// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_sched_job.h"
#include <uapi/drm/xe_drm.h>
#include <linux/dma-fence-chain.h>
#include <linux/slab.h>
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_gt.h"
#include "xe_hw_engine_types.h"
#include "xe_hw_fence.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_pm.h"
#include "xe_sync_types.h"
#include "xe_trace.h"
#include "xe_vm.h"
static struct kmem_cache *xe_sched_job_slab;
static struct kmem_cache *xe_sched_job_parallel_slab;
int __init xe_sched_job_module_init(void)
{
xe_sched_job_slab =
kmem_cache_create("xe_sched_job",
sizeof(struct xe_sched_job) +
sizeof(struct xe_job_ptrs), 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!xe_sched_job_slab)
return -ENOMEM;
xe_sched_job_parallel_slab =
kmem_cache_create("xe_sched_job_parallel",
sizeof(struct xe_sched_job) +
sizeof(struct xe_job_ptrs) *
XE_HW_ENGINE_MAX_INSTANCE, 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!xe_sched_job_parallel_slab) {
kmem_cache_destroy(xe_sched_job_slab);
return -ENOMEM;
}
return 0;
}
void xe_sched_job_module_exit(void)
{
kmem_cache_destroy(xe_sched_job_slab);
kmem_cache_destroy(xe_sched_job_parallel_slab);
}
static struct xe_sched_job *job_alloc(bool parallel)
{
return kmem_cache_zalloc(parallel ? xe_sched_job_parallel_slab :
xe_sched_job_slab, GFP_KERNEL);
}
bool xe_sched_job_is_migration(struct xe_exec_queue *q)
{
return q->vm && (q->vm->flags & XE_VM_FLAG_MIGRATION);
}
static void job_free(struct xe_sched_job *job)
{
struct xe_exec_queue *q = job->q;
bool is_migration = xe_sched_job_is_migration(q);
kmem_cache_free(xe_exec_queue_is_parallel(job->q) || is_migration ?
xe_sched_job_parallel_slab : xe_sched_job_slab, job);
}
static struct xe_device *job_to_xe(struct xe_sched_job *job)
{
return gt_to_xe(job->q->gt);
}
/* Free unused pre-allocated fences */
static void xe_sched_job_free_fences(struct xe_sched_job *job)
{
int i;
for (i = 0; i < job->q->width; ++i) {
struct xe_job_ptrs *ptrs = &job->ptrs[i];
if (ptrs->lrc_fence)
xe_lrc_free_seqno_fence(ptrs->lrc_fence);
dma_fence_chain_free(ptrs->chain_fence);
}
}
struct xe_sched_job *xe_sched_job_create(struct xe_exec_queue *q,
u64 *batch_addr)
{
bool is_migration = xe_sched_job_is_migration(q);
struct xe_sched_job *job;
int err;
int i;
u32 width;
/* only a kernel context can submit a vm-less job */
XE_WARN_ON(!q->vm && !(q->flags & EXEC_QUEUE_FLAG_KERNEL));
job = job_alloc(xe_exec_queue_is_parallel(q) || is_migration);
if (!job)
return ERR_PTR(-ENOMEM);
job->q = q;
kref_init(&job->refcount);
xe_exec_queue_get(job->q);
err = drm_sched_job_init(&job->drm, q->entity, 1, NULL);
if (err)
goto err_free;
for (i = 0; i < q->width; ++i) {
struct dma_fence *fence = xe_lrc_alloc_seqno_fence();
struct dma_fence_chain *chain;
if (IS_ERR(fence)) {
err = PTR_ERR(fence);
goto err_sched_job;
}
job->ptrs[i].lrc_fence = fence;
if (i + 1 == q->width)
continue;
chain = dma_fence_chain_alloc();
if (!chain) {
err = -ENOMEM;
goto err_sched_job;
}
job->ptrs[i].chain_fence = chain;
}
width = q->width;
if (is_migration)
width = 2;
for (i = 0; i < width; ++i)
job->ptrs[i].batch_addr = batch_addr[i];
xe_pm_runtime_get_noresume(job_to_xe(job));
trace_xe_sched_job_create(job);
return job;
err_sched_job:
xe_sched_job_free_fences(job);
drm_sched_job_cleanup(&job->drm);
err_free:
xe_exec_queue_put(q);
job_free(job);
return ERR_PTR(err);
}
/**
* xe_sched_job_destroy - Destroy XE schedule job
* @ref: reference to XE schedule job
*
* Called when ref == 0, drop a reference to job's xe_engine + fence, cleanup
* base DRM schedule job, and free memory for XE schedule job.
*/
void xe_sched_job_destroy(struct kref *ref)
{
struct xe_sched_job *job =
container_of(ref, struct xe_sched_job, refcount);
struct xe_device *xe = job_to_xe(job);
struct xe_exec_queue *q = job->q;
xe_sched_job_free_fences(job);
dma_fence_put(job->fence);
drm_sched_job_cleanup(&job->drm);
job_free(job);
xe_exec_queue_put(q);
xe_pm_runtime_put(xe);
}
/* Set the error status under the fence to avoid racing with signaling */
static bool xe_fence_set_error(struct dma_fence *fence, int error)
{
unsigned long irq_flags;
bool signaled;
spin_lock_irqsave(fence->lock, irq_flags);
signaled = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
if (!signaled)
dma_fence_set_error(fence, error);
spin_unlock_irqrestore(fence->lock, irq_flags);
return signaled;
}
void xe_sched_job_set_error(struct xe_sched_job *job, int error)
{
if (xe_fence_set_error(job->fence, error))
return;
if (dma_fence_is_chain(job->fence)) {
struct dma_fence *iter;
dma_fence_chain_for_each(iter, job->fence)
xe_fence_set_error(dma_fence_chain_contained(iter),
error);
}
trace_xe_sched_job_set_error(job);
dma_fence_enable_sw_signaling(job->fence);
xe_hw_fence_irq_run(job->q->fence_irq);
}
bool xe_sched_job_started(struct xe_sched_job *job)
{
struct xe_lrc *lrc = job->q->lrc[0];
return !__dma_fence_is_later(xe_sched_job_lrc_seqno(job),
xe_lrc_start_seqno(lrc),
dma_fence_chain_contained(job->fence)->ops);
}
bool xe_sched_job_completed(struct xe_sched_job *job)
{
struct xe_lrc *lrc = job->q->lrc[0];
/*
* Can safely check just LRC[0] seqno as that is last seqno written when
* parallel handshake is done.
*/
return !__dma_fence_is_later(xe_sched_job_lrc_seqno(job),
xe_lrc_seqno(lrc),
dma_fence_chain_contained(job->fence)->ops);
}
void xe_sched_job_arm(struct xe_sched_job *job)
{
struct xe_exec_queue *q = job->q;
struct dma_fence *fence, *prev;
struct xe_vm *vm = q->vm;
u64 seqno = 0;
int i;
/* Migration and kernel engines have their own locking */
if (IS_ENABLED(CONFIG_LOCKDEP) &&
!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
lockdep_assert_held(&q->vm->lock);
if (!xe_vm_in_lr_mode(q->vm))
xe_vm_assert_held(q->vm);
}
if (vm && !xe_sched_job_is_migration(q) && !xe_vm_in_lr_mode(vm) &&
(vm->batch_invalidate_tlb || vm->tlb_flush_seqno != q->tlb_flush_seqno)) {
xe_vm_assert_held(vm);
q->tlb_flush_seqno = vm->tlb_flush_seqno;
job->ring_ops_flush_tlb = true;
}
/* Arm the pre-allocated fences */
for (i = 0; i < q->width; prev = fence, ++i) {
struct dma_fence_chain *chain;
fence = job->ptrs[i].lrc_fence;
xe_lrc_init_seqno_fence(q->lrc[i], fence);
job->ptrs[i].lrc_fence = NULL;
if (!i) {
job->lrc_seqno = fence->seqno;
continue;
} else {
xe_assert(gt_to_xe(q->gt), job->lrc_seqno == fence->seqno);
}
chain = job->ptrs[i - 1].chain_fence;
dma_fence_chain_init(chain, prev, fence, seqno++);
job->ptrs[i - 1].chain_fence = NULL;
fence = &chain->base;
}
job->fence = fence;
drm_sched_job_arm(&job->drm);
}
void xe_sched_job_push(struct xe_sched_job *job)
{
xe_sched_job_get(job);
trace_xe_sched_job_exec(job);
drm_sched_entity_push_job(&job->drm);
xe_sched_job_put(job);
}
/**
* xe_sched_job_last_fence_add_dep - Add last fence dependency to job
* @job:job to add the last fence dependency to
* @vm: virtual memory job belongs to
*
* Returns:
* 0 on success, or an error on failing to expand the array.
*/
int xe_sched_job_last_fence_add_dep(struct xe_sched_job *job, struct xe_vm *vm)
{
struct dma_fence *fence;
fence = xe_exec_queue_last_fence_get(job->q, vm);
return drm_sched_job_add_dependency(&job->drm, fence);
}
/**
* xe_sched_job_init_user_fence - Initialize user_fence for the job
* @job: job whose user_fence needs an init
* @sync: sync to be use to init user_fence
*/
void xe_sched_job_init_user_fence(struct xe_sched_job *job,
struct xe_sync_entry *sync)
{
if (sync->type != DRM_XE_SYNC_TYPE_USER_FENCE)
return;
job->user_fence.used = true;
job->user_fence.addr = sync->addr;
job->user_fence.value = sync->timeline_value;
}
struct xe_sched_job_snapshot *
xe_sched_job_snapshot_capture(struct xe_sched_job *job)
{
struct xe_exec_queue *q = job->q;
struct xe_device *xe = q->gt->tile->xe;
struct xe_sched_job_snapshot *snapshot;
size_t len = sizeof(*snapshot) + (sizeof(u64) * q->width);
u16 i;
snapshot = kzalloc(len, GFP_ATOMIC);
if (!snapshot)
return NULL;
snapshot->batch_addr_len = q->width;
for (i = 0; i < q->width; i++)
snapshot->batch_addr[i] =
xe_device_uncanonicalize_addr(xe, job->ptrs[i].batch_addr);
return snapshot;
}
void xe_sched_job_snapshot_free(struct xe_sched_job_snapshot *snapshot)
{
kfree(snapshot);
}
void
xe_sched_job_snapshot_print(struct xe_sched_job_snapshot *snapshot,
struct drm_printer *p)
{
u16 i;
if (!snapshot)
return;
for (i = 0; i < snapshot->batch_addr_len; i++)
drm_printf(p, "batch_addr[%u]: 0x%016llx\n", i, snapshot->batch_addr[i]);
}
int xe_sched_job_add_deps(struct xe_sched_job *job, struct dma_resv *resv,
enum dma_resv_usage usage)
{
return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage);
}