// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_irq.h"
#include <linux/sched/clock.h>
#include <drm/drm_managed.h>
#include "display/xe_display.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_device.h"
#include "xe_drv.h"
#include "xe_gsc_proxy.h"
#include "xe_gt.h"
#include "xe_guc.h"
#include "xe_hw_engine.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
#include "xe_sriov.h"
/*
* Interrupt registers for a unit are always consecutive and ordered
* ISR, IMR, IIR, IER.
*/
#define IMR(offset) XE_REG(offset + 0x4)
#define IIR(offset) XE_REG(offset + 0x8)
#define IER(offset) XE_REG(offset + 0xc)
static void assert_iir_is_zero(struct xe_gt *mmio, struct xe_reg reg)
{
u32 val = xe_mmio_read32(mmio, reg);
if (val == 0)
return;
drm_WARN(>_to_xe(mmio)->drm, 1,
"Interrupt register 0x%x is not zero: 0x%08x\n",
reg.addr, val);
xe_mmio_write32(mmio, reg, 0xffffffff);
xe_mmio_read32(mmio, reg);
xe_mmio_write32(mmio, reg, 0xffffffff);
xe_mmio_read32(mmio, reg);
}
/*
* Unmask and enable the specified interrupts. Does not check current state,
* so any bits not specified here will become masked and disabled.
*/
static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits)
{
struct xe_gt *mmio = tile->primary_gt;
/*
* If we're just enabling an interrupt now, it shouldn't already
* be raised in the IIR.
*/
assert_iir_is_zero(mmio, IIR(irqregs));
xe_mmio_write32(mmio, IER(irqregs), bits);
xe_mmio_write32(mmio, IMR(irqregs), ~bits);
/* Posting read */
xe_mmio_read32(mmio, IMR(irqregs));
}
/* Mask and disable all interrupts. */
static void mask_and_disable(struct xe_tile *tile, u32 irqregs)
{
struct xe_gt *mmio = tile->primary_gt;
xe_mmio_write32(mmio, IMR(irqregs), ~0);
/* Posting read */
xe_mmio_read32(mmio, IMR(irqregs));
xe_mmio_write32(mmio, IER(irqregs), 0);
/* IIR can theoretically queue up two events. Be paranoid. */
xe_mmio_write32(mmio, IIR(irqregs), ~0);
xe_mmio_read32(mmio, IIR(irqregs));
xe_mmio_write32(mmio, IIR(irqregs), ~0);
xe_mmio_read32(mmio, IIR(irqregs));
}
static u32 xelp_intr_disable(struct xe_device *xe)
{
struct xe_gt *mmio = xe_root_mmio_gt(xe);
xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return xe_mmio_read32(mmio, GFX_MSTR_IRQ);
}
static u32
gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl)
{
struct xe_gt *mmio = xe_root_mmio_gt(xe);
u32 iir;
if (!(master_ctl & GU_MISC_IRQ))
return 0;
iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET));
if (likely(iir))
xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir);
return iir;
}
static inline void xelp_intr_enable(struct xe_device *xe, bool stall)
{
struct xe_gt *mmio = xe_root_mmio_gt(xe);
xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ);
if (stall)
xe_mmio_read32(mmio, GFX_MSTR_IRQ);
}
/* Enable/unmask the HWE interrupts for a specific GT's engines. */
void xe_irq_enable_hwe(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
u32 ccs_mask, bcs_mask;
u32 irqs, dmask, smask;
u32 gsc_mask = 0;
u32 heci_mask = 0;
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
return;
if (xe_device_uc_enabled(xe)) {
irqs = GT_RENDER_USER_INTERRUPT |
GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
} else {
irqs = GT_RENDER_USER_INTERRUPT |
GT_CS_MASTER_ERROR_INTERRUPT |
GT_CONTEXT_SWITCH_INTERRUPT |
GT_WAIT_SEMAPHORE_INTERRUPT;
}
ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE);
bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY);
dmask = irqs << 16 | irqs;
smask = irqs << 16;
if (!xe_gt_is_media_type(gt)) {
/* Enable interrupts for each engine class */
xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, dmask);
if (ccs_mask)
xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, smask);
/* Unmask interrupts for each engine instance */
xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~smask);
xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~smask);
if (bcs_mask & (BIT(1)|BIT(2)))
xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
if (bcs_mask & (BIT(3)|BIT(4)))
xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
if (bcs_mask & (BIT(5)|BIT(6)))
xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
if (bcs_mask & (BIT(7)|BIT(8)))
xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
if (ccs_mask & (BIT(0)|BIT(1)))
xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~dmask);
if (ccs_mask & (BIT(2)|BIT(3)))
xe_mmio_write32(gt, CCS2_CCS3_INTR_MASK, ~dmask);
}
if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) {
/* Enable interrupts for each engine class */
xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, dmask);
/* Unmask interrupts for each engine instance */
xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~dmask);
xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~dmask);
xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~dmask);
/*
* the heci2 interrupt is enabled via the same register as the
* GSCCS interrupts, but it has its own mask register.
*/
if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) {
gsc_mask = irqs | GSC_ER_COMPLETE;
heci_mask = GSC_IRQ_INTF(1);
} else if (HAS_HECI_GSCFI(xe)) {
gsc_mask = GSC_IRQ_INTF(1);
}
if (gsc_mask) {
xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask);
xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~gsc_mask);
}
if (heci_mask)
xe_mmio_write32(gt, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16));
}
}
static u32
gt_engine_identity(struct xe_device *xe,
struct xe_gt *mmio,
const unsigned int bank,
const unsigned int bit)
{
u32 timeout_ts;
u32 ident;
lockdep_assert_held(&xe->irq.lock);
xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit));
/*
* NB: Specs do not specify how long to spin wait,
* so we do ~100us as an educated guess.
*/
timeout_ts = (local_clock() >> 10) + 100;
do {
ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank));
} while (!(ident & INTR_DATA_VALID) &&
!time_after32(local_clock() >> 10, timeout_ts));
if (unlikely(!(ident & INTR_DATA_VALID))) {
drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
bank, bit, ident);
return 0;
}
xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident);
return ident;
}
#define OTHER_MEDIA_GUC_INSTANCE 16
static void
gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir)
{
if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt))
return xe_guc_irq_handler(>->uc.guc, iir);
if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt))
return xe_guc_irq_handler(>->uc.guc, iir);
if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt))
return xe_gsc_proxy_irq_handler(>->uc.gsc, iir);
if (instance != OTHER_GUC_INSTANCE &&
instance != OTHER_MEDIA_GUC_INSTANCE) {
WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
instance, iir);
}
}
static struct xe_gt *pick_engine_gt(struct xe_tile *tile,
enum xe_engine_class class,
unsigned int instance)
{
struct xe_device *xe = tile_to_xe(tile);
if (MEDIA_VER(xe) < 13)
return tile->primary_gt;
switch (class) {
case XE_ENGINE_CLASS_VIDEO_DECODE:
case XE_ENGINE_CLASS_VIDEO_ENHANCE:
return tile->media_gt;
case XE_ENGINE_CLASS_OTHER:
switch (instance) {
case OTHER_MEDIA_GUC_INSTANCE:
case OTHER_GSC_INSTANCE:
case OTHER_GSC_HECI2_INSTANCE:
return tile->media_gt;
default:
break;
};
fallthrough;
default:
return tile->primary_gt;
}
}
static void gt_irq_handler(struct xe_tile *tile,
u32 master_ctl, unsigned long *intr_dw,
u32 *identity)
{
struct xe_device *xe = tile_to_xe(tile);
struct xe_gt *mmio = tile->primary_gt;
unsigned int bank, bit;
u16 instance, intr_vec;
enum xe_engine_class class;
struct xe_hw_engine *hwe;
spin_lock(&xe->irq.lock);
for (bank = 0; bank < 2; bank++) {
if (!(master_ctl & GT_DW_IRQ(bank)))
continue;
intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank));
for_each_set_bit(bit, intr_dw + bank, 32)
identity[bit] = gt_engine_identity(xe, mmio, bank, bit);
xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]);
for_each_set_bit(bit, intr_dw + bank, 32) {
struct xe_gt *engine_gt;
class = INTR_ENGINE_CLASS(identity[bit]);
instance = INTR_ENGINE_INSTANCE(identity[bit]);
intr_vec = INTR_ENGINE_INTR(identity[bit]);
engine_gt = pick_engine_gt(tile, class, instance);
hwe = xe_gt_hw_engine(engine_gt, class, instance, false);
if (hwe) {
xe_hw_engine_handle_irq(hwe, intr_vec);
continue;
}
if (class == XE_ENGINE_CLASS_OTHER) {
/* HECI GSCFI interrupts come from outside of GT */
if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE)
xe_heci_gsc_irq_handler(xe, intr_vec);
else
gt_other_irq_handler(engine_gt, instance, intr_vec);
}
}
}
spin_unlock(&xe->irq.lock);
}
/*
* Top-level interrupt handler for Xe_LP platforms (which did not have
* a "master tile" interrupt register.
*/
static irqreturn_t xelp_irq_handler(int irq, void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *tile = xe_device_get_root_tile(xe);
u32 master_ctl, gu_misc_iir;
unsigned long intr_dw[2];
u32 identity[32];
spin_lock(&xe->irq.lock);
if (!xe->irq.enabled) {
spin_unlock(&xe->irq.lock);
return IRQ_NONE;
}
spin_unlock(&xe->irq.lock);
master_ctl = xelp_intr_disable(xe);
if (!master_ctl) {
xelp_intr_enable(xe, false);
return IRQ_NONE;
}
gt_irq_handler(tile, master_ctl, intr_dw, identity);
xe_display_irq_handler(xe, master_ctl);
gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
xelp_intr_enable(xe, false);
xe_display_irq_enable(xe, gu_misc_iir);
return IRQ_HANDLED;
}
static u32 dg1_intr_disable(struct xe_device *xe)
{
struct xe_gt *mmio = xe_root_mmio_gt(xe);
u32 val;
/* First disable interrupts */
xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0);
/* Get the indication levels and ack the master unit */
val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
if (unlikely(!val))
return 0;
xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val);
return val;
}
static void dg1_intr_enable(struct xe_device *xe, bool stall)
{
struct xe_gt *mmio = xe_root_mmio_gt(xe);
xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
if (stall)
xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
}
/*
* Top-level interrupt handler for Xe_LP+ and beyond. These platforms have
* a "master tile" interrupt register which must be consulted before the
* "graphics master" interrupt register.
*/
static irqreturn_t dg1_irq_handler(int irq, void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *tile;
u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0;
unsigned long intr_dw[2];
u32 identity[32];
u8 id;
/* TODO: This really shouldn't be copied+pasted */
spin_lock(&xe->irq.lock);
if (!xe->irq.enabled) {
spin_unlock(&xe->irq.lock);
return IRQ_NONE;
}
spin_unlock(&xe->irq.lock);
master_tile_ctl = dg1_intr_disable(xe);
if (!master_tile_ctl) {
dg1_intr_enable(xe, false);
return IRQ_NONE;
}
for_each_tile(tile, xe, id) {
struct xe_gt *mmio = tile->primary_gt;
if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0)
continue;
master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ);
/*
* We might be in irq handler just when PCIe DPC is initiated
* and all MMIO reads will be returned with all 1's. Ignore this
* irq as device is inaccessible.
*/
if (master_ctl == REG_GENMASK(31, 0)) {
drm_dbg(&tile_to_xe(tile)->drm,
"Ignore this IRQ as device might be in DPC containment.\n");
return IRQ_HANDLED;
}
xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl);
gt_irq_handler(tile, master_ctl, intr_dw, identity);
/*
* Display interrupts (including display backlight operations
* that get reported as Gunit GSE) would only be hooked up to
* the primary tile.
*/
if (id == 0) {
if (HAS_HECI_CSCFI(xe))
xe_heci_csc_irq_handler(xe, master_ctl);
xe_display_irq_handler(xe, master_ctl);
gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
}
}
dg1_intr_enable(xe, false);
xe_display_irq_enable(xe, gu_misc_iir);
return IRQ_HANDLED;
}
static void gt_irq_reset(struct xe_tile *tile)
{
struct xe_gt *mmio = tile->primary_gt;
u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
XE_ENGINE_CLASS_COMPUTE);
u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
XE_ENGINE_CLASS_COPY);
/* Disable RCS, BCS, VCS and VECS class engines. */
xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0);
xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0);
if (ccs_mask)
xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0);
/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~0);
xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~0);
if (bcs_mask & (BIT(1)|BIT(2)))
xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
if (bcs_mask & (BIT(3)|BIT(4)))
xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
if (bcs_mask & (BIT(5)|BIT(6)))
xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
if (bcs_mask & (BIT(7)|BIT(8)))
xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~0);
xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~0);
xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~0);
if (ccs_mask & (BIT(0)|BIT(1)))
xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0);
if (ccs_mask & (BIT(2)|BIT(3)))
xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0);
if ((tile->media_gt &&
xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) ||
HAS_HECI_GSCFI(tile_to_xe(tile))) {
xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0);
xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0);
xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0);
}
xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0);
xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK, ~0);
xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE, 0);
xe_mmio_write32(mmio, GUC_SG_INTR_MASK, ~0);
}
static void xelp_irq_reset(struct xe_tile *tile)
{
xelp_intr_disable(tile_to_xe(tile));
gt_irq_reset(tile);
if (IS_SRIOV_VF(tile_to_xe(tile)))
return;
mask_and_disable(tile, PCU_IRQ_OFFSET);
}
static void dg1_irq_reset(struct xe_tile *tile)
{
if (tile->id == 0)
dg1_intr_disable(tile_to_xe(tile));
gt_irq_reset(tile);
if (IS_SRIOV_VF(tile_to_xe(tile)))
return;
mask_and_disable(tile, PCU_IRQ_OFFSET);
}
static void dg1_irq_reset_mstr(struct xe_tile *tile)
{
struct xe_gt *mmio = tile->primary_gt;
xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0);
}
static void vf_irq_reset(struct xe_device *xe)
{
struct xe_tile *tile;
unsigned int id;
xe_assert(xe, IS_SRIOV_VF(xe));
if (GRAPHICS_VERx100(xe) < 1210)
xelp_intr_disable(xe);
else
xe_assert(xe, xe_device_has_memirq(xe));
for_each_tile(tile, xe, id) {
if (xe_device_has_memirq(xe))
xe_memirq_reset(&tile->sriov.vf.memirq);
else
gt_irq_reset(tile);
}
}
static void xe_irq_reset(struct xe_device *xe)
{
struct xe_tile *tile;
u8 id;
if (IS_SRIOV_VF(xe))
return vf_irq_reset(xe);
for_each_tile(tile, xe, id) {
if (GRAPHICS_VERx100(xe) >= 1210)
dg1_irq_reset(tile);
else
xelp_irq_reset(tile);
}
tile = xe_device_get_root_tile(xe);
mask_and_disable(tile, GU_MISC_IRQ_OFFSET);
xe_display_irq_reset(xe);
/*
* The tile's top-level status register should be the last one
* to be reset to avoid possible bit re-latching from lower
* level interrupts.
*/
if (GRAPHICS_VERx100(xe) >= 1210) {
for_each_tile(tile, xe, id)
dg1_irq_reset_mstr(tile);
}
}
static void vf_irq_postinstall(struct xe_device *xe)
{
struct xe_tile *tile;
unsigned int id;
for_each_tile(tile, xe, id)
if (xe_device_has_memirq(xe))
xe_memirq_postinstall(&tile->sriov.vf.memirq);
if (GRAPHICS_VERx100(xe) < 1210)
xelp_intr_enable(xe, true);
else
xe_assert(xe, xe_device_has_memirq(xe));
}
static void xe_irq_postinstall(struct xe_device *xe)
{
if (IS_SRIOV_VF(xe))
return vf_irq_postinstall(xe);
xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe));
/*
* ASLE backlight operations are reported via GUnit GSE interrupts
* on the root tile.
*/
unmask_and_enable(xe_device_get_root_tile(xe),
GU_MISC_IRQ_OFFSET, GU_MISC_GSE);
/* Enable top-level interrupts */
if (GRAPHICS_VERx100(xe) >= 1210)
dg1_intr_enable(xe, true);
else
xelp_intr_enable(xe, true);
}
static irqreturn_t vf_mem_irq_handler(int irq, void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *tile;
unsigned int id;
spin_lock(&xe->irq.lock);
if (!xe->irq.enabled) {
spin_unlock(&xe->irq.lock);
return IRQ_NONE;
}
spin_unlock(&xe->irq.lock);
for_each_tile(tile, xe, id)
xe_memirq_handler(&tile->sriov.vf.memirq);
return IRQ_HANDLED;
}
static irq_handler_t xe_irq_handler(struct xe_device *xe)
{
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
return vf_mem_irq_handler;
if (GRAPHICS_VERx100(xe) >= 1210)
return dg1_irq_handler;
else
return xelp_irq_handler;
}
static void irq_uninstall(void *arg)
{
struct xe_device *xe = arg;
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
int irq;
if (!xe->irq.enabled)
return;
xe->irq.enabled = false;
xe_irq_reset(xe);
irq = pci_irq_vector(pdev, 0);
free_irq(irq, xe);
}
int xe_irq_install(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
unsigned int irq_flags = PCI_IRQ_MSIX;
irq_handler_t irq_handler;
int err, irq, nvec;
irq_handler = xe_irq_handler(xe);
if (!irq_handler) {
drm_err(&xe->drm, "No supported interrupt handler");
return -EINVAL;
}
xe_irq_reset(xe);
nvec = pci_msix_vec_count(pdev);
if (nvec <= 0) {
if (nvec == -EINVAL) {
/* MSIX capability is not supported in the device, using MSI */
irq_flags = PCI_IRQ_MSI;
nvec = 1;
} else {
drm_err(&xe->drm, "MSIX: Failed getting count\n");
return nvec;
}
}
err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags);
if (err < 0) {
drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err);
return err;
}
irq = pci_irq_vector(pdev, 0);
err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe);
if (err < 0) {
drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err);
return err;
}
xe->irq.enabled = true;
xe_irq_postinstall(xe);
err = devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe);
if (err)
goto free_irq_handler;
return 0;
free_irq_handler:
free_irq(irq, xe);
return err;
}
void xe_irq_suspend(struct xe_device *xe)
{
int irq = to_pci_dev(xe->drm.dev)->irq;
spin_lock_irq(&xe->irq.lock);
xe->irq.enabled = false; /* no new irqs */
spin_unlock_irq(&xe->irq.lock);
synchronize_irq(irq); /* flush irqs */
xe_irq_reset(xe); /* turn irqs off */
}
void xe_irq_resume(struct xe_device *xe)
{
struct xe_gt *gt;
int id;
/*
* lock not needed:
* 1. no irq will arrive before the postinstall
* 2. display is not yet resumed
*/
xe->irq.enabled = true;
xe_irq_reset(xe);
xe_irq_postinstall(xe); /* turn irqs on */
for_each_gt(gt, xe, id)
xe_irq_enable_hwe(gt);
}