// SPDX-License-Identifier: GPL-2.0
//
// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
//
// Copyright (c) 2022 Chuanhong Guo <[email protected]>
//
// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
//
// Copyright (C) 2020 MediaTek Inc.
// Author: Weijie Gao <[email protected]>
//
// This controller organize the page data as several interleaved sectors
// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
// +---------+------+------+---------+------+------+-----+
// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
// +---------+------+------+---------+------+------+-----+
// With auto-format turned on, DMA only returns this part:
// +---------+---------+-----+
// | Sector1 | Sector2 | ... |
// +---------+---------+-----+
// The FDM data will be filled to the registers, and ECC parity data isn't
// accessible.
// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
// in it's original order shown in the first table. ECC can't be turned on when
// auto-format is off.
//
// However, Linux SPI-NAND driver expects the data returned as:
// +------+-----+
// | Page | OOB |
// +------+-----+
// where the page data is continuously stored instead of interleaved.
// So we assume all instructions matching the page_op template between ECC
// prepare_io_req and finish_io_req are for page cache r/w.
// Here's how this spi-mem driver operates when reading:
// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
// 2. Perform page ops and let the controller fill the DMA bounce buffer with
// de-interleaved sector data and set FDM registers.
// 3. Return the data as:
// +---------+---------+-----+------+------+-----+
// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
// +---------+---------+-----+------+------+-----+
// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
// read the data with auto-format off into the bounce buffer and copy
// needed data to the buffer specified in the request.
//
// Write requests operates in a similar manner.
// As a limitation of this strategy, we won't be able to access any ECC parity
// data at all in Linux.
//
// Here's the bad block mark situation on MTK chips:
// In older chips like mt7622, MTK uses the first FDM byte in the first sector
// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
// in the returned data, which is the BBM position expected by kernel. However,
// the conventional bad block mark is the first byte of the OOB, which is part
// of the last sector data in the interleaved layout. Instead of fixing their
// hardware, MTK decided to address this inconsistency in software. On these
// later chips, the BootROM expects the following:
// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
// 2. The original byte stored at that position in the DMA buffer will be stored
// as the first byte of the FDM section in the last sector.
// We can't disagree with the BootROM, so after de-interleaving, we need to
// perform the following swaps in read:
// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
// which is the expected BBM position by kernel.
// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
// [page_size - (nsectors - 1) * spare_size]
// Similarly, when writing, we need to perform swaps in the other direction.
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/mtd/nand-ecc-mtk.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/mtd/nand.h>
// NFI registers
#define NFI_CNFG 0x000
#define CNFG_OP_MODE_S 12
#define CNFG_OP_MODE_CUST 6
#define CNFG_OP_MODE_PROGRAM 3
#define CNFG_AUTO_FMT_EN BIT(9)
#define CNFG_HW_ECC_EN BIT(8)
#define CNFG_DMA_BURST_EN BIT(2)
#define CNFG_READ_MODE BIT(1)
#define CNFG_DMA_MODE BIT(0)
#define NFI_PAGEFMT 0x0004
#define NFI_SPARE_SIZE_LS_S 16
#define NFI_FDM_ECC_NUM_S 12
#define NFI_FDM_NUM_S 8
#define NFI_SPARE_SIZE_S 4
#define NFI_SEC_SEL_512 BIT(2)
#define NFI_PAGE_SIZE_S 0
#define NFI_PAGE_SIZE_512_2K 0
#define NFI_PAGE_SIZE_2K_4K 1
#define NFI_PAGE_SIZE_4K_8K 2
#define NFI_PAGE_SIZE_8K_16K 3
#define NFI_CON 0x008
#define CON_SEC_NUM_S 12
#define CON_BWR BIT(9)
#define CON_BRD BIT(8)
#define CON_NFI_RST BIT(1)
#define CON_FIFO_FLUSH BIT(0)
#define NFI_INTR_EN 0x010
#define NFI_INTR_STA 0x014
#define NFI_IRQ_INTR_EN BIT(31)
#define NFI_IRQ_CUS_READ BIT(8)
#define NFI_IRQ_CUS_PG BIT(7)
#define NFI_CMD 0x020
#define NFI_CMD_DUMMY_READ 0x00
#define NFI_CMD_DUMMY_WRITE 0x80
#define NFI_STRDATA 0x040
#define STR_DATA BIT(0)
#define NFI_STA 0x060
#define NFI_NAND_FSM_7622 GENMASK(28, 24)
#define NFI_NAND_FSM_7986 GENMASK(29, 23)
#define NFI_FSM GENMASK(19, 16)
#define READ_EMPTY BIT(12)
#define NFI_FIFOSTA 0x064
#define FIFO_WR_REMAIN_S 8
#define FIFO_RD_REMAIN_S 0
#define NFI_ADDRCNTR 0x070
#define SEC_CNTR GENMASK(16, 12)
#define SEC_CNTR_S 12
#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
#define NFI_STRADDR 0x080
#define NFI_BYTELEN 0x084
#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
#define NFI_FDM0L 0x0a0
#define NFI_FDM0M 0x0a4
#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
#define NFI_DEBUG_CON1 0x220
#define WBUF_EN BIT(2)
#define NFI_MASTERSTA 0x224
#define MAS_ADDR GENMASK(11, 9)
#define MAS_RD GENMASK(8, 6)
#define MAS_WR GENMASK(5, 3)
#define MAS_RDDLY GENMASK(2, 0)
#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
#define NFI_MASTERSTA_MASK_7986 3
// SNFI registers
#define SNF_MAC_CTL 0x500
#define MAC_XIO_SEL BIT(4)
#define SF_MAC_EN BIT(3)
#define SF_TRIG BIT(2)
#define WIP_READY BIT(1)
#define WIP BIT(0)
#define SNF_MAC_OUTL 0x504
#define SNF_MAC_INL 0x508
#define SNF_RD_CTL2 0x510
#define DATA_READ_DUMMY_S 8
#define DATA_READ_MAX_DUMMY 0xf
#define DATA_READ_CMD_S 0
#define SNF_RD_CTL3 0x514
#define SNF_PG_CTL1 0x524
#define PG_LOAD_CMD_S 8
#define SNF_PG_CTL2 0x528
#define SNF_MISC_CTL 0x538
#define SW_RST BIT(28)
#define FIFO_RD_LTC_S 25
#define PG_LOAD_X4_EN BIT(20)
#define DATA_READ_MODE_S 16
#define DATA_READ_MODE GENMASK(18, 16)
#define DATA_READ_MODE_X1 0
#define DATA_READ_MODE_X2 1
#define DATA_READ_MODE_X4 2
#define DATA_READ_MODE_DUAL 5
#define DATA_READ_MODE_QUAD 6
#define DATA_READ_LATCH_LAT GENMASK(9, 8)
#define DATA_READ_LATCH_LAT_S 8
#define PG_LOAD_CUSTOM_EN BIT(7)
#define DATARD_CUSTOM_EN BIT(6)
#define CS_DESELECT_CYC_S 0
#define SNF_MISC_CTL2 0x53c
#define PROGRAM_LOAD_BYTE_NUM_S 16
#define READ_DATA_BYTE_NUM_S 11
#define SNF_DLY_CTL3 0x548
#define SFCK_SAM_DLY_S 0
#define SFCK_SAM_DLY GENMASK(5, 0)
#define SFCK_SAM_DLY_TOTAL 9
#define SFCK_SAM_DLY_RANGE 47
#define SNF_STA_CTL1 0x550
#define CUS_PG_DONE BIT(28)
#define CUS_READ_DONE BIT(27)
#define SPI_STATE_S 0
#define SPI_STATE GENMASK(3, 0)
#define SNF_CFG 0x55c
#define SPI_MODE BIT(0)
#define SNF_GPRAM 0x800
#define SNF_GPRAM_SIZE 0xa0
#define SNFI_POLL_INTERVAL 1000000
static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
static const u8 mt7986_spare_sizes[] = {
16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
74
};
struct mtk_snand_caps {
u16 sector_size;
u16 max_sectors;
u16 fdm_size;
u16 fdm_ecc_size;
u16 fifo_size;
bool bbm_swap;
bool empty_page_check;
u32 mastersta_mask;
u32 nandfsm_mask;
const u8 *spare_sizes;
u32 num_spare_size;
};
static const struct mtk_snand_caps mt7622_snand_caps = {
.sector_size = 512,
.max_sectors = 8,
.fdm_size = 8,
.fdm_ecc_size = 1,
.fifo_size = 32,
.bbm_swap = false,
.empty_page_check = false,
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
.nandfsm_mask = NFI_NAND_FSM_7622,
.spare_sizes = mt7622_spare_sizes,
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
};
static const struct mtk_snand_caps mt7629_snand_caps = {
.sector_size = 512,
.max_sectors = 8,
.fdm_size = 8,
.fdm_ecc_size = 1,
.fifo_size = 32,
.bbm_swap = true,
.empty_page_check = false,
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
.nandfsm_mask = NFI_NAND_FSM_7622,
.spare_sizes = mt7622_spare_sizes,
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
};
static const struct mtk_snand_caps mt7986_snand_caps = {
.sector_size = 1024,
.max_sectors = 8,
.fdm_size = 8,
.fdm_ecc_size = 1,
.fifo_size = 64,
.bbm_swap = true,
.empty_page_check = true,
.mastersta_mask = NFI_MASTERSTA_MASK_7986,
.nandfsm_mask = NFI_NAND_FSM_7986,
.spare_sizes = mt7986_spare_sizes,
.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
};
struct mtk_snand_conf {
size_t page_size;
size_t oob_size;
u8 nsectors;
u8 spare_size;
};
struct mtk_snand {
struct spi_controller *ctlr;
struct device *dev;
struct clk *nfi_clk;
struct clk *pad_clk;
struct clk *nfi_hclk;
void __iomem *nfi_base;
int irq;
struct completion op_done;
const struct mtk_snand_caps *caps;
struct mtk_ecc_config *ecc_cfg;
struct mtk_ecc *ecc;
struct mtk_snand_conf nfi_cfg;
struct mtk_ecc_stats ecc_stats;
struct nand_ecc_engine ecc_eng;
bool autofmt;
u8 *buf;
size_t buf_len;
};
static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
{
struct nand_ecc_engine *eng = nand->ecc.engine;
return container_of(eng, struct mtk_snand, ecc_eng);
}
static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
{
if (snf->buf_len >= size)
return 0;
kfree(snf->buf);
snf->buf = kmalloc(size, GFP_KERNEL);
if (!snf->buf)
return -ENOMEM;
snf->buf_len = size;
memset(snf->buf, 0xff, snf->buf_len);
return 0;
}
static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
{
return readl(snf->nfi_base + reg);
}
static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
{
writel(val, snf->nfi_base + reg);
}
static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
{
writew(val, snf->nfi_base + reg);
}
static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
{
u32 val;
val = readl(snf->nfi_base + reg);
val &= ~clr;
val |= set;
writel(val, snf->nfi_base + reg);
}
static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
{
u32 i, val = 0, es = sizeof(u32);
for (i = reg; i < reg + len; i++) {
if (i == reg || i % es == 0)
val = nfi_read32(snf, i & ~(es - 1));
*data++ = (u8)(val >> (8 * (i % es)));
}
}
static int mtk_nfi_reset(struct mtk_snand *snf)
{
u32 val, fifo_mask;
int ret;
nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
!(val & snf->caps->mastersta_mask), 0,
SNFI_POLL_INTERVAL);
if (ret) {
dev_err(snf->dev, "NFI master is still busy after reset\n");
return ret;
}
ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
!(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
SNFI_POLL_INTERVAL);
if (ret) {
dev_err(snf->dev, "Failed to reset NFI\n");
return ret;
}
fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
!(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
if (ret) {
dev_err(snf->dev, "NFI FIFOs are not empty\n");
return ret;
}
return 0;
}
static int mtk_snand_mac_reset(struct mtk_snand *snf)
{
int ret;
u32 val;
nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
!(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
if (ret)
dev_err(snf->dev, "Failed to reset SNFI MAC\n");
nfi_write32(snf, SNF_MISC_CTL,
(2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
return ret;
}
static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
{
int ret;
u32 val;
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
nfi_write32(snf, SNF_MAC_OUTL, outlen);
nfi_write32(snf, SNF_MAC_INL, inlen);
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
val & WIP_READY, 0, SNFI_POLL_INTERVAL);
if (ret) {
dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
goto cleanup;
}
ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
0, SNFI_POLL_INTERVAL);
if (ret)
dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
cleanup:
nfi_write32(snf, SNF_MAC_CTL, 0);
return ret;
}
static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
{
u32 rx_len = 0;
u32 reg_offs = 0;
u32 val = 0;
const u8 *tx_buf = NULL;
u8 *rx_buf = NULL;
int i, ret;
u8 b;
if (op->data.dir == SPI_MEM_DATA_IN) {
rx_len = op->data.nbytes;
rx_buf = op->data.buf.in;
} else {
tx_buf = op->data.buf.out;
}
mtk_snand_mac_reset(snf);
for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
val |= b << (8 * (reg_offs % 4));
if (reg_offs % 4 == 3) {
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
val = 0;
}
}
for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
val |= b << (8 * (reg_offs % 4));
if (reg_offs % 4 == 3) {
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
val = 0;
}
}
for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
if (reg_offs % 4 == 3) {
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
val = 0;
}
}
if (op->data.dir == SPI_MEM_DATA_OUT) {
for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
val |= tx_buf[i] << (8 * (reg_offs % 4));
if (reg_offs % 4 == 3) {
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
val = 0;
}
}
}
if (reg_offs % 4)
nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
for (i = 0; i < reg_offs; i += 4)
dev_dbg(snf->dev, "%d: %08X", i,
nfi_read32(snf, SNF_GPRAM + i));
dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
if (ret)
return ret;
if (!rx_len)
return 0;
nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
return 0;
}
static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
u32 oob_size)
{
int spare_idx = -1;
u32 spare_size, spare_size_shift, pagesize_idx;
u32 sector_size_512;
u8 nsectors;
int i;
// skip if it's already configured as required.
if (snf->nfi_cfg.page_size == page_size &&
snf->nfi_cfg.oob_size == oob_size)
return 0;
nsectors = page_size / snf->caps->sector_size;
if (nsectors > snf->caps->max_sectors) {
dev_err(snf->dev, "too many sectors required.\n");
goto err;
}
if (snf->caps->sector_size == 512) {
sector_size_512 = NFI_SEC_SEL_512;
spare_size_shift = NFI_SPARE_SIZE_S;
} else {
sector_size_512 = 0;
spare_size_shift = NFI_SPARE_SIZE_LS_S;
}
switch (page_size) {
case SZ_512:
pagesize_idx = NFI_PAGE_SIZE_512_2K;
break;
case SZ_2K:
if (snf->caps->sector_size == 512)
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
else
pagesize_idx = NFI_PAGE_SIZE_512_2K;
break;
case SZ_4K:
if (snf->caps->sector_size == 512)
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
else
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
break;
case SZ_8K:
if (snf->caps->sector_size == 512)
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
else
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
break;
case SZ_16K:
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
break;
default:
dev_err(snf->dev, "unsupported page size.\n");
goto err;
}
spare_size = oob_size / nsectors;
// If we're using the 1KB sector size, HW will automatically double the
// spare size. We should only use half of the value in this case.
if (snf->caps->sector_size == 1024)
spare_size /= 2;
for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
if (snf->caps->spare_sizes[i] <= spare_size) {
spare_size = snf->caps->spare_sizes[i];
if (snf->caps->sector_size == 1024)
spare_size *= 2;
spare_idx = i;
break;
}
}
if (spare_idx < 0) {
dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
goto err;
}
nfi_write32(snf, NFI_PAGEFMT,
(snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
(snf->caps->fdm_size << NFI_FDM_NUM_S) |
(spare_idx << spare_size_shift) |
(pagesize_idx << NFI_PAGE_SIZE_S) |
sector_size_512);
snf->nfi_cfg.page_size = page_size;
snf->nfi_cfg.oob_size = oob_size;
snf->nfi_cfg.nsectors = nsectors;
snf->nfi_cfg.spare_size = spare_size;
dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
snf->caps->sector_size, spare_size, nsectors);
return snand_prepare_bouncebuf(snf, page_size + oob_size);
err:
dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
oob_size);
return -EOPNOTSUPP;
}
static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobecc)
{
// ECC area is not accessible
return -ERANGE;
}
static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobfree)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct mtk_snand *ms = nand_to_mtk_snand(nand);
if (section >= ms->nfi_cfg.nsectors)
return -ERANGE;
oobfree->length = ms->caps->fdm_size - 1;
oobfree->offset = section * ms->caps->fdm_size + 1;
return 0;
}
static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
.ecc = mtk_snand_ooblayout_ecc,
.free = mtk_snand_ooblayout_free,
};
static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
{
struct mtk_snand *snf = nand_to_mtk_snand(nand);
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
struct nand_ecc_props *reqs = &nand->ecc.requirements;
struct nand_ecc_props *user = &nand->ecc.user_conf;
struct mtd_info *mtd = nanddev_to_mtd(nand);
int step_size = 0, strength = 0, desired_correction = 0, steps;
bool ecc_user = false;
int ret;
u32 parity_bits, max_ecc_bytes;
struct mtk_ecc_config *ecc_cfg;
ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
nand->memorg.oobsize);
if (ret)
return ret;
ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
if (!ecc_cfg)
return -ENOMEM;
nand->ecc.ctx.priv = ecc_cfg;
if (user->step_size && user->strength) {
step_size = user->step_size;
strength = user->strength;
ecc_user = true;
} else if (reqs->step_size && reqs->strength) {
step_size = reqs->step_size;
strength = reqs->strength;
}
if (step_size && strength) {
steps = mtd->writesize / step_size;
desired_correction = steps * strength;
strength = desired_correction / snf->nfi_cfg.nsectors;
}
ecc_cfg->mode = ECC_NFI_MODE;
ecc_cfg->sectors = snf->nfi_cfg.nsectors;
ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
// calculate the max possible strength under current page format
parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
// if there's a user requested strength, find the minimum strength that
// meets the requirement. Otherwise use the maximum strength which is
// expected by BootROM.
if (ecc_user && strength) {
u32 s_next = ecc_cfg->strength - 1;
while (1) {
mtk_ecc_adjust_strength(snf->ecc, &s_next);
if (s_next >= ecc_cfg->strength)
break;
if (s_next < strength)
break;
s_next = ecc_cfg->strength - 1;
}
}
mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
conf->step_size = snf->caps->sector_size;
conf->strength = ecc_cfg->strength;
if (ecc_cfg->strength < strength)
dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
strength);
dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
ecc_cfg->strength, snf->caps->sector_size);
return 0;
}
static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
{
struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
kfree(ecc_cfg);
}
static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct mtk_snand *snf = nand_to_mtk_snand(nand);
struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
int ret;
ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
nand->memorg.oobsize);
if (ret)
return ret;
snf->autofmt = true;
snf->ecc_cfg = ecc_cfg;
return 0;
}
static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct mtk_snand *snf = nand_to_mtk_snand(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
snf->ecc_cfg = NULL;
snf->autofmt = false;
if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
return 0;
if (snf->ecc_stats.failed)
mtd->ecc_stats.failed += snf->ecc_stats.failed;
mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
}
static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
.init_ctx = mtk_snand_ecc_init_ctx,
.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
.prepare_io_req = mtk_snand_ecc_prepare_io_req,
.finish_io_req = mtk_snand_ecc_finish_io_req,
};
static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
{
u32 vall, valm;
u8 *oobptr = buf;
int i, j;
for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
vall = nfi_read32(snf, NFI_FDML(i));
valm = nfi_read32(snf, NFI_FDMM(i));
for (j = 0; j < snf->caps->fdm_size; j++)
oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
oobptr += snf->caps->fdm_size;
}
}
static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
{
u32 fdm_size = snf->caps->fdm_size;
const u8 *oobptr = buf;
u32 vall, valm;
int i, j;
for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
vall = 0;
valm = 0;
for (j = 0; j < 8; j++) {
if (j < 4)
vall |= (j < fdm_size ? oobptr[j] : 0xff)
<< (j * 8);
else
valm |= (j < fdm_size ? oobptr[j] : 0xff)
<< ((j - 4) * 8);
}
nfi_write32(snf, NFI_FDML(i), vall);
nfi_write32(snf, NFI_FDMM(i), valm);
oobptr += fdm_size;
}
}
static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
{
u32 buf_bbm_pos, fdm_bbm_pos;
if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
return;
// swap [pagesize] byte on nand with the first fdm byte
// in the last sector.
buf_bbm_pos = snf->nfi_cfg.page_size -
(snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
fdm_bbm_pos = snf->nfi_cfg.page_size +
(snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
}
static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
{
u32 fdm_bbm_pos1, fdm_bbm_pos2;
if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
return;
// swap the first fdm byte in the first and the last sector.
fdm_bbm_pos1 = snf->nfi_cfg.page_size;
fdm_bbm_pos2 = snf->nfi_cfg.page_size +
(snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
}
static int mtk_snand_read_page_cache(struct mtk_snand *snf,
const struct spi_mem_op *op)
{
u8 *buf = snf->buf;
u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
// the address part to be sent by the controller
u32 op_addr = op->addr.val;
// where to start copying data from bounce buffer
u32 rd_offset = 0;
u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
u32 op_mode = 0;
u32 dma_len = snf->buf_len;
int ret = 0;
u32 rd_mode, rd_bytes, val;
dma_addr_t buf_dma;
if (snf->autofmt) {
u32 last_bit;
u32 mask;
dma_len = snf->nfi_cfg.page_size;
op_mode = CNFG_AUTO_FMT_EN;
if (op->data.ecc)
op_mode |= CNFG_HW_ECC_EN;
// extract the plane bit:
// Find the highest bit set in (pagesize+oobsize).
// Bits higher than that in op->addr are kept and sent over SPI
// Lower bits are used as an offset for copying data from DMA
// bounce buffer.
last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
mask = (1 << last_bit) - 1;
rd_offset = op_addr & mask;
op_addr &= ~mask;
// check if we can dma to the caller memory
if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
buf = op->data.buf.in;
}
mtk_snand_mac_reset(snf);
mtk_nfi_reset(snf);
// command and dummy cycles
nfi_write32(snf, SNF_RD_CTL2,
(dummy_clk << DATA_READ_DUMMY_S) |
(op->cmd.opcode << DATA_READ_CMD_S));
// read address
nfi_write32(snf, SNF_RD_CTL3, op_addr);
// Set read op_mode
if (op->data.buswidth == 4)
rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
DATA_READ_MODE_X4;
else if (op->data.buswidth == 2)
rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
DATA_READ_MODE_X2;
else
rd_mode = DATA_READ_MODE_X1;
rd_mode <<= DATA_READ_MODE_S;
nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
rd_mode | DATARD_CUSTOM_EN);
// Set bytes to read
rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
snf->nfi_cfg.nsectors;
nfi_write32(snf, SNF_MISC_CTL2,
(rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
// NFI read prepare
nfi_write16(snf, NFI_CNFG,
(CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
ret = dma_mapping_error(snf->dev, buf_dma);
if (ret) {
dev_err(snf->dev, "DMA mapping failed.\n");
goto cleanup;
}
nfi_write32(snf, NFI_STRADDR, buf_dma);
if (op->data.ecc) {
snf->ecc_cfg->op = ECC_DECODE;
ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
if (ret)
goto cleanup_dma;
}
// Prepare for custom read interrupt
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
reinit_completion(&snf->op_done);
// Trigger NFI into custom mode
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
// Start DMA read
nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
nfi_write16(snf, NFI_STRDATA, STR_DATA);
if (!wait_for_completion_timeout(
&snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
dev_err(snf->dev, "DMA timed out for reading from cache.\n");
ret = -ETIMEDOUT;
goto cleanup;
}
// Wait for BUS_SEC_CNTR returning expected value
ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
SNFI_POLL_INTERVAL);
if (ret) {
dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
goto cleanup2;
}
// Wait for bus becoming idle
ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
!(val & snf->caps->mastersta_mask), 0,
SNFI_POLL_INTERVAL);
if (ret) {
dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
goto cleanup2;
}
if (op->data.ecc) {
ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
if (ret) {
dev_err(snf->dev, "wait ecc done timeout\n");
goto cleanup2;
}
// save status before disabling ecc
mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
snf->nfi_cfg.nsectors);
}
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
if (snf->autofmt) {
mtk_snand_read_fdm(snf, buf_fdm);
if (snf->caps->bbm_swap) {
mtk_snand_bm_swap(snf, buf);
mtk_snand_fdm_bm_swap(snf);
}
}
// copy data back
if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
memset(op->data.buf.in, 0xff, op->data.nbytes);
snf->ecc_stats.bitflips = 0;
snf->ecc_stats.failed = 0;
snf->ecc_stats.corrected = 0;
} else {
if (buf == op->data.buf.in) {
u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
if (req_left)
memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
buf_fdm,
cap_len < req_left ? cap_len : req_left);
} else if (rd_offset < snf->buf_len) {
u32 cap_len = snf->buf_len - rd_offset;
if (op->data.nbytes < cap_len)
cap_len = op->data.nbytes;
memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
}
}
cleanup2:
if (op->data.ecc)
mtk_ecc_disable(snf->ecc);
cleanup_dma:
// unmap dma only if any error happens. (otherwise it's done before
// data copying)
if (ret)
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
cleanup:
// Stop read
nfi_write32(snf, NFI_CON, 0);
nfi_write16(snf, NFI_CNFG, 0);
// Clear SNF done flag
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
nfi_write32(snf, SNF_STA_CTL1, 0);
// Disable interrupt
nfi_read32(snf, NFI_INTR_STA);
nfi_write32(snf, NFI_INTR_EN, 0);
nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
return ret;
}
static int mtk_snand_write_page_cache(struct mtk_snand *snf,
const struct spi_mem_op *op)
{
// the address part to be sent by the controller
u32 op_addr = op->addr.val;
// where to start copying data from bounce buffer
u32 wr_offset = 0;
u32 op_mode = 0;
int ret = 0;
u32 wr_mode = 0;
u32 dma_len = snf->buf_len;
u32 wr_bytes, val;
size_t cap_len;
dma_addr_t buf_dma;
if (snf->autofmt) {
u32 last_bit;
u32 mask;
dma_len = snf->nfi_cfg.page_size;
op_mode = CNFG_AUTO_FMT_EN;
if (op->data.ecc)
op_mode |= CNFG_HW_ECC_EN;
last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
mask = (1 << last_bit) - 1;
wr_offset = op_addr & mask;
op_addr &= ~mask;
}
mtk_snand_mac_reset(snf);
mtk_nfi_reset(snf);
if (wr_offset)
memset(snf->buf, 0xff, wr_offset);
cap_len = snf->buf_len - wr_offset;
if (op->data.nbytes < cap_len)
cap_len = op->data.nbytes;
memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
if (snf->autofmt) {
if (snf->caps->bbm_swap) {
mtk_snand_fdm_bm_swap(snf);
mtk_snand_bm_swap(snf, snf->buf);
}
mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
}
// Command
nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
// write address
nfi_write32(snf, SNF_PG_CTL2, op_addr);
// Set read op_mode
if (op->data.buswidth == 4)
wr_mode = PG_LOAD_X4_EN;
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
wr_mode | PG_LOAD_CUSTOM_EN);
// Set bytes to write
wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
snf->nfi_cfg.nsectors;
nfi_write32(snf, SNF_MISC_CTL2,
(wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
// NFI write prepare
nfi_write16(snf, NFI_CNFG,
(CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
ret = dma_mapping_error(snf->dev, buf_dma);
if (ret) {
dev_err(snf->dev, "DMA mapping failed.\n");
goto cleanup;
}
nfi_write32(snf, NFI_STRADDR, buf_dma);
if (op->data.ecc) {
snf->ecc_cfg->op = ECC_ENCODE;
ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
if (ret)
goto cleanup_dma;
}
// Prepare for custom write interrupt
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
reinit_completion(&snf->op_done);
;
// Trigger NFI into custom mode
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
// Start DMA write
nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
nfi_write16(snf, NFI_STRDATA, STR_DATA);
if (!wait_for_completion_timeout(
&snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
dev_err(snf->dev, "DMA timed out for program load.\n");
ret = -ETIMEDOUT;
goto cleanup_ecc;
}
// Wait for NFI_SEC_CNTR returning expected value
ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
SNFI_POLL_INTERVAL);
if (ret)
dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
cleanup_ecc:
if (op->data.ecc)
mtk_ecc_disable(snf->ecc);
cleanup_dma:
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
cleanup:
// Stop write
nfi_write32(snf, NFI_CON, 0);
nfi_write16(snf, NFI_CNFG, 0);
// Clear SNF done flag
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
nfi_write32(snf, SNF_STA_CTL1, 0);
// Disable interrupt
nfi_read32(snf, NFI_INTR_STA);
nfi_write32(snf, NFI_INTR_EN, 0);
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
return ret;
}
/**
* mtk_snand_is_page_ops() - check if the op is a controller supported page op.
* @op spi-mem op to check
*
* Check whether op can be executed with read_from_cache or program_load
* mode in the controller.
* This controller can execute typical Read From Cache and Program Load
* instructions found on SPI-NAND with 2-byte address.
* DTR and cmd buswidth & nbytes should be checked before calling this.
*
* Return: true if the op matches the instruction template
*/
static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
{
if (op->addr.nbytes != 2)
return false;
if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
op->addr.buswidth != 4)
return false;
// match read from page instructions
if (op->data.dir == SPI_MEM_DATA_IN) {
// check dummy cycle first
if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
DATA_READ_MAX_DUMMY)
return false;
// quad io / quad out
if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
op->data.buswidth == 4)
return true;
// dual io / dual out
if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
op->data.buswidth == 2)
return true;
// standard spi
if (op->addr.buswidth == 1 && op->data.buswidth == 1)
return true;
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
// check dummy cycle first
if (op->dummy.nbytes)
return false;
// program load quad out
if (op->addr.buswidth == 1 && op->data.buswidth == 4)
return true;
// standard spi
if (op->addr.buswidth == 1 && op->data.buswidth == 1)
return true;
}
return false;
}
static bool mtk_snand_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
return false;
if (mtk_snand_is_page_ops(op))
return true;
return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
(op->data.nbytes == 0 || op->data.buswidth == 1));
}
static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
// page ops transfer size must be exactly ((sector_size + spare_size) *
// nsectors). Limit the op size if the caller requests more than that.
// exec_op will read more than needed and discard the leftover if the
// caller requests less data.
if (mtk_snand_is_page_ops(op)) {
size_t l;
// skip adjust_op_size for page ops
if (ms->autofmt)
return 0;
l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
l *= ms->nfi_cfg.nsectors;
if (op->data.nbytes > l)
op->data.nbytes = l;
} else {
size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
if (hl >= SNF_GPRAM_SIZE)
return -EOPNOTSUPP;
if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
op->data.nbytes = SNF_GPRAM_SIZE - hl;
}
return 0;
}
static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
op->addr.val, op->addr.buswidth, op->addr.nbytes,
op->data.buswidth, op->data.nbytes);
if (mtk_snand_is_page_ops(op)) {
if (op->data.dir == SPI_MEM_DATA_IN)
return mtk_snand_read_page_cache(ms, op);
else
return mtk_snand_write_page_cache(ms, op);
} else {
return mtk_snand_mac_io(ms, op);
}
}
static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
.adjust_op_size = mtk_snand_adjust_op_size,
.supports_op = mtk_snand_supports_op,
.exec_op = mtk_snand_exec_op,
};
static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
.ecc = true,
};
static irqreturn_t mtk_snand_irq(int irq, void *id)
{
struct mtk_snand *snf = id;
u32 sta, ien;
sta = nfi_read32(snf, NFI_INTR_STA);
ien = nfi_read32(snf, NFI_INTR_EN);
if (!(sta & ien))
return IRQ_NONE;
nfi_write32(snf, NFI_INTR_EN, 0);
complete(&snf->op_done);
return IRQ_HANDLED;
}
static const struct of_device_id mtk_snand_ids[] = {
{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
{},
};
MODULE_DEVICE_TABLE(of, mtk_snand_ids);
static int mtk_snand_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *dev_id;
struct spi_controller *ctlr;
struct mtk_snand *ms;
unsigned long spi_freq;
u32 val = 0;
int ret;
dev_id = of_match_node(mtk_snand_ids, np);
if (!dev_id)
return -EINVAL;
ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms));
if (!ctlr)
return -ENOMEM;
platform_set_drvdata(pdev, ctlr);
ms = spi_controller_get_devdata(ctlr);
ms->ctlr = ctlr;
ms->caps = dev_id->data;
ms->ecc = of_mtk_ecc_get(np);
if (IS_ERR(ms->ecc))
return PTR_ERR(ms->ecc);
else if (!ms->ecc)
return -ENODEV;
ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ms->nfi_base)) {
ret = PTR_ERR(ms->nfi_base);
goto release_ecc;
}
ms->dev = &pdev->dev;
ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk");
if (IS_ERR(ms->nfi_clk)) {
ret = PTR_ERR(ms->nfi_clk);
dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
goto release_ecc;
}
ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk");
if (IS_ERR(ms->pad_clk)) {
ret = PTR_ERR(ms->pad_clk);
dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
goto release_ecc;
}
ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk");
if (IS_ERR(ms->nfi_hclk)) {
ret = PTR_ERR(ms->nfi_hclk);
dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
goto release_ecc;
}
init_completion(&ms->op_done);
ms->irq = platform_get_irq(pdev, 0);
if (ms->irq < 0) {
ret = ms->irq;
goto release_ecc;
}
ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
"mtk-snand", ms);
if (ret) {
dev_err(ms->dev, "failed to request snfi irq\n");
goto release_ecc;
}
ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(ms->dev, "failed to set dma mask\n");
goto release_ecc;
}
// switch to SNFI mode
nfi_write32(ms, SNF_CFG, SPI_MODE);
ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
if (!ret)
nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
if (!ret) {
spi_freq = clk_get_rate(ms->pad_clk);
val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
val << DATA_READ_LATCH_LAT_S);
}
// setup an initial page format for ops matching page_cache_op template
// before ECC is called.
ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
if (ret) {
dev_err(ms->dev, "failed to set initial page format\n");
goto release_ecc;
}
// setup ECC engine
ms->ecc_eng.dev = &pdev->dev;
ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
ms->ecc_eng.priv = ms;
ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
if (ret) {
dev_err(&pdev->dev, "failed to register ecc engine.\n");
goto release_ecc;
}
ctlr->num_chipselect = 1;
ctlr->mem_ops = &mtk_snand_mem_ops;
ctlr->mem_caps = &mtk_snand_mem_caps;
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
ctlr->dev.of_node = pdev->dev.of_node;
ret = spi_register_controller(ctlr);
if (ret) {
dev_err(&pdev->dev, "spi_register_controller failed.\n");
goto release_ecc;
}
return 0;
release_ecc:
mtk_ecc_release(ms->ecc);
return ret;
}
static void mtk_snand_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = platform_get_drvdata(pdev);
struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
spi_unregister_controller(ctlr);
mtk_ecc_release(ms->ecc);
kfree(ms->buf);
}
static struct platform_driver mtk_snand_driver = {
.probe = mtk_snand_probe,
.remove_new = mtk_snand_remove,
.driver = {
.name = "mtk-snand",
.of_match_table = mtk_snand_ids,
},
};
module_platform_driver(mtk_snand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Chuanhong Guo <[email protected]>");
MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");