// SPDX-License-Identifier: GPL-2.0
/*
* ov4689 driver
*
* Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd.
* Copyright (C) 2022, 2024 Mikhail Rudenko
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-fwnode.h>
#define OV4689_REG_CTRL_MODE CCI_REG8(0x0100)
#define OV4689_MODE_SW_STANDBY 0x0
#define OV4689_MODE_STREAMING BIT(0)
#define OV4689_REG_CHIP_ID CCI_REG16(0x300a)
#define CHIP_ID 0x004688
#define OV4689_REG_EXPOSURE CCI_REG24(0x3500)
#define OV4689_EXPOSURE_MIN 4
#define OV4689_EXPOSURE_STEP 1
#define OV4689_REG_GAIN CCI_REG16(0x3508)
#define OV4689_GAIN_STEP 1
#define OV4689_GAIN_DEFAULT 0x80
#define OV4689_REG_DIG_GAIN CCI_REG16(0x352a)
#define OV4689_DIG_GAIN_MIN 1
#define OV4689_DIG_GAIN_MAX 0x7fff
#define OV4689_DIG_GAIN_STEP 1
#define OV4689_DIG_GAIN_DEFAULT 0x800
#define OV4689_REG_H_CROP_START CCI_REG16(0x3800)
#define OV4689_REG_V_CROP_START CCI_REG16(0x3802)
#define OV4689_REG_H_CROP_END CCI_REG16(0x3804)
#define OV4689_REG_V_CROP_END CCI_REG16(0x3806)
#define OV4689_REG_H_OUTPUT_SIZE CCI_REG16(0x3808)
#define OV4689_REG_V_OUTPUT_SIZE CCI_REG16(0x380a)
#define OV4689_REG_HTS CCI_REG16(0x380c)
#define OV4689_HTS_DIVIDER 4
#define OV4689_HTS_MAX 0x7fff
#define OV4689_REG_VTS CCI_REG16(0x380e)
#define OV4689_VTS_MAX 0x7fff
#define OV4689_REG_H_WIN_OFF CCI_REG16(0x3810)
#define OV4689_REG_V_WIN_OFF CCI_REG16(0x3812)
#define OV4689_REG_TIMING_FORMAT1 CCI_REG8(0x3820) /* Vertical */
#define OV4689_REG_TIMING_FORMAT2 CCI_REG8(0x3821) /* Horizontal */
#define OV4689_TIMING_FLIP_MASK GENMASK(2, 1)
#define OV4689_TIMING_FLIP_ARRAY BIT(1)
#define OV4689_TIMING_FLIP_DIGITAL BIT(2)
#define OV4689_TIMING_FLIP_BOTH (OV4689_TIMING_FLIP_ARRAY |\
OV4689_TIMING_FLIP_DIGITAL)
#define OV4689_REG_ANCHOR_LEFT_START CCI_REG16(0x4020)
#define OV4689_ANCHOR_LEFT_START_DEF 576
#define OV4689_REG_ANCHOR_LEFT_END CCI_REG16(0x4022)
#define OV4689_ANCHOR_LEFT_END_DEF 831
#define OV4689_REG_ANCHOR_RIGHT_START CCI_REG16(0x4024)
#define OV4689_ANCHOR_RIGHT_START_DEF 1984
#define OV4689_REG_ANCHOR_RIGHT_END CCI_REG16(0x4026)
#define OV4689_ANCHOR_RIGHT_END_DEF 2239
#define OV4689_REG_VFIFO_CTRL_01 CCI_REG8(0x4601)
#define OV4689_REG_WB_GAIN_RED CCI_REG16(0x500c)
#define OV4689_REG_WB_GAIN_BLUE CCI_REG16(0x5010)
#define OV4689_WB_GAIN_MIN 1
#define OV4689_WB_GAIN_MAX 0xfff
#define OV4689_WB_GAIN_STEP 1
#define OV4689_WB_GAIN_DEFAULT 0x400
#define OV4689_REG_TEST_PATTERN CCI_REG8(0x5040)
#define OV4689_TEST_PATTERN_ENABLE 0x80
#define OV4689_TEST_PATTERN_DISABLE 0x0
#define OV4689_LANES 4
#define OV4689_XVCLK_FREQ 24000000
#define OV4689_PIXEL_ARRAY_WIDTH 2720
#define OV4689_PIXEL_ARRAY_HEIGHT 1536
#define OV4689_DUMMY_ROWS 8 /* 8 dummy rows on each side */
#define OV4689_DUMMY_COLUMNS 16 /* 16 dummy columns on each side */
static const char *const ov4689_supply_names[] = {
"avdd", /* Analog power */
"dovdd", /* Digital I/O power */
"dvdd", /* Digital core power */
};
enum ov4689_mode_id {
OV4689_MODE_2688_1520 = 0,
OV4689_NUM_MODES,
};
struct ov4689_mode {
enum ov4689_mode_id id;
u32 width;
u32 height;
u32 hts_def;
u32 hts_min;
u32 vts_def;
u32 exp_def;
u32 pixel_rate;
const struct cci_reg_sequence *reg_list;
unsigned int num_regs;
};
struct ov4689 {
struct device *dev;
struct regmap *regmap;
struct clk *xvclk;
struct gpio_desc *reset_gpio;
struct gpio_desc *pwdn_gpio;
struct regulator_bulk_data supplies[ARRAY_SIZE(ov4689_supply_names)];
struct v4l2_subdev subdev;
struct media_pad pad;
u32 clock_rate;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
const struct ov4689_mode *cur_mode;
};
#define to_ov4689(sd) container_of(sd, struct ov4689, subdev)
struct ov4689_gain_range {
u32 logical_min;
u32 logical_max;
u32 offset;
u32 divider;
u32 physical_min;
u32 physical_max;
};
/*
* Xclk 24Mhz
* max_framerate 90fps
* mipi_datarate per lane 1008Mbps
*/
static const struct cci_reg_sequence ov4689_2688x1520_regs[] = {
/* System control*/
{ CCI_REG8(0x0103), 0x01 }, /* SC_CTRL0103 software_reset = 1 */
{ CCI_REG8(0x3000), 0x20 }, /* SC_CMMN_PAD_OEN0 FSIN_output_enable = 1 */
{ CCI_REG8(0x3021), 0x03 }, /*
* SC_CMMN_MISC_CTRL fst_stby_ctr = 0,
* sleep_no_latch_enable = 0
*/
/* AEC PK */
{ CCI_REG8(0x3503), 0x04 }, /* AEC_MANUAL gain_input_as_sensor_gain_format = 1 */
/* ADC and analog control*/
{ CCI_REG8(0x3603), 0x40 },
{ CCI_REG8(0x3604), 0x02 },
{ CCI_REG8(0x3609), 0x12 },
{ CCI_REG8(0x360c), 0x08 },
{ CCI_REG8(0x360f), 0xe5 },
{ CCI_REG8(0x3608), 0x8f },
{ CCI_REG8(0x3611), 0x00 },
{ CCI_REG8(0x3613), 0xf7 },
{ CCI_REG8(0x3616), 0x58 },
{ CCI_REG8(0x3619), 0x99 },
{ CCI_REG8(0x361b), 0x60 },
{ CCI_REG8(0x361e), 0x79 },
{ CCI_REG8(0x3634), 0x10 },
{ CCI_REG8(0x3635), 0x10 },
{ CCI_REG8(0x3636), 0x15 },
{ CCI_REG8(0x3646), 0x86 },
{ CCI_REG8(0x364a), 0x0b },
/* Sensor control */
{ CCI_REG8(0x3700), 0x17 },
{ CCI_REG8(0x3701), 0x22 },
{ CCI_REG8(0x3703), 0x10 },
{ CCI_REG8(0x370a), 0x37 },
{ CCI_REG8(0x3706), 0x63 },
{ CCI_REG8(0x3709), 0x3c },
{ CCI_REG8(0x370c), 0x30 },
{ CCI_REG8(0x3710), 0x24 },
{ CCI_REG8(0x3720), 0x28 },
{ CCI_REG8(0x3729), 0x7b },
{ CCI_REG8(0x372b), 0xbd },
{ CCI_REG8(0x372c), 0xbc },
{ CCI_REG8(0x372e), 0x52 },
{ CCI_REG8(0x373c), 0x0e },
{ CCI_REG8(0x373e), 0x33 },
{ CCI_REG8(0x3743), 0x10 },
{ CCI_REG8(0x3744), 0x88 },
{ CCI_REG8(0x3745), 0xc0 },
{ CCI_REG8(0x374c), 0x00 },
{ CCI_REG8(0x374e), 0x23 },
{ CCI_REG8(0x3751), 0x7b },
{ CCI_REG8(0x3753), 0xbd },
{ CCI_REG8(0x3754), 0xbc },
{ CCI_REG8(0x3756), 0x52 },
{ CCI_REG8(0x376b), 0x20 },
{ CCI_REG8(0x3774), 0x51 },
{ CCI_REG8(0x3776), 0xbd },
{ CCI_REG8(0x3777), 0xbd },
{ CCI_REG8(0x3781), 0x18 },
{ CCI_REG8(0x3783), 0x25 },
{ CCI_REG8(0x3798), 0x1b },
/* Timing control */
{ CCI_REG8(0x3819), 0x01 }, /* VSYNC_END_L vsync_end_point[7:0] = 0x01 */
/* OTP control */
{ CCI_REG8(0x3d85), 0x36 }, /* OTP_REG85 OTP_power_up_load_setting_enable = 1,
* OTP_power_up_load_data_enable = 1,
* OTP_bist_select = 1 (compare with zero)
*/
{ CCI_REG8(0x3d8c), 0x71 }, /* OTP_SETTING_STT_ADDRESS_H */
{ CCI_REG8(0x3d8d), 0xcb }, /* OTP_SETTING_STT_ADDRESS_L */
/* BLC registers*/
{ CCI_REG8(0x4001), 0x40 }, /* DEBUG_MODE */
{ CCI_REG8(0x401b), 0x00 }, /* DEBUG_MODE */
{ CCI_REG8(0x401d), 0x00 }, /* DEBUG_MODE */
{ CCI_REG8(0x401f), 0x00 }, /* DEBUG_MODE */
/* ADC sync control */
{ CCI_REG8(0x4500), 0x6c }, /* ADC_SYNC_CTRL */
{ CCI_REG8(0x4503), 0x01 }, /* ADC_SYNC_CTRL */
/* Temperature monitor */
{ CCI_REG8(0x4d00), 0x04 }, /* TPM_CTRL_00 tmp_slope[15:8] = 0x04 */
{ CCI_REG8(0x4d01), 0x42 }, /* TPM_CTRL_01 tmp_slope[7:0] = 0x42 */
{ CCI_REG8(0x4d02), 0xd1 }, /* TPM_CTRL_02 tpm_offset[31:24] = 0xd1 */
{ CCI_REG8(0x4d03), 0x93 }, /* TPM_CTRL_03 tpm_offset[23:16] = 0x93 */
{ CCI_REG8(0x4d04), 0xf5 }, /* TPM_CTRL_04 tpm_offset[15:8] = 0xf5 */
{ CCI_REG8(0x4d05), 0xc1 }, /* TPM_CTRL_05 tpm_offset[7:0] = 0xc1 */
/* pre-ISP control */
{ CCI_REG8(0x5050), 0x0c }, /* DEBUG_MODE */
/* OTP-DPC control */
{ CCI_REG8(0x5501), 0x10 }, /* OTP_DPC_START_L otp_start_address[7:0] = 0x10 */
{ CCI_REG8(0x5503), 0x0f }, /* OTP_DPC_END_L otp_end_address[7:0] = 0x0f */
};
static const struct ov4689_mode supported_modes[] = {
{
.id = OV4689_MODE_2688_1520,
.width = 2688,
.height = 1520,
.exp_def = 1536,
.hts_def = 10296,
.hts_min = 3432,
.vts_def = 1554,
.pixel_rate = 480000000,
.reg_list = ov4689_2688x1520_regs,
.num_regs = ARRAY_SIZE(ov4689_2688x1520_regs),
},
};
static const u64 link_freq_menu_items[] = { 504000000 };
static const char *const ov4689_test_pattern_menu[] = {
"Disabled",
"Vertical Color Bar Type 1",
"Vertical Color Bar Type 2",
"Vertical Color Bar Type 3",
"Vertical Color Bar Type 4"
};
/*
* These coefficients are based on those used in Rockchip's camera
* engine, with minor tweaks for continuity.
*/
static const struct ov4689_gain_range ov4689_gain_ranges[] = {
{
.logical_min = 0,
.logical_max = 255,
.offset = 0,
.divider = 1,
.physical_min = 0,
.physical_max = 255,
},
{
.logical_min = 256,
.logical_max = 511,
.offset = 252,
.divider = 2,
.physical_min = 376,
.physical_max = 504,
},
{
.logical_min = 512,
.logical_max = 1023,
.offset = 758,
.divider = 4,
.physical_min = 884,
.physical_max = 1012,
},
{
.logical_min = 1024,
.logical_max = 2047,
.offset = 1788,
.divider = 8,
.physical_min = 1912,
.physical_max = 2047,
},
};
static void ov4689_fill_fmt(const struct ov4689_mode *mode,
struct v4l2_mbus_framefmt *fmt)
{
fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10;
fmt->width = mode->width;
fmt->height = mode->height;
fmt->field = V4L2_FIELD_NONE;
}
static int ov4689_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *mbus_fmt = &fmt->format;
struct ov4689 *ov4689 = to_ov4689(sd);
/* only one mode supported for now */
ov4689_fill_fmt(ov4689->cur_mode, mbus_fmt);
return 0;
}
static int ov4689_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index != 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SBGGR10_1X10;
return 0;
}
static int ov4689_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SBGGR10_1X10)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int ov4689_enable_test_pattern(struct ov4689 *ov4689, u32 pattern)
{
u32 val;
if (pattern)
val = (pattern - 1) | OV4689_TEST_PATTERN_ENABLE;
else
val = OV4689_TEST_PATTERN_DISABLE;
return cci_write(ov4689->regmap, OV4689_REG_TEST_PATTERN,
val, NULL);
}
static int ov4689_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.top = 0;
sel->r.left = 0;
sel->r.width = OV4689_PIXEL_ARRAY_WIDTH;
sel->r.height = OV4689_PIXEL_ARRAY_HEIGHT;
return 0;
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_CROP_DEFAULT:
sel->r.top = OV4689_DUMMY_ROWS;
sel->r.left = OV4689_DUMMY_COLUMNS;
sel->r.width =
OV4689_PIXEL_ARRAY_WIDTH - 2 * OV4689_DUMMY_COLUMNS;
sel->r.height =
OV4689_PIXEL_ARRAY_HEIGHT - 2 * OV4689_DUMMY_ROWS;
return 0;
}
return -EINVAL;
}
static int ov4689_setup_timings(struct ov4689 *ov4689)
{
const struct ov4689_mode *mode = ov4689->cur_mode;
struct regmap *rm = ov4689->regmap;
int ret = 0;
cci_write(rm, OV4689_REG_H_CROP_START, 8, &ret);
cci_write(rm, OV4689_REG_V_CROP_START, 8, &ret);
cci_write(rm, OV4689_REG_H_CROP_END, 2711, &ret);
cci_write(rm, OV4689_REG_V_CROP_END, 1531, &ret);
cci_write(rm, OV4689_REG_H_OUTPUT_SIZE, mode->width, &ret);
cci_write(rm, OV4689_REG_V_OUTPUT_SIZE, mode->height, &ret);
cci_write(rm, OV4689_REG_H_WIN_OFF, 8, &ret);
cci_write(rm, OV4689_REG_V_WIN_OFF, 4, &ret);
cci_write(rm, OV4689_REG_VFIFO_CTRL_01, 167, &ret);
return ret;
}
static int ov4689_setup_blc_anchors(struct ov4689 *ov4689)
{
struct regmap *rm = ov4689->regmap;
int ret = 0;
cci_write(rm, OV4689_REG_ANCHOR_LEFT_START, 16, &ret);
cci_write(rm, OV4689_REG_ANCHOR_LEFT_END, 1999, &ret);
cci_write(rm, OV4689_REG_ANCHOR_RIGHT_START, 2400, &ret);
cci_write(rm, OV4689_REG_ANCHOR_RIGHT_END, 2415, &ret);
return ret;
}
static int ov4689_s_stream(struct v4l2_subdev *sd, int on)
{
struct ov4689 *ov4689 = to_ov4689(sd);
struct v4l2_subdev_state *sd_state;
struct device *dev = ov4689->dev;
int ret = 0;
sd_state = v4l2_subdev_lock_and_get_active_state(&ov4689->subdev);
if (on) {
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
goto unlock_and_return;
ret = cci_multi_reg_write(ov4689->regmap,
ov4689->cur_mode->reg_list,
ov4689->cur_mode->num_regs,
NULL);
if (ret) {
pm_runtime_put(dev);
goto unlock_and_return;
}
ret = ov4689_setup_timings(ov4689);
if (ret) {
pm_runtime_put(dev);
goto unlock_and_return;
}
ret = ov4689_setup_blc_anchors(ov4689);
if (ret) {
pm_runtime_put(dev);
goto unlock_and_return;
}
ret = __v4l2_ctrl_handler_setup(&ov4689->ctrl_handler);
if (ret) {
pm_runtime_put(dev);
goto unlock_and_return;
}
ret = cci_write(ov4689->regmap, OV4689_REG_CTRL_MODE,
OV4689_MODE_STREAMING, NULL);
if (ret) {
pm_runtime_put(dev);
goto unlock_and_return;
}
} else {
cci_write(ov4689->regmap, OV4689_REG_CTRL_MODE,
OV4689_MODE_SW_STANDBY, NULL);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
unlock_and_return:
v4l2_subdev_unlock_state(sd_state);
return ret;
}
/* Calculate the delay in us by clock rate and clock cycles */
static inline u32 ov4689_cal_delay(struct ov4689 *ov4689, u32 cycles)
{
return DIV_ROUND_UP(cycles * 1000,
DIV_ROUND_UP(ov4689->clock_rate, 1000));
}
static int __maybe_unused ov4689_power_on(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov4689 *ov4689 = to_ov4689(sd);
u32 delay_us;
int ret;
ret = clk_prepare_enable(ov4689->xvclk);
if (ret < 0) {
dev_err(dev, "Failed to enable xvclk\n");
return ret;
}
gpiod_set_value_cansleep(ov4689->reset_gpio, 1);
ret = regulator_bulk_enable(ARRAY_SIZE(ov4689_supply_names),
ov4689->supplies);
if (ret < 0) {
dev_err(dev, "Failed to enable regulators\n");
goto disable_clk;
}
gpiod_set_value_cansleep(ov4689->reset_gpio, 0);
usleep_range(500, 1000);
gpiod_set_value_cansleep(ov4689->pwdn_gpio, 0);
/* 8192 cycles prior to first SCCB transaction */
delay_us = ov4689_cal_delay(ov4689, 8192);
usleep_range(delay_us, delay_us * 2);
return 0;
disable_clk:
clk_disable_unprepare(ov4689->xvclk);
return ret;
}
static int __maybe_unused ov4689_power_off(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov4689 *ov4689 = to_ov4689(sd);
gpiod_set_value_cansleep(ov4689->pwdn_gpio, 1);
clk_disable_unprepare(ov4689->xvclk);
gpiod_set_value_cansleep(ov4689->reset_gpio, 1);
regulator_bulk_disable(ARRAY_SIZE(ov4689_supply_names),
ov4689->supplies);
return 0;
}
static int ov4689_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_mbus_framefmt *fmt =
v4l2_subdev_state_get_format(sd_state, 0);
ov4689_fill_fmt(&supported_modes[OV4689_MODE_2688_1520], fmt);
return 0;
}
static const struct dev_pm_ops ov4689_pm_ops = {
SET_RUNTIME_PM_OPS(ov4689_power_off, ov4689_power_on, NULL)
};
static const struct v4l2_subdev_video_ops ov4689_video_ops = {
.s_stream = ov4689_s_stream,
};
static const struct v4l2_subdev_pad_ops ov4689_pad_ops = {
.enum_mbus_code = ov4689_enum_mbus_code,
.enum_frame_size = ov4689_enum_frame_sizes,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = ov4689_set_fmt,
.get_selection = ov4689_get_selection,
};
static const struct v4l2_subdev_internal_ops ov4689_internal_ops = {
.init_state = ov4689_init_state,
};
static const struct v4l2_subdev_ops ov4689_subdev_ops = {
.video = &ov4689_video_ops,
.pad = &ov4689_pad_ops,
};
/*
* Map userspace (logical) gain to sensor (physical) gain using
* ov4689_gain_ranges table.
*/
static int ov4689_map_gain(struct ov4689 *ov4689, int logical_gain, int *result)
{
const struct ov4689_gain_range *range;
unsigned int n;
for (n = 0; n < ARRAY_SIZE(ov4689_gain_ranges); n++) {
if (logical_gain >= ov4689_gain_ranges[n].logical_min &&
logical_gain <= ov4689_gain_ranges[n].logical_max)
break;
}
if (n == ARRAY_SIZE(ov4689_gain_ranges)) {
dev_warn_ratelimited(ov4689->dev,
"no mapping found for gain %d\n",
logical_gain);
return -EINVAL;
}
range = &ov4689_gain_ranges[n];
*result = clamp(range->offset + (logical_gain) / range->divider,
range->physical_min, range->physical_max);
return 0;
}
static int ov4689_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct ov4689 *ov4689 =
container_of(ctrl->handler, struct ov4689, ctrl_handler);
struct regmap *regmap = ov4689->regmap;
struct device *dev = ov4689->dev;
int sensor_gain = 0;
s64 max_expo;
int ret = 0;
/* Propagate change of current control to all related controls */
switch (ctrl->id) {
case V4L2_CID_VBLANK:
/* Update max exposure while meeting expected vblanking */
max_expo = ov4689->cur_mode->height + ctrl->val - 4;
__v4l2_ctrl_modify_range(ov4689->exposure,
ov4689->exposure->minimum, max_expo,
ov4689->exposure->step,
ov4689->exposure->default_value);
break;
}
if (!pm_runtime_get_if_in_use(dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
/* 4 least significant bits of exposure are fractional part */
cci_write(regmap, OV4689_REG_EXPOSURE, ctrl->val << 4, &ret);
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = ov4689_map_gain(ov4689, ctrl->val, &sensor_gain);
cci_write(regmap, OV4689_REG_GAIN, sensor_gain, &ret);
break;
case V4L2_CID_VBLANK:
cci_write(regmap, OV4689_REG_VTS,
ctrl->val + ov4689->cur_mode->height, &ret);
break;
case V4L2_CID_TEST_PATTERN:
ret = ov4689_enable_test_pattern(ov4689, ctrl->val);
break;
case V4L2_CID_HBLANK:
cci_write(regmap, OV4689_REG_HTS,
(ctrl->val + ov4689->cur_mode->width) /
OV4689_HTS_DIVIDER, &ret);
break;
case V4L2_CID_VFLIP:
cci_update_bits(regmap, OV4689_REG_TIMING_FORMAT1,
OV4689_TIMING_FLIP_MASK,
ctrl->val ? OV4689_TIMING_FLIP_BOTH : 0, &ret);
break;
case V4L2_CID_HFLIP:
cci_update_bits(regmap, OV4689_REG_TIMING_FORMAT2,
OV4689_TIMING_FLIP_MASK,
ctrl->val ? 0 : OV4689_TIMING_FLIP_BOTH, &ret);
break;
case V4L2_CID_DIGITAL_GAIN:
cci_write(regmap, OV4689_REG_DIG_GAIN, ctrl->val, &ret);
break;
case V4L2_CID_RED_BALANCE:
cci_write(regmap, OV4689_REG_WB_GAIN_RED, ctrl->val, &ret);
break;
case V4L2_CID_BLUE_BALANCE:
cci_write(regmap, OV4689_REG_WB_GAIN_BLUE, ctrl->val, &ret);
break;
default:
dev_warn(dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static const struct v4l2_ctrl_ops ov4689_ctrl_ops = {
.s_ctrl = ov4689_set_ctrl,
};
static int ov4689_initialize_controls(struct ov4689 *ov4689)
{
struct i2c_client *client = v4l2_get_subdevdata(&ov4689->subdev);
struct v4l2_fwnode_device_properties props;
struct v4l2_ctrl_handler *handler;
const struct ov4689_mode *mode;
s64 exposure_max, vblank_def;
s64 hblank_def, hblank_min;
struct v4l2_ctrl *ctrl;
int ret;
handler = &ov4689->ctrl_handler;
mode = ov4689->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 15);
if (ret)
return ret;
ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ, 0, 0,
link_freq_menu_items);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE, 0,
mode->pixel_rate, 1, mode->pixel_rate);
hblank_def = mode->hts_def - mode->width;
hblank_min = mode->hts_min - mode->width;
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_HBLANK,
hblank_min, OV4689_HTS_MAX - mode->width,
OV4689_HTS_DIVIDER, hblank_def);
vblank_def = mode->vts_def - mode->height;
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_VBLANK,
vblank_def, OV4689_VTS_MAX - mode->height, 1,
vblank_def);
exposure_max = mode->vts_def - 4;
ov4689->exposure =
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_EXPOSURE,
OV4689_EXPOSURE_MIN, exposure_max,
OV4689_EXPOSURE_STEP, mode->exp_def);
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
ov4689_gain_ranges[0].logical_min,
ov4689_gain_ranges[ARRAY_SIZE(ov4689_gain_ranges) - 1]
.logical_max,
OV4689_GAIN_STEP, OV4689_GAIN_DEFAULT);
v4l2_ctrl_new_std_menu_items(handler, &ov4689_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(ov4689_test_pattern_menu) - 1,
0, 0, ov4689_test_pattern_menu);
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
OV4689_DIG_GAIN_MIN, OV4689_DIG_GAIN_MAX,
OV4689_DIG_GAIN_STEP, OV4689_DIG_GAIN_DEFAULT);
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_RED_BALANCE,
OV4689_WB_GAIN_MIN, OV4689_WB_GAIN_MAX,
OV4689_WB_GAIN_STEP, OV4689_WB_GAIN_DEFAULT);
v4l2_ctrl_new_std(handler, &ov4689_ctrl_ops, V4L2_CID_BLUE_BALANCE,
OV4689_WB_GAIN_MIN, OV4689_WB_GAIN_MAX,
OV4689_WB_GAIN_STEP, OV4689_WB_GAIN_DEFAULT);
if (handler->error) {
ret = handler->error;
dev_err(ov4689->dev, "Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
ret = v4l2_fwnode_device_parse(&client->dev, &props);
if (ret)
goto err_free_handler;
ret = v4l2_ctrl_new_fwnode_properties(handler, &ov4689_ctrl_ops,
&props);
if (ret)
goto err_free_handler;
ov4689->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int ov4689_check_sensor_id(struct ov4689 *ov4689,
struct i2c_client *client)
{
struct device *dev = ov4689->dev;
u64 id = 0;
int ret;
ret = cci_read(ov4689->regmap, OV4689_REG_CHIP_ID, &id, NULL);
if (ret) {
dev_err(dev, "Cannot read sensor ID\n");
return ret;
}
if (id != CHIP_ID) {
dev_err(dev, "Unexpected sensor ID %06llx, expected %06x\n",
id, CHIP_ID);
return -ENODEV;
}
dev_info(dev, "Detected OV%06x sensor\n", CHIP_ID);
return 0;
}
static int ov4689_configure_regulators(struct ov4689 *ov4689)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ov4689_supply_names); i++)
ov4689->supplies[i].supply = ov4689_supply_names[i];
return devm_regulator_bulk_get(ov4689->dev,
ARRAY_SIZE(ov4689_supply_names),
ov4689->supplies);
}
static u64 ov4689_check_link_frequency(struct v4l2_fwnode_endpoint *ep)
{
const u64 *freqs = link_freq_menu_items;
unsigned int i, j;
for (i = 0; i < ARRAY_SIZE(link_freq_menu_items); i++) {
for (j = 0; j < ep->nr_of_link_frequencies; j++)
if (freqs[i] == ep->link_frequencies[j])
return freqs[i];
}
return 0;
}
static int ov4689_check_hwcfg(struct device *dev)
{
struct fwnode_handle *fwnode = dev_fwnode(dev);
struct v4l2_fwnode_endpoint bus_cfg = {
.bus_type = V4L2_MBUS_CSI2_DPHY,
};
struct fwnode_handle *endpoint;
int ret;
endpoint = fwnode_graph_get_next_endpoint(fwnode, NULL);
if (!endpoint)
return -EINVAL;
ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &bus_cfg);
fwnode_handle_put(endpoint);
if (ret)
return ret;
if (bus_cfg.bus.mipi_csi2.num_data_lanes != OV4689_LANES) {
dev_err(dev, "Only a 4-lane CSI2 config is supported");
ret = -EINVAL;
goto out_free_bus_cfg;
}
if (!ov4689_check_link_frequency(&bus_cfg)) {
dev_err(dev, "No supported link frequency found\n");
ret = -EINVAL;
}
out_free_bus_cfg:
v4l2_fwnode_endpoint_free(&bus_cfg);
return ret;
}
static int ov4689_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct v4l2_subdev *sd;
struct ov4689 *ov4689;
int ret;
ret = ov4689_check_hwcfg(dev);
if (ret)
return ret;
ov4689 = devm_kzalloc(dev, sizeof(*ov4689), GFP_KERNEL);
if (!ov4689)
return -ENOMEM;
ov4689->dev = dev;
ov4689->cur_mode = &supported_modes[OV4689_MODE_2688_1520];
ov4689->xvclk = devm_clk_get_optional(dev, NULL);
if (IS_ERR(ov4689->xvclk))
return dev_err_probe(dev, PTR_ERR(ov4689->xvclk),
"Failed to get external clock\n");
if (!ov4689->xvclk) {
dev_dbg(dev,
"No clock provided, using clock-frequency property\n");
device_property_read_u32(dev, "clock-frequency",
&ov4689->clock_rate);
} else {
ov4689->clock_rate = clk_get_rate(ov4689->xvclk);
}
if (ov4689->clock_rate != OV4689_XVCLK_FREQ) {
dev_err(dev,
"External clock rate mismatch: got %d Hz, expected %d Hz\n",
ov4689->clock_rate, OV4689_XVCLK_FREQ);
return -EINVAL;
}
ov4689->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(ov4689->regmap)) {
ret = PTR_ERR(ov4689->regmap);
dev_err(dev, "failed to initialize CCI: %d\n", ret);
return ret;
}
ov4689->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(ov4689->reset_gpio)) {
dev_err(dev, "Failed to get reset-gpios\n");
return PTR_ERR(ov4689->reset_gpio);
}
ov4689->pwdn_gpio = devm_gpiod_get_optional(dev, "pwdn", GPIOD_OUT_LOW);
if (IS_ERR(ov4689->pwdn_gpio)) {
dev_err(dev, "Failed to get pwdn-gpios\n");
return PTR_ERR(ov4689->pwdn_gpio);
}
ret = ov4689_configure_regulators(ov4689);
if (ret)
return dev_err_probe(dev, ret,
"Failed to get power regulators\n");
sd = &ov4689->subdev;
v4l2_i2c_subdev_init(sd, client, &ov4689_subdev_ops);
sd->internal_ops = &ov4689_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
ret = ov4689_initialize_controls(ov4689);
if (ret) {
dev_err(dev, "Failed to initialize controls\n");
return ret;
}
ret = ov4689_power_on(dev);
if (ret)
goto err_free_handler;
ret = ov4689_check_sensor_id(ov4689, client);
if (ret)
goto err_power_off;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ov4689->pad.flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sd->entity, 1, &ov4689->pad);
if (ret < 0)
goto err_power_off;
sd->state_lock = ov4689->ctrl_handler.lock;
ret = v4l2_subdev_init_finalize(sd);
if (ret) {
dev_err(dev, "Could not register v4l2 device\n");
goto err_clean_entity;
}
pm_runtime_set_active(dev);
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_use_autosuspend(dev);
ret = v4l2_async_register_subdev_sensor(sd);
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_subdev_pm;
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_clean_subdev_pm:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
v4l2_subdev_cleanup(sd);
err_clean_entity:
media_entity_cleanup(&sd->entity);
err_power_off:
ov4689_power_off(dev);
err_free_handler:
v4l2_ctrl_handler_free(&ov4689->ctrl_handler);
return ret;
}
static void ov4689_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ov4689 *ov4689 = to_ov4689(sd);
v4l2_async_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
v4l2_subdev_cleanup(sd);
v4l2_ctrl_handler_free(&ov4689->ctrl_handler);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
ov4689_power_off(&client->dev);
pm_runtime_set_suspended(&client->dev);
}
static const struct of_device_id ov4689_of_match[] = {
{ .compatible = "ovti,ov4689" },
{},
};
MODULE_DEVICE_TABLE(of, ov4689_of_match);
static struct i2c_driver ov4689_i2c_driver = {
.driver = {
.name = "ov4689",
.pm = &ov4689_pm_ops,
.of_match_table = ov4689_of_match,
},
.probe = ov4689_probe,
.remove = ov4689_remove,
};
module_i2c_driver(ov4689_i2c_driver);
MODULE_DESCRIPTION("OmniVision ov4689 sensor driver");
MODULE_LICENSE("GPL");