struct xe_hw_engine_snapshot *
xe_hw_engine_snapshot_capture(struct xe_hw_engine *hwe)
{
struct xe_hw_engine_snapshot *snapshot;
size_t len;
u64 val;
if (!xe_hw_engine_is_valid(hwe))
return NULL;
snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
if (!snapshot)
return NULL;
/* Because XE_MAX_DSS_FUSE_BITS is defined in xe_gt_types.h and it
* includes xe_hw_engine_types.h the length of this 3 registers can't be
* set in struct xe_hw_engine_snapshot, so here doing additional
* allocations.
*/
len = (XE_MAX_DSS_FUSE_BITS * sizeof(u32));
snapshot->reg.instdone.slice_common = kzalloc(len, GFP_ATOMIC);
snapshot->reg.instdone.slice_common_extra = kzalloc(len, GFP_ATOMIC);
snapshot->reg.instdone.slice_common_extra2 = kzalloc(len, GFP_ATOMIC);
snapshot->reg.instdone.sampler = kzalloc(len, GFP_ATOMIC);
snapshot->reg.instdone.row = kzalloc(len, GFP_ATOMIC);
snapshot->reg.instdone.geom_svg = kzalloc(len, GFP_ATOMIC);
if (!snapshot->reg.instdone.slice_common ||
!snapshot->reg.instdone.slice_common_extra ||
!snapshot->reg.instdone.slice_common_extra2 ||
!snapshot->reg.instdone.sampler ||
!snapshot->reg.instdone.row ||
!snapshot->reg.instdone.geom_svg) {
xe_hw_engine_snapshot_free(snapshot);
return NULL;
}
snapshot->name = kstrdup(hwe->name, GFP_ATOMIC);
snapshot->hwe = hwe;
snapshot->logical_instance = hwe->logical_instance;
snapshot->forcewake.domain = hwe->domain;
snapshot->forcewake.ref = xe_force_wake_ref(gt_to_fw(hwe->gt),
hwe->domain);
snapshot->mmio_base = hwe->mmio_base;
/* no more VF accessible data below this point */
if (IS_SRIOV_VF(gt_to_xe(hwe->gt)))
return snapshot;
snapshot->reg.ring_execlist_status =
xe_hw_engine_mmio_read32(hwe, RING_EXECLIST_STATUS_LO(0));
val = xe_hw_engine_mmio_read32(hwe, RING_EXECLIST_STATUS_HI(0));
snapshot->reg.ring_execlist_status |= val << 32;
snapshot->reg.ring_execlist_sq_contents =
xe_hw_engine_mmio_read32(hwe, RING_EXECLIST_SQ_CONTENTS_LO(0));
val = xe_hw_engine_mmio_read32(hwe, RING_EXECLIST_SQ_CONTENTS_HI(0));
snapshot->reg.ring_execlist_sq_contents |= val << 32;
snapshot->reg.ring_acthd = xe_hw_engine_mmio_read32(hwe, RING_ACTHD(0));
val = xe_hw_engine_mmio_read32(hwe, RING_ACTHD_UDW(0));
snapshot->reg.ring_acthd |= val << 32;
snapshot->reg.ring_bbaddr = xe_hw_engine_mmio_read32(hwe, RING_BBADDR(0));
val = xe_hw_engine_mmio_read32(hwe, RING_BBADDR_UDW(0));
snapshot->reg.ring_bbaddr |= val << 32;
snapshot->reg.ring_dma_fadd =
xe_hw_engine_mmio_read32(hwe, RING_DMA_FADD(0));
val = xe_hw_engine_mmio_read32(hwe, RING_DMA_FADD_UDW(0));
snapshot->reg.ring_dma_fadd |= val << 32;
snapshot->reg.ring_hwstam = xe_hw_engine_mmio_read32(hwe, RING_HWSTAM(0));
snapshot->reg.ring_hws_pga = xe_hw_engine_mmio_read32(hwe, RING_HWS_PGA(0));
snapshot->reg.ring_start = xe_hw_engine_mmio_read32(hwe, RING_START(0));
if (GRAPHICS_VERx100(hwe->gt->tile->xe) >= 2000) {
val = xe_hw_engine_mmio_read32(hwe, RING_START_UDW(0));
snapshot->reg.ring_start |= val << 32;
}
if (xe_gt_has_indirect_ring_state(hwe->gt)) {
snapshot->reg.indirect_ring_state =
xe_hw_engine_mmio_read32(hwe, INDIRECT_RING_STATE(0));
}
snapshot->reg.ring_head =
xe_hw_engine_mmio_read32(hwe, RING_HEAD(0)) & HEAD_ADDR;
snapshot->reg.ring_tail =
xe_hw_engine_mmio_read32(hwe, RING_TAIL(0)) & TAIL_ADDR;
snapshot->reg.ring_ctl = xe_hw_engine_mmio_read32(hwe, RING_CTL(0));
snapshot->reg.ring_mi_mode =
xe_hw_engine_mmio_read32(hwe, RING_MI_MODE(0));
snapshot->reg.ring_mode = xe_hw_engine_mmio_read32(hwe, RING_MODE(0));
snapshot->reg.ring_imr = xe_hw_engine_mmio_read32(hwe, RING_IMR(0));
snapshot->reg.ring_esr = xe_hw_engine_mmio_read32(hwe, RING_ESR(0));
snapshot->reg.ring_emr = xe_hw_engine_mmio_read32(hwe, RING_EMR(0));
snapshot->reg.ring_eir = xe_hw_engine_mmio_read32(hwe, RING_EIR(0));
snapshot->reg.ipehr = xe_hw_engine_mmio_read32(hwe, RING_IPEHR(0));
xe_hw_engine_snapshot_instdone_capture(hwe, snapshot);
if (snapshot->hwe->class == XE_ENGINE_CLASS_COMPUTE)
snapshot->reg.rcu_mode = xe_mmio_read32(hwe->gt, RCU_MODE);
return snapshot;
}
static void
xe_hw_engine_snapshot_instdone_print(struct xe_hw_engine_snapshot *snapshot, struct drm_printer *p)
{
struct xe_gt *gt = snapshot->hwe->gt;
struct xe_device *xe = gt_to_xe(gt);
u16 group, instance;
unsigned int dss;
drm_printf(p, "\tRING_INSTDONE: 0x%08x\n", snapshot->reg.instdone.ring);
if (snapshot->hwe->class != XE_ENGINE_CLASS_RENDER)
return;
if (is_slice_common_per_gslice(xe) == false) {
drm_printf(p, "\tSC_INSTDONE[0]: 0x%08x\n",
snapshot->reg.instdone.slice_common[0]);
drm_printf(p, "\tSC_INSTDONE_EXTRA[0]: 0x%08x\n",
snapshot->reg.instdone.slice_common_extra[0]);
drm_printf(p, "\tSC_INSTDONE_EXTRA2[0]: 0x%08x\n",
snapshot->reg.instdone.slice_common_extra2[0]);
} else {
for_each_geometry_dss(dss, gt, group, instance) {
drm_printf(p, "\tSC_INSTDONE[%u]: 0x%08x\n", dss,
snapshot->reg.instdone.slice_common[dss]);
drm_printf(p, "\tSC_INSTDONE_EXTRA[%u]: 0x%08x\n", dss,
snapshot->reg.instdone.slice_common_extra[dss]);
drm_printf(p, "\tSC_INSTDONE_EXTRA2[%u]: 0x%08x\n", dss,
snapshot->reg.instdone.slice_common_extra2[dss]);
}
}
for_each_geometry_dss(dss, gt, group, instance) {
drm_printf(p, "\tSAMPLER_INSTDONE[%u]: 0x%08x\n", dss,
snapshot->reg.instdone.sampler[dss]);
drm_printf(p, "\tROW_INSTDONE[%u]: 0x%08x\n", dss,
snapshot->reg.instdone.row[dss]);
if (GRAPHICS_VERx100(xe) >= 1255)
drm_printf(p, "\tINSTDONE_GEOM_SVGUNIT[%u]: 0x%08x\n",
dss, snapshot->reg.instdone.geom_svg[dss]);
}
}
/**
* xe_hw_engine_snapshot_print - Print out a given Xe HW Engine snapshot.
* @snapshot: Xe HW Engine snapshot object.
* @p: drm_printer where it will be printed out.
*
* This function prints out a given Xe HW Engine snapshot object.
*/
void xe_hw_engine_snapshot_print(struct xe_hw_engine_snapshot *snapshot,
struct drm_printer *p)
{
if (!snapshot)
return;
drm_printf(p, "%s (physical), logical instance=%d\n",
snapshot->name ? snapshot->name : "",
snapshot->logical_instance);
drm_printf(p, "\tForcewake: domain 0x%x, ref %d\n",
snapshot->forcewake.domain, snapshot->forcewake.ref);
drm_printf(p, "\tHWSTAM: 0x%08x\n", snapshot->reg.ring_hwstam);
drm_printf(p, "\tRING_HWS_PGA: 0x%08x\n", snapshot->reg.ring_hws_pga);
drm_printf(p, "\tRING_EXECLIST_STATUS: 0x%016llx\n",
snapshot->reg.ring_execlist_status);
drm_printf(p, "\tRING_EXECLIST_SQ_CONTENTS: 0x%016llx\n",
snapshot->reg.ring_execlist_sq_contents);
drm_printf(p, "\tRING_START: 0x%016llx\n", snapshot->reg.ring_start);
drm_printf(p, "\tRING_HEAD: 0x%08x\n", snapshot->reg.ring_head);
drm_printf(p, "\tRING_TAIL: 0x%08x\n", snapshot->reg.ring_tail);
drm_printf(p, "\tRING_CTL: 0x%08x\n", snapshot->reg.ring_ctl);
drm_printf(p, "\tRING_MI_MODE: 0x%08x\n", snapshot->reg.ring_mi_mode);
drm_printf(p, "\tRING_MODE: 0x%08x\n",
snapshot->reg.ring_mode);
drm_printf(p, "\tRING_IMR: 0x%08x\n", snapshot->reg.ring_imr);
drm_printf(p, "\tRING_ESR: 0x%08x\n", snapshot->reg.ring_esr);
drm_printf(p, "\tRING_EMR: 0x%08x\n", snapshot->reg.ring_emr);
drm_printf(p, "\tRING_EIR: 0x%08x\n", snapshot->reg.ring_eir);
drm_printf(p, "\tACTHD: 0x%016llx\n", snapshot->reg.ring_acthd);
drm_printf(p, "\tBBADDR: 0x%016llx\n", snapshot->reg.ring_bbaddr);
drm_printf(p, "\tDMA_FADDR: 0x%016llx\n", snapshot->reg.ring_dma_fadd);
drm_printf(p, "\tINDIRECT_RING_STATE: 0x%08x\n",
snapshot->reg.indirect_ring_state);
drm_printf(p, "\tIPEHR: 0x%08x\n", snapshot->reg.ipehr);
xe_hw_engine_snapshot_instdone_print(snapshot, p);
if (snapshot->hwe->class == XE_ENGINE_CLASS_COMPUTE)
drm_printf(p, "\tRCU_MODE: 0x%08x\n",
snapshot->reg.rcu_mode);
drm_puts(p, "\n");
}
/**
* xe_hw_engine_snapshot_free - Free all allocated objects for a given snapshot.
* @snapshot: Xe HW Engine snapshot object.
*
* This function free all the memory that needed to be allocated at capture
* time.
*/
void xe_hw_engine_snapshot_free(struct xe_hw_engine_snapshot *snapshot)
{
if (!snapshot)
return;
kfree(snapshot->reg.instdone.slice_common);
kfree(snapshot->reg.instdone.slice_common_extra);
kfree(snapshot->reg.instdone.slice_common_extra2);
kfree(snapshot->reg.instdone.sampler);
kfree(snapshot->reg.instdone.row);
kfree(snapshot->reg.instdone.geom_svg);
kfree(snapshot->name);
kfree(snapshot);
}
/**
* xe_hw_engine_print - Xe HW Engine Print.
* @hwe: Hardware Engine.
* @p: drm_printer.
*
* This function quickly capture a snapshot and immediately print it out.
*/
void xe_hw_engine_print(struct xe_hw_engine *hwe, struct drm_printer *p)
{
struct xe_hw_engine_snapshot *snapshot;
snapshot = xe_hw_engine_snapshot_capture(hwe);
xe_hw_engine_snapshot_print(snapshot, p);
xe_hw_engine_snapshot_free(snapshot);
}
u32 xe_hw_engine_mask_per_class(struct xe_gt *gt,
enum xe_engine_class engine_class)
{
u32 mask = 0;
enum xe_hw_engine_id id;
for (id = 0; id < XE_NUM_HW_ENGINES; ++id) {
if (engine_infos[id].class == engine_class &&
gt->info.engine_mask & BIT(id))
mask |= BIT(engine_infos[id].instance);
}
return mask;
}
bool xe_hw_engine_is_reserved(struct xe_hw_engine *hwe)
{
struct xe_gt *gt = hwe->gt;
struct xe_device *xe = gt_to_xe(gt);
if (hwe->class == XE_ENGINE_CLASS_OTHER)
return true;
/* Check for engines disabled by ccs_mode setting */
if (xe_gt_ccs_mode_enabled(gt) &&
hwe->class == XE_ENGINE_CLASS_COMPUTE &&
hwe->logical_instance >= gt->ccs_mode)
return true;
return xe->info.has_usm && hwe->class == XE_ENGINE_CLASS_COPY &&
hwe->instance == gt->usm.reserved_bcs_instance;
}
const char *xe_hw_engine_class_to_str(enum xe_engine_class class)
{
switch (class) {
case XE_ENGINE_CLASS_RENDER:
return "rcs";
case XE_ENGINE_CLASS_VIDEO_DECODE:
return "vcs";
case XE_ENGINE_CLASS_VIDEO_ENHANCE:
return "vecs";
case XE_ENGINE_CLASS_COPY:
return "bcs";
case XE_ENGINE_CLASS_OTHER:
return "other";
case XE_ENGINE_CLASS_COMPUTE:
return "ccs";
case XE_ENGINE_CLASS_MAX:
break;
}
return NULL;
}
u64 xe_hw_engine_read_timestamp(struct xe_hw_engine *hwe)
{
return xe_mmio_read64_2x32(hwe->gt, RING_TIMESTAMP(hwe->mmio_base));
}
enum xe_force_wake_domains xe_hw_engine_to_fw_domain(struct xe_hw_engine *hwe)
{
return engine_infos[hwe->engine_id].domain;
}
static const enum xe_engine_class user_to_xe_engine_class[] = {
[DRM_XE_ENGINE_CLASS_RENDER] = XE_ENGINE_CLASS_RENDER,
[DRM_XE_ENGINE_CLASS_COPY] = XE_ENGINE_CLASS_COPY,
[DRM_XE_ENGINE_CLASS_VIDEO_DECODE] = XE_ENGINE_CLASS_VIDEO_DECODE,
[DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE] = XE_ENGINE_CLASS_VIDEO_ENHANCE,
[DRM_XE_ENGINE_CLASS_COMPUTE] = XE_ENGINE_CLASS_COMPUTE,
};
/**
* xe_hw_engine_lookup() - Lookup hardware engine for class:instance
* @xe: xe device
* @eci: engine class and instance
*
* This function will find a hardware engine for given engine
* class and instance.
*
* Return: If found xe_hw_engine pointer, NULL otherwise.
*/
struct xe_hw_engine *
xe_hw_engine_lookup(struct xe_device *xe,
struct drm_xe_engine_class_instance eci)
{
unsigned int idx;
if (eci.engine_class >= ARRAY_SIZE(user_to_xe_engine_class))
return NULL;
if (eci.gt_id >= xe->info.gt_count)
return NULL;
idx = array_index_nospec(eci.engine_class,
ARRAY_SIZE(user_to_xe_engine_class));
return xe_gt_hw_engine(xe_device_get_gt(xe, eci.gt_id),
user_to_xe_engine_class[idx],
eci.engine_instance, true);
}