// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Cadence MIPI-CSI2 RX Controller v1.3
*
* Copyright (C) 2017 Cadence Design Systems Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define CSI2RX_DEVICE_CFG_REG 0x000
#define CSI2RX_SOFT_RESET_REG 0x004
#define CSI2RX_SOFT_RESET_PROTOCOL BIT(1)
#define CSI2RX_SOFT_RESET_FRONT BIT(0)
#define CSI2RX_STATIC_CFG_REG 0x008
#define CSI2RX_STATIC_CFG_DLANE_MAP(llane, plane) ((plane) << (16 + (llane) * 4))
#define CSI2RX_STATIC_CFG_LANES_MASK GENMASK(11, 8)
#define CSI2RX_DPHY_LANE_CTRL_REG 0x40
#define CSI2RX_DPHY_CL_RST BIT(16)
#define CSI2RX_DPHY_DL_RST(i) BIT((i) + 12)
#define CSI2RX_DPHY_CL_EN BIT(4)
#define CSI2RX_DPHY_DL_EN(i) BIT(i)
#define CSI2RX_STREAM_BASE(n) (((n) + 1) * 0x100)
#define CSI2RX_STREAM_CTRL_REG(n) (CSI2RX_STREAM_BASE(n) + 0x000)
#define CSI2RX_STREAM_CTRL_SOFT_RST BIT(4)
#define CSI2RX_STREAM_CTRL_STOP BIT(1)
#define CSI2RX_STREAM_CTRL_START BIT(0)
#define CSI2RX_STREAM_STATUS_REG(n) (CSI2RX_STREAM_BASE(n) + 0x004)
#define CSI2RX_STREAM_STATUS_RDY BIT(31)
#define CSI2RX_STREAM_DATA_CFG_REG(n) (CSI2RX_STREAM_BASE(n) + 0x008)
#define CSI2RX_STREAM_DATA_CFG_VC_SELECT(n) BIT((n) + 16)
#define CSI2RX_STREAM_CFG_REG(n) (CSI2RX_STREAM_BASE(n) + 0x00c)
#define CSI2RX_STREAM_CFG_FIFO_MODE_LARGE_BUF (1 << 8)
#define CSI2RX_LANES_MAX 4
#define CSI2RX_STREAMS_MAX 4
enum csi2rx_pads {
CSI2RX_PAD_SINK,
CSI2RX_PAD_SOURCE_STREAM0,
CSI2RX_PAD_SOURCE_STREAM1,
CSI2RX_PAD_SOURCE_STREAM2,
CSI2RX_PAD_SOURCE_STREAM3,
CSI2RX_PAD_MAX,
};
struct csi2rx_fmt {
u32 code;
u8 bpp;
};
struct csi2rx_priv {
struct device *dev;
unsigned int count;
/*
* Used to prevent race conditions between multiple,
* concurrent calls to start and stop.
*/
struct mutex lock;
void __iomem *base;
struct clk *sys_clk;
struct clk *p_clk;
struct clk *pixel_clk[CSI2RX_STREAMS_MAX];
struct reset_control *sys_rst;
struct reset_control *p_rst;
struct reset_control *pixel_rst[CSI2RX_STREAMS_MAX];
struct phy *dphy;
u8 lanes[CSI2RX_LANES_MAX];
u8 num_lanes;
u8 max_lanes;
u8 max_streams;
bool has_internal_dphy;
struct v4l2_subdev subdev;
struct v4l2_async_notifier notifier;
struct media_pad pads[CSI2RX_PAD_MAX];
/* Remote source */
struct v4l2_subdev *source_subdev;
int source_pad;
};
static const struct csi2rx_fmt formats[] = {
{ .code = MEDIA_BUS_FMT_YUYV8_1X16, .bpp = 16, },
{ .code = MEDIA_BUS_FMT_UYVY8_1X16, .bpp = 16, },
{ .code = MEDIA_BUS_FMT_YVYU8_1X16, .bpp = 16, },
{ .code = MEDIA_BUS_FMT_VYUY8_1X16, .bpp = 16, },
{ .code = MEDIA_BUS_FMT_SBGGR8_1X8, .bpp = 8, },
{ .code = MEDIA_BUS_FMT_SGBRG8_1X8, .bpp = 8, },
{ .code = MEDIA_BUS_FMT_SGRBG8_1X8, .bpp = 8, },
{ .code = MEDIA_BUS_FMT_SRGGB8_1X8, .bpp = 8, },
{ .code = MEDIA_BUS_FMT_Y8_1X8, .bpp = 8, },
{ .code = MEDIA_BUS_FMT_SBGGR10_1X10, .bpp = 10, },
{ .code = MEDIA_BUS_FMT_SGBRG10_1X10, .bpp = 10, },
{ .code = MEDIA_BUS_FMT_SGRBG10_1X10, .bpp = 10, },
{ .code = MEDIA_BUS_FMT_SRGGB10_1X10, .bpp = 10, },
{ .code = MEDIA_BUS_FMT_RGB565_1X16, .bpp = 16, },
{ .code = MEDIA_BUS_FMT_RGB888_1X24, .bpp = 24, },
{ .code = MEDIA_BUS_FMT_BGR888_1X24, .bpp = 24, },
};
static const struct csi2rx_fmt *csi2rx_get_fmt_by_code(u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(formats); i++)
if (formats[i].code == code)
return &formats[i];
return NULL;
}
static inline
struct csi2rx_priv *v4l2_subdev_to_csi2rx(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct csi2rx_priv, subdev);
}
static void csi2rx_reset(struct csi2rx_priv *csi2rx)
{
unsigned int i;
/* Reset module */
writel(CSI2RX_SOFT_RESET_PROTOCOL | CSI2RX_SOFT_RESET_FRONT,
csi2rx->base + CSI2RX_SOFT_RESET_REG);
/* Reset individual streams. */
for (i = 0; i < csi2rx->max_streams; i++) {
writel(CSI2RX_STREAM_CTRL_SOFT_RST,
csi2rx->base + CSI2RX_STREAM_CTRL_REG(i));
}
usleep_range(10, 20);
/* Clear resets */
writel(0, csi2rx->base + CSI2RX_SOFT_RESET_REG);
for (i = 0; i < csi2rx->max_streams; i++)
writel(0, csi2rx->base + CSI2RX_STREAM_CTRL_REG(i));
}
static int csi2rx_configure_ext_dphy(struct csi2rx_priv *csi2rx)
{
union phy_configure_opts opts = { };
struct phy_configure_opts_mipi_dphy *cfg = &opts.mipi_dphy;
struct v4l2_subdev_format sd_fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = CSI2RX_PAD_SINK,
};
const struct csi2rx_fmt *fmt;
s64 link_freq;
int ret;
ret = v4l2_subdev_call_state_active(&csi2rx->subdev, pad, get_fmt,
&sd_fmt);
if (ret < 0)
return ret;
fmt = csi2rx_get_fmt_by_code(sd_fmt.format.code);
link_freq = v4l2_get_link_freq(csi2rx->source_subdev->ctrl_handler,
fmt->bpp, 2 * csi2rx->num_lanes);
if (link_freq < 0)
return link_freq;
ret = phy_mipi_dphy_get_default_config_for_hsclk(link_freq,
csi2rx->num_lanes, cfg);
if (ret)
return ret;
ret = phy_power_on(csi2rx->dphy);
if (ret)
return ret;
ret = phy_configure(csi2rx->dphy, &opts);
if (ret) {
phy_power_off(csi2rx->dphy);
return ret;
}
return 0;
}
static int csi2rx_start(struct csi2rx_priv *csi2rx)
{
unsigned int i;
unsigned long lanes_used = 0;
u32 reg;
int ret;
ret = clk_prepare_enable(csi2rx->p_clk);
if (ret)
return ret;
reset_control_deassert(csi2rx->p_rst);
csi2rx_reset(csi2rx);
reg = csi2rx->num_lanes << 8;
for (i = 0; i < csi2rx->num_lanes; i++) {
reg |= CSI2RX_STATIC_CFG_DLANE_MAP(i, csi2rx->lanes[i]);
set_bit(csi2rx->lanes[i], &lanes_used);
}
/*
* Even the unused lanes need to be mapped. In order to avoid
* to map twice to the same physical lane, keep the lanes used
* in the previous loop, and only map unused physical lanes to
* the rest of our logical lanes.
*/
for (i = csi2rx->num_lanes; i < csi2rx->max_lanes; i++) {
unsigned int idx = find_first_zero_bit(&lanes_used,
csi2rx->max_lanes);
set_bit(idx, &lanes_used);
reg |= CSI2RX_STATIC_CFG_DLANE_MAP(i, i + 1);
}
writel(reg, csi2rx->base + CSI2RX_STATIC_CFG_REG);
/* Enable DPHY clk and data lanes. */
if (csi2rx->dphy) {
reg = CSI2RX_DPHY_CL_EN | CSI2RX_DPHY_CL_RST;
for (i = 0; i < csi2rx->num_lanes; i++) {
reg |= CSI2RX_DPHY_DL_EN(csi2rx->lanes[i] - 1);
reg |= CSI2RX_DPHY_DL_RST(csi2rx->lanes[i] - 1);
}
writel(reg, csi2rx->base + CSI2RX_DPHY_LANE_CTRL_REG);
ret = csi2rx_configure_ext_dphy(csi2rx);
if (ret) {
dev_err(csi2rx->dev,
"Failed to configure external DPHY: %d\n", ret);
goto err_disable_pclk;
}
}
/*
* Create a static mapping between the CSI virtual channels
* and the output stream.
*
* This should be enhanced, but v4l2 lacks the support for
* changing that mapping dynamically.
*
* We also cannot enable and disable independent streams here,
* hence the reference counting.
*/
for (i = 0; i < csi2rx->max_streams; i++) {
ret = clk_prepare_enable(csi2rx->pixel_clk[i]);
if (ret)
goto err_disable_pixclk;
reset_control_deassert(csi2rx->pixel_rst[i]);
writel(CSI2RX_STREAM_CFG_FIFO_MODE_LARGE_BUF,
csi2rx->base + CSI2RX_STREAM_CFG_REG(i));
/*
* Enable one virtual channel. When multiple virtual channels
* are supported this will have to be changed.
*/
writel(CSI2RX_STREAM_DATA_CFG_VC_SELECT(0),
csi2rx->base + CSI2RX_STREAM_DATA_CFG_REG(i));
writel(CSI2RX_STREAM_CTRL_START,
csi2rx->base + CSI2RX_STREAM_CTRL_REG(i));
}
ret = clk_prepare_enable(csi2rx->sys_clk);
if (ret)
goto err_disable_pixclk;
reset_control_deassert(csi2rx->sys_rst);
ret = v4l2_subdev_call(csi2rx->source_subdev, video, s_stream, true);
if (ret)
goto err_disable_sysclk;
clk_disable_unprepare(csi2rx->p_clk);
return 0;
err_disable_sysclk:
clk_disable_unprepare(csi2rx->sys_clk);
err_disable_pixclk:
for (; i > 0; i--) {
reset_control_assert(csi2rx->pixel_rst[i - 1]);
clk_disable_unprepare(csi2rx->pixel_clk[i - 1]);
}
if (csi2rx->dphy) {
writel(0, csi2rx->base + CSI2RX_DPHY_LANE_CTRL_REG);
phy_power_off(csi2rx->dphy);
}
err_disable_pclk:
clk_disable_unprepare(csi2rx->p_clk);
return ret;
}
static void csi2rx_stop(struct csi2rx_priv *csi2rx)
{
unsigned int i;
u32 val;
int ret;
clk_prepare_enable(csi2rx->p_clk);
reset_control_assert(csi2rx->sys_rst);
clk_disable_unprepare(csi2rx->sys_clk);
for (i = 0; i < csi2rx->max_streams; i++) {
writel(CSI2RX_STREAM_CTRL_STOP,
csi2rx->base + CSI2RX_STREAM_CTRL_REG(i));
ret = readl_relaxed_poll_timeout(csi2rx->base +
CSI2RX_STREAM_STATUS_REG(i),
val,
!(val & CSI2RX_STREAM_STATUS_RDY),
10, 10000);
if (ret)
dev_warn(csi2rx->dev,
"Failed to stop streaming on pad%u\n", i);
reset_control_assert(csi2rx->pixel_rst[i]);
clk_disable_unprepare(csi2rx->pixel_clk[i]);
}
reset_control_assert(csi2rx->p_rst);
clk_disable_unprepare(csi2rx->p_clk);
if (v4l2_subdev_call(csi2rx->source_subdev, video, s_stream, false))
dev_warn(csi2rx->dev, "Couldn't disable our subdev\n");
if (csi2rx->dphy) {
writel(0, csi2rx->base + CSI2RX_DPHY_LANE_CTRL_REG);
if (phy_power_off(csi2rx->dphy))
dev_warn(csi2rx->dev, "Couldn't power off DPHY\n");
}
}
static int csi2rx_s_stream(struct v4l2_subdev *subdev, int enable)
{
struct csi2rx_priv *csi2rx = v4l2_subdev_to_csi2rx(subdev);
int ret = 0;
mutex_lock(&csi2rx->lock);
if (enable) {
/*
* If we're not the first users, there's no need to
* enable the whole controller.
*/
if (!csi2rx->count) {
ret = csi2rx_start(csi2rx);
if (ret)
goto out;
}
csi2rx->count++;
} else {
csi2rx->count--;
/*
* Let the last user turn off the lights.
*/
if (!csi2rx->count)
csi2rx_stop(csi2rx);
}
out:
mutex_unlock(&csi2rx->lock);
return ret;
}
static int csi2rx_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code_enum)
{
if (code_enum->index >= ARRAY_SIZE(formats))
return -EINVAL;
code_enum->code = formats[code_enum->index].code;
return 0;
}
static int csi2rx_set_fmt(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt;
unsigned int i;
/* No transcoding, source and sink formats must match. */
if (format->pad != CSI2RX_PAD_SINK)
return v4l2_subdev_get_fmt(subdev, state, format);
if (!csi2rx_get_fmt_by_code(format->format.code))
format->format.code = formats[0].code;
format->format.field = V4L2_FIELD_NONE;
/* Set sink format */
fmt = v4l2_subdev_state_get_format(state, format->pad);
*fmt = format->format;
/* Propagate to source formats */
for (i = CSI2RX_PAD_SOURCE_STREAM0; i < CSI2RX_PAD_MAX; i++) {
fmt = v4l2_subdev_state_get_format(state, i);
*fmt = format->format;
}
return 0;
}
static int csi2rx_init_state(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_format format = {
.pad = CSI2RX_PAD_SINK,
.format = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_SRGB,
.ycbcr_enc = V4L2_YCBCR_ENC_601,
.quantization = V4L2_QUANTIZATION_LIM_RANGE,
.xfer_func = V4L2_XFER_FUNC_SRGB,
},
};
return csi2rx_set_fmt(subdev, state, &format);
}
static const struct v4l2_subdev_pad_ops csi2rx_pad_ops = {
.enum_mbus_code = csi2rx_enum_mbus_code,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = csi2rx_set_fmt,
};
static const struct v4l2_subdev_video_ops csi2rx_video_ops = {
.s_stream = csi2rx_s_stream,
};
static const struct v4l2_subdev_ops csi2rx_subdev_ops = {
.video = &csi2rx_video_ops,
.pad = &csi2rx_pad_ops,
};
static const struct v4l2_subdev_internal_ops csi2rx_internal_ops = {
.init_state = csi2rx_init_state,
};
static const struct media_entity_operations csi2rx_media_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static int csi2rx_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *s_subdev,
struct v4l2_async_connection *asd)
{
struct v4l2_subdev *subdev = notifier->sd;
struct csi2rx_priv *csi2rx = v4l2_subdev_to_csi2rx(subdev);
csi2rx->source_pad = media_entity_get_fwnode_pad(&s_subdev->entity,
asd->match.fwnode,
MEDIA_PAD_FL_SOURCE);
if (csi2rx->source_pad < 0) {
dev_err(csi2rx->dev, "Couldn't find output pad for subdev %s\n",
s_subdev->name);
return csi2rx->source_pad;
}
csi2rx->source_subdev = s_subdev;
dev_dbg(csi2rx->dev, "Bound %s pad: %d\n", s_subdev->name,
csi2rx->source_pad);
return media_create_pad_link(&csi2rx->source_subdev->entity,
csi2rx->source_pad,
&csi2rx->subdev.entity, 0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
}
static const struct v4l2_async_notifier_operations csi2rx_notifier_ops = {
.bound = csi2rx_async_bound,
};
static int csi2rx_get_resources(struct csi2rx_priv *csi2rx,
struct platform_device *pdev)
{
unsigned char i;
u32 dev_cfg;
int ret;
csi2rx->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csi2rx->base))
return PTR_ERR(csi2rx->base);
csi2rx->sys_clk = devm_clk_get(&pdev->dev, "sys_clk");
if (IS_ERR(csi2rx->sys_clk)) {
dev_err(&pdev->dev, "Couldn't get sys clock\n");
return PTR_ERR(csi2rx->sys_clk);
}
csi2rx->p_clk = devm_clk_get(&pdev->dev, "p_clk");
if (IS_ERR(csi2rx->p_clk)) {
dev_err(&pdev->dev, "Couldn't get P clock\n");
return PTR_ERR(csi2rx->p_clk);
}
csi2rx->sys_rst = devm_reset_control_get_optional_exclusive(&pdev->dev,
"sys");
if (IS_ERR(csi2rx->sys_rst))
return PTR_ERR(csi2rx->sys_rst);
csi2rx->p_rst = devm_reset_control_get_optional_exclusive(&pdev->dev,
"reg_bank");
if (IS_ERR(csi2rx->p_rst))
return PTR_ERR(csi2rx->p_rst);
csi2rx->dphy = devm_phy_optional_get(&pdev->dev, "dphy");
if (IS_ERR(csi2rx->dphy)) {
dev_err(&pdev->dev, "Couldn't get external D-PHY\n");
return PTR_ERR(csi2rx->dphy);
}
ret = clk_prepare_enable(csi2rx->p_clk);
if (ret) {
dev_err(&pdev->dev, "Couldn't prepare and enable P clock\n");
return ret;
}
dev_cfg = readl(csi2rx->base + CSI2RX_DEVICE_CFG_REG);
clk_disable_unprepare(csi2rx->p_clk);
csi2rx->max_lanes = dev_cfg & 7;
if (csi2rx->max_lanes > CSI2RX_LANES_MAX) {
dev_err(&pdev->dev, "Invalid number of lanes: %u\n",
csi2rx->max_lanes);
return -EINVAL;
}
csi2rx->max_streams = (dev_cfg >> 4) & 7;
if (csi2rx->max_streams > CSI2RX_STREAMS_MAX) {
dev_err(&pdev->dev, "Invalid number of streams: %u\n",
csi2rx->max_streams);
return -EINVAL;
}
csi2rx->has_internal_dphy = dev_cfg & BIT(3) ? true : false;
/*
* FIXME: Once we'll have internal D-PHY support, the check
* will need to be removed.
*/
if (!csi2rx->dphy && csi2rx->has_internal_dphy) {
dev_err(&pdev->dev, "Internal D-PHY not supported yet\n");
return -EINVAL;
}
for (i = 0; i < csi2rx->max_streams; i++) {
char name[16];
snprintf(name, sizeof(name), "pixel_if%u_clk", i);
csi2rx->pixel_clk[i] = devm_clk_get(&pdev->dev, name);
if (IS_ERR(csi2rx->pixel_clk[i])) {
dev_err(&pdev->dev, "Couldn't get clock %s\n", name);
return PTR_ERR(csi2rx->pixel_clk[i]);
}
snprintf(name, sizeof(name), "pixel_if%u", i);
csi2rx->pixel_rst[i] =
devm_reset_control_get_optional_exclusive(&pdev->dev,
name);
if (IS_ERR(csi2rx->pixel_rst[i]))
return PTR_ERR(csi2rx->pixel_rst[i]);
}
return 0;
}
static int csi2rx_parse_dt(struct csi2rx_priv *csi2rx)
{
struct v4l2_fwnode_endpoint v4l2_ep = { .bus_type = 0 };
struct v4l2_async_connection *asd;
struct fwnode_handle *fwh;
struct device_node *ep;
int ret;
ep = of_graph_get_endpoint_by_regs(csi2rx->dev->of_node, 0, 0);
if (!ep)
return -EINVAL;
fwh = of_fwnode_handle(ep);
ret = v4l2_fwnode_endpoint_parse(fwh, &v4l2_ep);
if (ret) {
dev_err(csi2rx->dev, "Could not parse v4l2 endpoint\n");
of_node_put(ep);
return ret;
}
if (v4l2_ep.bus_type != V4L2_MBUS_CSI2_DPHY) {
dev_err(csi2rx->dev, "Unsupported media bus type: 0x%x\n",
v4l2_ep.bus_type);
of_node_put(ep);
return -EINVAL;
}
memcpy(csi2rx->lanes, v4l2_ep.bus.mipi_csi2.data_lanes,
sizeof(csi2rx->lanes));
csi2rx->num_lanes = v4l2_ep.bus.mipi_csi2.num_data_lanes;
if (csi2rx->num_lanes > csi2rx->max_lanes) {
dev_err(csi2rx->dev, "Unsupported number of data-lanes: %d\n",
csi2rx->num_lanes);
of_node_put(ep);
return -EINVAL;
}
v4l2_async_subdev_nf_init(&csi2rx->notifier, &csi2rx->subdev);
asd = v4l2_async_nf_add_fwnode_remote(&csi2rx->notifier, fwh,
struct v4l2_async_connection);
of_node_put(ep);
if (IS_ERR(asd)) {
v4l2_async_nf_cleanup(&csi2rx->notifier);
return PTR_ERR(asd);
}
csi2rx->notifier.ops = &csi2rx_notifier_ops;
ret = v4l2_async_nf_register(&csi2rx->notifier);
if (ret)
v4l2_async_nf_cleanup(&csi2rx->notifier);
return ret;
}
static int csi2rx_probe(struct platform_device *pdev)
{
struct csi2rx_priv *csi2rx;
unsigned int i;
int ret;
csi2rx = kzalloc(sizeof(*csi2rx), GFP_KERNEL);
if (!csi2rx)
return -ENOMEM;
platform_set_drvdata(pdev, csi2rx);
csi2rx->dev = &pdev->dev;
mutex_init(&csi2rx->lock);
ret = csi2rx_get_resources(csi2rx, pdev);
if (ret)
goto err_free_priv;
ret = csi2rx_parse_dt(csi2rx);
if (ret)
goto err_free_priv;
csi2rx->subdev.owner = THIS_MODULE;
csi2rx->subdev.dev = &pdev->dev;
v4l2_subdev_init(&csi2rx->subdev, &csi2rx_subdev_ops);
csi2rx->subdev.internal_ops = &csi2rx_internal_ops;
v4l2_set_subdevdata(&csi2rx->subdev, &pdev->dev);
snprintf(csi2rx->subdev.name, sizeof(csi2rx->subdev.name),
"%s.%s", KBUILD_MODNAME, dev_name(&pdev->dev));
/* Create our media pads */
csi2rx->subdev.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
csi2rx->pads[CSI2RX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
for (i = CSI2RX_PAD_SOURCE_STREAM0; i < CSI2RX_PAD_MAX; i++)
csi2rx->pads[i].flags = MEDIA_PAD_FL_SOURCE;
csi2rx->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
csi2rx->subdev.entity.ops = &csi2rx_media_ops;
ret = media_entity_pads_init(&csi2rx->subdev.entity, CSI2RX_PAD_MAX,
csi2rx->pads);
if (ret)
goto err_cleanup;
ret = v4l2_subdev_init_finalize(&csi2rx->subdev);
if (ret)
goto err_cleanup;
ret = v4l2_async_register_subdev(&csi2rx->subdev);
if (ret < 0)
goto err_free_state;
dev_info(&pdev->dev,
"Probed CSI2RX with %u/%u lanes, %u streams, %s D-PHY\n",
csi2rx->num_lanes, csi2rx->max_lanes, csi2rx->max_streams,
csi2rx->dphy ? "external" :
csi2rx->has_internal_dphy ? "internal" : "no");
return 0;
err_free_state:
v4l2_subdev_cleanup(&csi2rx->subdev);
err_cleanup:
v4l2_async_nf_unregister(&csi2rx->notifier);
v4l2_async_nf_cleanup(&csi2rx->notifier);
media_entity_cleanup(&csi2rx->subdev.entity);
err_free_priv:
kfree(csi2rx);
return ret;
}
static void csi2rx_remove(struct platform_device *pdev)
{
struct csi2rx_priv *csi2rx = platform_get_drvdata(pdev);
v4l2_async_nf_unregister(&csi2rx->notifier);
v4l2_async_nf_cleanup(&csi2rx->notifier);
v4l2_async_unregister_subdev(&csi2rx->subdev);
v4l2_subdev_cleanup(&csi2rx->subdev);
media_entity_cleanup(&csi2rx->subdev.entity);
kfree(csi2rx);
}
static const struct of_device_id csi2rx_of_table[] = {
{ .compatible = "starfive,jh7110-csi2rx" },
{ .compatible = "cdns,csi2rx" },
{ },
};
MODULE_DEVICE_TABLE(of, csi2rx_of_table);
static struct platform_driver csi2rx_driver = {
.probe = csi2rx_probe,
.remove_new = csi2rx_remove,
.driver = {
.name = "cdns-csi2rx",
.of_match_table = csi2rx_of_table,
},
};
module_platform_driver(csi2rx_driver);
MODULE_AUTHOR("Maxime Ripard <[email protected]>");
MODULE_DESCRIPTION("Cadence CSI2-RX controller");
MODULE_LICENSE("GPL");