linux/drivers/media/platform/qcom/camss/camss-csid-gen2.c

// SPDX-License-Identifier: GPL-2.0
/*
 * camss-csid-4-7.c
 *
 * Qualcomm MSM Camera Subsystem - CSID (CSI Decoder) Module
 *
 * Copyright (C) 2020 Linaro Ltd.
 */
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of.h>

#include "camss-csid.h"
#include "camss-csid-gen2.h"
#include "camss.h"

/* The CSID 2 IP-block is different from the others,
 * and is of a bare-bones Lite version, with no PIX
 * interface support. As a result of that it has an
 * alternate register layout.
 */

#define CSID_HW_VERSION		0x0
#define		HW_VERSION_STEPPING	0
#define		HW_VERSION_REVISION	16
#define		HW_VERSION_GENERATION	28

#define CSID_RST_STROBES	0x10
#define		RST_STROBES	0

#define CSID_CSI2_RX_IRQ_STATUS	0x20
#define	CSID_CSI2_RX_IRQ_MASK	0x24
#define CSID_CSI2_RX_IRQ_CLEAR	0x28

#define CSID_CSI2_RDIN_IRQ_STATUS(rdi)		((csid_is_lite(csid) ? 0x30 : 0x40) \
						 + 0x10 * (rdi))
#define CSID_CSI2_RDIN_IRQ_MASK(rdi)		((csid_is_lite(csid) ? 0x34 : 0x44) \
						 + 0x10 * (rdi))
#define CSID_CSI2_RDIN_IRQ_CLEAR(rdi)		((csid_is_lite(csid) ? 0x38 : 0x48) \
						 + 0x10 * (rdi))
#define CSID_CSI2_RDIN_IRQ_SET(rdi)		((csid_is_lite(csid) ? 0x3C : 0x4C) \
						 + 0x10 * (rdi))

#define CSID_TOP_IRQ_STATUS	0x70
#define		TOP_IRQ_STATUS_RESET_DONE 0
#define CSID_TOP_IRQ_MASK	0x74
#define CSID_TOP_IRQ_CLEAR	0x78
#define CSID_TOP_IRQ_SET	0x7C
#define CSID_IRQ_CMD		0x80
#define		IRQ_CMD_CLEAR	0
#define		IRQ_CMD_SET	4

#define CSID_CSI2_RX_CFG0	0x100
#define		CSI2_RX_CFG0_NUM_ACTIVE_LANES	0
#define		CSI2_RX_CFG0_DL0_INPUT_SEL	4
#define		CSI2_RX_CFG0_DL1_INPUT_SEL	8
#define		CSI2_RX_CFG0_DL2_INPUT_SEL	12
#define		CSI2_RX_CFG0_DL3_INPUT_SEL	16
#define		CSI2_RX_CFG0_PHY_NUM_SEL	20
#define		CSI2_RX_CFG0_PHY_TYPE_SEL	24

#define CSID_CSI2_RX_CFG1	0x104
#define		CSI2_RX_CFG1_PACKET_ECC_CORRECTION_EN		0
#define		CSI2_RX_CFG1_DE_SCRAMBLE_EN			1
#define		CSI2_RX_CFG1_VC_MODE				2
#define		CSI2_RX_CFG1_COMPLETE_STREAM_EN			4
#define		CSI2_RX_CFG1_COMPLETE_STREAM_FRAME_TIMING	5
#define		CSI2_RX_CFG1_MISR_EN				6
#define		CSI2_RX_CFG1_CGC_MODE				7
#define			CGC_MODE_DYNAMIC_GATING		0
#define			CGC_MODE_ALWAYS_ON		1

#define CSID_RDI_CFG0(rdi)			((csid_is_lite(csid) ? 0x200 : 0x300) \
						 + 0x100 * (rdi))
#define		RDI_CFG0_BYTE_CNTR_EN		0
#define		RDI_CFG0_FORMAT_MEASURE_EN	1
#define		RDI_CFG0_TIMESTAMP_EN		2
#define		RDI_CFG0_DROP_H_EN		3
#define		RDI_CFG0_DROP_V_EN		4
#define		RDI_CFG0_CROP_H_EN		5
#define		RDI_CFG0_CROP_V_EN		6
#define		RDI_CFG0_MISR_EN		7
#define		RDI_CFG0_CGC_MODE		8
#define			CGC_MODE_DYNAMIC	0
#define			CGC_MODE_ALWAYS_ON	1
#define		RDI_CFG0_PLAIN_ALIGNMENT	9
#define			PLAIN_ALIGNMENT_LSB	0
#define			PLAIN_ALIGNMENT_MSB	1
#define		RDI_CFG0_PLAIN_FORMAT		10
#define		RDI_CFG0_DECODE_FORMAT		12
#define		RDI_CFG0_DATA_TYPE		16
#define		RDI_CFG0_VIRTUAL_CHANNEL	22
#define		RDI_CFG0_DT_ID			27
#define		RDI_CFG0_EARLY_EOF_EN		29
#define		RDI_CFG0_PACKING_FORMAT		30
#define		RDI_CFG0_ENABLE			31

#define CSID_RDI_CFG1(rdi)			((csid_is_lite(csid) ? 0x204 : 0x304)\
						+ 0x100 * (rdi))
#define		RDI_CFG1_TIMESTAMP_STB_SEL	0

#define CSID_RDI_CTRL(rdi)			((csid_is_lite(csid) ? 0x208 : 0x308)\
						+ 0x100 * (rdi))
#define		RDI_CTRL_HALT_CMD		0
#define			HALT_CMD_HALT_AT_FRAME_BOUNDARY		0
#define			HALT_CMD_RESUME_AT_FRAME_BOUNDARY	1
#define		RDI_CTRL_HALT_MODE		2

#define CSID_RDI_FRM_DROP_PATTERN(rdi)			((csid_is_lite(csid) ? 0x20C : 0x30C)\
							+ 0x100 * (rdi))
#define CSID_RDI_FRM_DROP_PERIOD(rdi)			((csid_is_lite(csid) ? 0x210 : 0x310)\
							+ 0x100 * (rdi))
#define CSID_RDI_IRQ_SUBSAMPLE_PATTERN(rdi)		((csid_is_lite(csid) ? 0x214 : 0x314)\
							+ 0x100 * (rdi))
#define CSID_RDI_IRQ_SUBSAMPLE_PERIOD(rdi)		((csid_is_lite(csid) ? 0x218 : 0x318)\
							+ 0x100 * (rdi))
#define CSID_RDI_RPP_PIX_DROP_PATTERN(rdi)		((csid_is_lite(csid) ? 0x224 : 0x324)\
							+ 0x100 * (rdi))
#define CSID_RDI_RPP_PIX_DROP_PERIOD(rdi)		((csid_is_lite(csid) ? 0x228 : 0x328)\
							+ 0x100 * (rdi))
#define CSID_RDI_RPP_LINE_DROP_PATTERN(rdi)		((csid_is_lite(csid) ? 0x22C : 0x32C)\
							+ 0x100 * (rdi))
#define CSID_RDI_RPP_LINE_DROP_PERIOD(rdi)		((csid_is_lite(csid) ? 0x230 : 0x330)\
							+ 0x100 * (rdi))

#define CSID_TPG_CTRL		0x600
#define		TPG_CTRL_TEST_EN		0
#define		TPG_CTRL_FS_PKT_EN		1
#define		TPG_CTRL_FE_PKT_EN		2
#define		TPG_CTRL_NUM_ACTIVE_LANES	4
#define		TPG_CTRL_CYCLES_BETWEEN_PKTS	8
#define		TPG_CTRL_NUM_TRAIL_BYTES	20

#define CSID_TPG_VC_CFG0	0x604
#define		TPG_VC_CFG0_VC_NUM			0
#define		TPG_VC_CFG0_NUM_ACTIVE_SLOTS		8
#define			NUM_ACTIVE_SLOTS_0_ENABLED	0
#define			NUM_ACTIVE_SLOTS_0_1_ENABLED	1
#define			NUM_ACTIVE_SLOTS_0_1_2_ENABLED	2
#define			NUM_ACTIVE_SLOTS_0_1_3_ENABLED	3
#define		TPG_VC_CFG0_LINE_INTERLEAVING_MODE	10
#define			INTELEAVING_MODE_INTERLEAVED	0
#define			INTELEAVING_MODE_ONE_SHOT	1
#define		TPG_VC_CFG0_NUM_FRAMES			16

#define CSID_TPG_VC_CFG1	0x608
#define		TPG_VC_CFG1_H_BLANKING_COUNT		0
#define		TPG_VC_CFG1_V_BLANKING_COUNT		12
#define		TPG_VC_CFG1_V_BLANK_FRAME_WIDTH_SEL	24

#define CSID_TPG_LFSR_SEED	0x60C

#define CSID_TPG_DT_n_CFG_0(n)	(0x610 + (n) * 0xC)
#define		TPG_DT_n_CFG_0_FRAME_HEIGHT	0
#define		TPG_DT_n_CFG_0_FRAME_WIDTH	16

#define CSID_TPG_DT_n_CFG_1(n)	(0x614 + (n) * 0xC)
#define		TPG_DT_n_CFG_1_DATA_TYPE	0
#define		TPG_DT_n_CFG_1_ECC_XOR_MASK	8
#define		TPG_DT_n_CFG_1_CRC_XOR_MASK	16

#define CSID_TPG_DT_n_CFG_2(n)	(0x618 + (n) * 0xC)
#define		TPG_DT_n_CFG_2_PAYLOAD_MODE		0
#define		TPG_DT_n_CFG_2_USER_SPECIFIED_PAYLOAD	4
#define		TPG_DT_n_CFG_2_ENCODE_FORMAT		16

#define CSID_TPG_COLOR_BARS_CFG	0x640
#define		TPG_COLOR_BARS_CFG_UNICOLOR_BAR_EN	0
#define		TPG_COLOR_BARS_CFG_UNICOLOR_BAR_SEL	4
#define		TPG_COLOR_BARS_CFG_SPLIT_EN		5
#define		TPG_COLOR_BARS_CFG_ROTATE_PERIOD	8

#define CSID_TPG_COLOR_BOX_CFG	0x644
#define		TPG_COLOR_BOX_CFG_MODE		0
#define		TPG_COLOR_BOX_PATTERN_SEL	2

static void __csid_configure_rx(struct csid_device *csid,
				struct csid_phy_config *phy, int vc)
{
	u8 lane_cnt = csid->phy.lane_cnt;
	int val;

	if (!lane_cnt)
		lane_cnt = 4;

	val = (lane_cnt - 1) << CSI2_RX_CFG0_NUM_ACTIVE_LANES;
	val |= phy->lane_assign << CSI2_RX_CFG0_DL0_INPUT_SEL;
	val |= phy->csiphy_id << CSI2_RX_CFG0_PHY_NUM_SEL;
	writel_relaxed(val, csid->base + CSID_CSI2_RX_CFG0);

	val = 1 << CSI2_RX_CFG1_PACKET_ECC_CORRECTION_EN;
	if (vc > 3)
		val |= 1 << CSI2_RX_CFG1_VC_MODE;
	val |= 1 << CSI2_RX_CFG1_MISR_EN;
	writel_relaxed(val, csid->base + CSID_CSI2_RX_CFG1);
}

static void __csid_ctrl_rdi(struct csid_device *csid, int enable, u8 rdi)
{
	int val;

	if (enable)
		val = HALT_CMD_RESUME_AT_FRAME_BOUNDARY << RDI_CTRL_HALT_CMD;
	else
		val = HALT_CMD_HALT_AT_FRAME_BOUNDARY << RDI_CTRL_HALT_CMD;
	writel_relaxed(val, csid->base + CSID_RDI_CTRL(rdi));
}

static void __csid_configure_testgen(struct csid_device *csid, u8 enable, u8 vc)
{
	struct csid_testgen_config *tg = &csid->testgen;
	struct v4l2_mbus_framefmt *input_format = &csid->fmt[MSM_CSID_PAD_FIRST_SRC + vc];
	const struct csid_format_info *format = csid_get_fmt_entry(csid->res->formats->formats,
								   csid->res->formats->nformats,
								   input_format->code);
	u8 lane_cnt = csid->phy.lane_cnt;
	u32 val;

	if (!lane_cnt)
		lane_cnt = 4;

	/* configure one DT, infinite frames */
	val = vc << TPG_VC_CFG0_VC_NUM;
	val |= INTELEAVING_MODE_ONE_SHOT << TPG_VC_CFG0_LINE_INTERLEAVING_MODE;
	val |= 0 << TPG_VC_CFG0_NUM_FRAMES;
	writel_relaxed(val, csid->base + CSID_TPG_VC_CFG0);

	val = 0x740 << TPG_VC_CFG1_H_BLANKING_COUNT;
	val |= 0x3ff << TPG_VC_CFG1_V_BLANKING_COUNT;
	writel_relaxed(val, csid->base + CSID_TPG_VC_CFG1);

	writel_relaxed(0x12345678, csid->base + CSID_TPG_LFSR_SEED);

	val = (input_format->height & 0x1fff) << TPG_DT_n_CFG_0_FRAME_HEIGHT;
	val |= (input_format->width & 0x1fff) << TPG_DT_n_CFG_0_FRAME_WIDTH;
	writel_relaxed(val, csid->base + CSID_TPG_DT_n_CFG_0(0));

	val = format->data_type << TPG_DT_n_CFG_1_DATA_TYPE;
	writel_relaxed(val, csid->base + CSID_TPG_DT_n_CFG_1(0));

	val = (tg->mode - 1) << TPG_DT_n_CFG_2_PAYLOAD_MODE;
	val |= 0xBE << TPG_DT_n_CFG_2_USER_SPECIFIED_PAYLOAD;
	val |= format->decode_format << TPG_DT_n_CFG_2_ENCODE_FORMAT;
	writel_relaxed(val, csid->base + CSID_TPG_DT_n_CFG_2(0));

	writel_relaxed(0, csid->base + CSID_TPG_COLOR_BARS_CFG);

	writel_relaxed(0, csid->base + CSID_TPG_COLOR_BOX_CFG);

	val = enable << TPG_CTRL_TEST_EN;
	val |= 1 << TPG_CTRL_FS_PKT_EN;
	val |= 1 << TPG_CTRL_FE_PKT_EN;
	val |= (lane_cnt - 1) << TPG_CTRL_NUM_ACTIVE_LANES;
	val |= 0x64 << TPG_CTRL_CYCLES_BETWEEN_PKTS;
	val |= 0xA << TPG_CTRL_NUM_TRAIL_BYTES;
	writel_relaxed(val, csid->base + CSID_TPG_CTRL);
}

static void __csid_configure_rdi_stream(struct csid_device *csid, u8 enable, u8 vc)
{
	/* Source pads matching RDI channels on hardware. Pad 1 -> RDI0, Pad 2 -> RDI1, etc. */
	struct v4l2_mbus_framefmt *input_format = &csid->fmt[MSM_CSID_PAD_FIRST_SRC + vc];
	const struct csid_format_info *format = csid_get_fmt_entry(csid->res->formats->formats,
								   csid->res->formats->nformats,
								   input_format->code);
	u32 val;

	/*
	 * DT_ID is a two bit bitfield that is concatenated with
	 * the four least significant bits of the five bit VC
	 * bitfield to generate an internal CID value.
	 *
	 * CSID_RDI_CFG0(vc)
	 * DT_ID : 28:27
	 * VC    : 26:22
	 * DT    : 21:16
	 *
	 * CID   : VC 3:0 << 2 | DT_ID 1:0
	 */
	u8 dt_id = vc & 0x03;

	val = 1 << RDI_CFG0_BYTE_CNTR_EN;
	val |= 1 << RDI_CFG0_FORMAT_MEASURE_EN;
	val |= 1 << RDI_CFG0_TIMESTAMP_EN;
	/* note: for non-RDI path, this should be format->decode_format */
	val |= DECODE_FORMAT_PAYLOAD_ONLY << RDI_CFG0_DECODE_FORMAT;
	val |= format->data_type << RDI_CFG0_DATA_TYPE;
	val |= vc << RDI_CFG0_VIRTUAL_CHANNEL;
	val |= dt_id << RDI_CFG0_DT_ID;
	writel_relaxed(val, csid->base + CSID_RDI_CFG0(vc));

	/* CSID_TIMESTAMP_STB_POST_IRQ */
	val = 2 << RDI_CFG1_TIMESTAMP_STB_SEL;
	writel_relaxed(val, csid->base + CSID_RDI_CFG1(vc));

	val = 1;
	writel_relaxed(val, csid->base + CSID_RDI_FRM_DROP_PERIOD(vc));

	val = 0;
	writel_relaxed(val, csid->base + CSID_RDI_FRM_DROP_PATTERN(vc));

	val = 1;
	writel_relaxed(val, csid->base + CSID_RDI_IRQ_SUBSAMPLE_PERIOD(vc));

	val = 0;
	writel_relaxed(val, csid->base + CSID_RDI_IRQ_SUBSAMPLE_PATTERN(vc));

	val = 1;
	writel_relaxed(val, csid->base + CSID_RDI_RPP_PIX_DROP_PERIOD(vc));

	val = 0;
	writel_relaxed(val, csid->base + CSID_RDI_RPP_PIX_DROP_PATTERN(vc));

	val = 1;
	writel_relaxed(val, csid->base + CSID_RDI_RPP_LINE_DROP_PERIOD(vc));

	val = 0;
	writel_relaxed(val, csid->base + CSID_RDI_RPP_LINE_DROP_PATTERN(vc));

	val = 0;
	writel_relaxed(val, csid->base + CSID_RDI_CTRL(vc));

	val = readl_relaxed(csid->base + CSID_RDI_CFG0(vc));
	val |=  enable << RDI_CFG0_ENABLE;
	writel_relaxed(val, csid->base + CSID_RDI_CFG0(vc));
}

static void csid_configure_stream(struct csid_device *csid, u8 enable)
{
	struct csid_testgen_config *tg = &csid->testgen;
	u8 i;
	/* Loop through all enabled VCs and configure stream for each */
	for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++)
		if (csid->phy.en_vc & BIT(i)) {
			if (tg->enabled)
				__csid_configure_testgen(csid, enable, i);

			__csid_configure_rdi_stream(csid, enable, i);
			__csid_configure_rx(csid, &csid->phy, i);
			__csid_ctrl_rdi(csid, enable, i);
		}
}

static int csid_configure_testgen_pattern(struct csid_device *csid, s32 val)
{
	if (val > 0 && val <= csid->testgen.nmodes)
		csid->testgen.mode = val;

	return 0;
}

/*
 * csid_hw_version - CSID hardware version query
 * @csid: CSID device
 *
 * Return HW version or error
 */
static u32 csid_hw_version(struct csid_device *csid)
{
	u32 hw_version;
	u32 hw_gen;
	u32 hw_rev;
	u32 hw_step;

	hw_version = readl_relaxed(csid->base + CSID_HW_VERSION);
	hw_gen = (hw_version >> HW_VERSION_GENERATION) & 0xF;
	hw_rev = (hw_version >> HW_VERSION_REVISION) & 0xFFF;
	hw_step = (hw_version >> HW_VERSION_STEPPING) & 0xFFFF;
	dev_dbg(csid->camss->dev, "CSID HW Version = %u.%u.%u\n",
		hw_gen, hw_rev, hw_step);

	return hw_version;
}

/*
 * csid_isr - CSID module interrupt service routine
 * @irq: Interrupt line
 * @dev: CSID device
 *
 * Return IRQ_HANDLED on success
 */
static irqreturn_t csid_isr(int irq, void *dev)
{
	struct csid_device *csid = dev;
	u32 val;
	u8 reset_done;
	int i;

	val = readl_relaxed(csid->base + CSID_TOP_IRQ_STATUS);
	writel_relaxed(val, csid->base + CSID_TOP_IRQ_CLEAR);
	reset_done = val & BIT(TOP_IRQ_STATUS_RESET_DONE);

	val = readl_relaxed(csid->base + CSID_CSI2_RX_IRQ_STATUS);
	writel_relaxed(val, csid->base + CSID_CSI2_RX_IRQ_CLEAR);

	/* Read and clear IRQ status for each enabled RDI channel */
	for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++)
		if (csid->phy.en_vc & BIT(i)) {
			val = readl_relaxed(csid->base + CSID_CSI2_RDIN_IRQ_STATUS(i));
			writel_relaxed(val, csid->base + CSID_CSI2_RDIN_IRQ_CLEAR(i));
		}

	val = 1 << IRQ_CMD_CLEAR;
	writel_relaxed(val, csid->base + CSID_IRQ_CMD);

	if (reset_done)
		complete(&csid->reset_complete);

	return IRQ_HANDLED;
}

/*
 * csid_reset - Trigger reset on CSID module and wait to complete
 * @csid: CSID device
 *
 * Return 0 on success or a negative error code otherwise
 */
static int csid_reset(struct csid_device *csid)
{
	unsigned long time;
	u32 val;

	reinit_completion(&csid->reset_complete);

	writel_relaxed(1, csid->base + CSID_TOP_IRQ_CLEAR);
	writel_relaxed(1, csid->base + CSID_IRQ_CMD);
	writel_relaxed(1, csid->base + CSID_TOP_IRQ_MASK);
	writel_relaxed(1, csid->base + CSID_IRQ_CMD);

	/* preserve registers */
	val = 0x1e << RST_STROBES;
	writel_relaxed(val, csid->base + CSID_RST_STROBES);

	time = wait_for_completion_timeout(&csid->reset_complete,
					   msecs_to_jiffies(CSID_RESET_TIMEOUT_MS));
	if (!time) {
		dev_err(csid->camss->dev, "CSID reset timeout\n");
		return -EIO;
	}

	return 0;
}

static u32 csid_src_pad_code(struct csid_device *csid, u32 sink_code,
			     unsigned int match_format_idx, u32 match_code)
{
	switch (sink_code) {
	case MEDIA_BUS_FMT_SBGGR10_1X10:
	{
		u32 src_code[] = {
			MEDIA_BUS_FMT_SBGGR10_1X10,
			MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE,
		};

		return csid_find_code(src_code, ARRAY_SIZE(src_code),
				      match_format_idx, match_code);
	}
	case MEDIA_BUS_FMT_Y10_1X10:
	{
		u32 src_code[] = {
			MEDIA_BUS_FMT_Y10_1X10,
			MEDIA_BUS_FMT_Y10_2X8_PADHI_LE,
		};

		return csid_find_code(src_code, ARRAY_SIZE(src_code),
				      match_format_idx, match_code);
	}
	default:
		if (match_format_idx > 0)
			return 0;

		return sink_code;
	}
}

static void csid_subdev_init(struct csid_device *csid)
{
	csid->testgen.modes = csid_testgen_modes;
	csid->testgen.nmodes = CSID_PAYLOAD_MODE_NUM_SUPPORTED_GEN2;
}

const struct csid_hw_ops csid_ops_gen2 = {
	.configure_stream = csid_configure_stream,
	.configure_testgen_pattern = csid_configure_testgen_pattern,
	.hw_version = csid_hw_version,
	.isr = csid_isr,
	.reset = csid_reset,
	.src_pad_code = csid_src_pad_code,
	.subdev_init = csid_subdev_init,
};